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Fuzzy implications are one of the most important operations
in fuzzy logic having a significant role in many applications,
viz., approximate reasoning, fuzzy control, fuzzy image
processing, etc.

They generalize the classical implication, which takes values in
{0, 1}, to fuzzy logic, where the truth values belong to the
unit interval [0, 1]. In general situation, since [0, 1] is a
bounded lattice, like in the case of other logical operators, the
problem of introducing implications on a bounded lattice laid
bare and Ma and Wu, Logical operators on complete lattices,
have introduced them at first. Several authors have
investigated the implications on a bounded lattice and their
relations to the other logical operators [11, 16, 17, 20, 21, 22].
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In this paper:

We introduce an order by means of an implication possessing
some special properties on a lattice and discuss some of its
properties.

We determine the relationship between the order induced by
an implication and the order on the lattice. Giving example,
we show that a bounded lattice needs not be a lattice with
respect to the order induced by an implication.

Also, we give an example for an implication making the unit
interval [0, 1] a lattice with respect to the order induced by it.
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Moreover, we obtain that such a generating method of an
order is independent from the order induced by an adjoint
t-norm (T -partial order)[10].

We prove that under the conditions required to define
implication based order, the considered implication must be
an S-implication, and so we obtain that the order induced by
an implication coincides with the order which is generated in a
similar way from a t-conorm.

Consequently, we obtain that an implication on the unit
interval [0, 1] is continuous if and only if the implication based
order and the dual of the natural order on [0, 1] coincide.
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T -norm and T -conorm

Definition ( De Baets and Mesiar, 1999 )

Let (L,≤, 0, 1) be a bounded lattice. A binary operation T (S) on
L is called a t-norm (t-conorm) if it satisfies the following
conditions:
(1) T (T (a, b), c) = T (a, T (b, c)) (associative law),
(2) T (a, b) = T (b, a) (commutative law),
(3) b ≤ c ⇒ T (a, b) ≤ T (a, c) (monotonicity),
(4) T (a, 1) = a (S(a, 0) = a) (boundary condition),
where a, b and c are any elements of L.
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The four basic t-norms on [0, 1] are the minimum TM , which
is the largest t-norm, the product TP , the  Lukasiewicz t-norm
TL and the drastic product TD, which is the smallest t-norm,
given by, respectively,
TM (x, y) = min(x, y),
TP (x, y) = xy,
TL(x, y) = max(0, x + y − 1) and

TD(x, y) =


x if y = 1,
y if x = 1,
0 otherwise.

Also, t-norms on a bounded lattice (L,≤, 0, 1) are defined in
similar way, and then extremal t-norms TD as well as T∧ on L
are defined similarly as TD and TM on [0, 1].
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Negation

Definition (Ma and Wu, 1991)

Let (L,≤, 0, 1) be a bounded lattice. A decreasing function
N : L → L is called a negation if N(0) = 1 and N(1) = 0. A
negation N on L is called strong if it is an involution, i.e.,
N(N(x)) = x, for all x ∈ L.
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On each bounded lattice L we have two extremal negations
N+, N− : L → L given by

N−(x) =
{

1 if x = 0,
0 otherwise

and

N+(x) =
{

0 if x = 1,
1 otherwise.

Obviously, for any negation N : L → L, it holds N− ≤ N ≤ N+.
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Implication

Definition ( Baczynski and Jayaram, Fuzzy implications, 2008 )

Let (L,≤, 0, 1) be a bounded lattice. A binary operator
I : L2 → L is said to be an implication function, shortly an
implication, if it satisfies

(I1) For every elements a, b with a ≤ b, I(a, y) ≥ I(b, y) for all
y ∈ L.
(I2) For every elements a, b with a ≤ b, I(x, a) ≤ I(x, b) for all
x ∈ L.
(I3) I(1, 1) = 1, I(0, 0) = 1 and I(1, 0) = 0.
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Note that from the definition, it follows that
I(0, x) = 1 and I(x, 1) = 1, for all x ∈ L.

Special interesting properties for implications are:

The exchange principle (EP)
I(x, I(y, z)) = I(y, I(x, z)) for all x, y, z ∈ L

The left neutrality principle (NP)
I(1, y) = y, for every y ∈ L

The contrapositive symmetry to a negation N (CP-N)
I(x, y) = I(N(y), N(x)), for every x, y ∈ L

The left contrapositive symmetry to a negation N (L-CP(N))
I(N(x), y) = I(N(y), x), for every x, y ∈ L

Obviously, for a strong negation N , the left contrapositive
symmetry and the contrapositive symmetry coincide.
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Natural negation

Definition ( Baczynski and Jayaram, Fuzzy implications, 2008 )

Let (L,≤, 0, 1) be a lattice and I be an implication on L. The
function NI : L → L given by

NI = I(x, 0) for all x ∈ L
is a negation and it is called the natural negation of I.
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S-implication

Definition (F. Karaçal, 2006)

Let (L,≤, 0, 1) be a lattice. An implication I : L2 → L is called an
S-implication if there exists a t-conorm S and a strong negation N
such that for every x, y ∈ L

I(x, y) = S(N(x), y).
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T-partial order

Definition (Karaçal and Kesicioğlu, 2011)

Let L be a bounded lattice, T be a t-norm on L. The order
defined as following is called a T- partial order (triangular order)
for t-norm T

x �T y :⇔ T (`, y) = x for some ` ∈ L.

Proposition (Karaçal and Kesicioğlu, 2011)

Let T be a t-norm on a bounded lattice (L,≤, 0, 1). Then, if
x �T y necessarily we have also x ≤ y.
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Definition (Klement, Mesiar, Pap, Triangular Norms, 2000)

Let T : [0, 1]2 → [0, 1] be a left-continuous t-norm. The function
IT : [0, 1]2 → [0, 1] given by

IT (x, y) = sup{z ∈ [0, 1]|T (x, z) ≤ y} (1)

is an implication and it is called as a residual implication.

Observe that the definition (1) can be applied to any t-norm
T : L2 → L acting on a complete lattice L, and the resulting
function IT : L2 → L is an implication on L.
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Definition

Let (L,≤, 0, 1) be a bounded lattice and I : L2 → L be an
implication. Define the relation �I on L as follows:
For every x, y ∈ L

y �I x :⇔ ∃` ∈ L such that I(`, x) = y. (2)
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Proposition

The relation �I is a partial order on L, whenever I : L2 → L is an
implication satisfying the exchange principle (EP) and the
contrapositive symmetry (CP) with respect to the strong natural
negation NI .

We will call such an order defined in (2) as the ordering based on
the implication I.
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Observe that the converse of Proposition does not hold.

Example

Consider Goguen implication I : [0, 1]2 → [0, 1] given by

I(x, y) =
{

1 if x ≤ y,
y/x otherwise.

Obviously, its natural negation is the Gödel negation,

N−(x) =
{

1 if x = 0,
0 otherwise,

which is not involutive. Therefore, I can not satisfy the
contrapositive symmetry.
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On the other side,

�I= {(x, y)|0 < y ≤ x ≤ 1} ∪ {(0, 0), (1, 0)} (3)

is a partial order on [0, 1], whose Hasse diagram is depicted on
Figure 1.

Figure: Hasse diagram of �I given by (3)
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Proposition

Let (L,≤, 0, 1) be a bounded lattice and I : L2 → L be an
implication satisfying (EP) and (CP) with respect to the strong
natural negation NI . If (x, y) ∈�I , then (y, x) ∈≤.
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Remark

Let (L,≤, 0, 1) be a bounded lattice and I be an implication
satisfying (EP) and (CP-NI).

It is clear that 0 and 1 are the greatest and the least element
with respect to �I , respectively.

The converse of the previous Proposition may not be satisfied.
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For example: Consider the lattice (L = {0, a, b, c, 1},≤, 0, 1)
whose lattice diagram is displayed in Figure 2:

Figure: (L = {0, a, b, c, 1},≤, 0, 1)
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Define the function I : L2 → L as follows:

I 0 a b c 1
0 1 1 1 1 1
a a 1 1 1 1
b c 1 1 1 1
c b 1 1 1 1
1 0 a b c 1

Table: The implication I on L

Obviously, I is an implication on L satisfying the exchange
principle (EP) and the contrapositive symmetry (CP) with respect
to the strong natural negation NI defined as
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NI(x) =


a if x = a,
c if x = b,
b if x = c,
1 if x = 0,
0 if x = 1.

It is clear that b ≤ c, but c �I b. The order �I on L has its Hasse
diagram as follows:

Figure: (L = {0, a, b, c, 1},�I , 0, 1)
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Even if (L,≤, 0, 1) is a chain, the partially ordered set (L,�I)
may not be a chain.

For example: consider L = [0, 1] and take the Fodor
implication I = IFD defined as

IFD(x, y) =
{

1 if x ≤ y,
max(1− x, y) if x > y.

(4)

It is clear that IFD satisfies the exchange principle (EP) and
the contrapositive symmetry (CP) with respect to the strong
natural negation NIFD

= NC , NC(x) = 1− x.
Obviously, 1/2 and 3/4 are not comparable with respect to
�IFD

.
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Remark

Let T be a left continuous t-norm on [0, 1] and IT be the
corresponding residual implication. Then, the implication based
ordering and the T -partial order are independent. For example:
consider the nilpotent minimum t-norm TnM given by

TnM (x, y) =
{

0 x + y ≤ 1,
min(x, y) otherwise.

Then, its corresponding residual implication is the Fodor
implication IFD, see (4).
It is clear that 1/2 �IFD

1/8, but 1/8 �T nM 1/2 and conversely,
1/2 �T nM 3/4, but 3/4 �IFD

1/2.
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Notations

Let (L,≤, 0, 1) be a bounded lattice and I : L2 → L be an
implication satisfying the exchange principle (EP) and the
contrapositive symmetry (CP) with respect to the strong natural
negation NI . For X ⊆ L, we denote the set of the upper (lower)
bounds of X w.r.t. �I on L by XI (XI). We denote the least
upper bound (the greatest lower bound) w.r.t. �I by ∨I (∧I).
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L needs not be a lattice w.r.t. �I . The following example
illustrates this case.

Example

Let L = [0, 1] and take the implication IFD given by (4).

For any incomparable elements x, y ∈ [0, 1], since
x ∧IFD

y = 1, (L,�IFD
) is a meet-semi lattice.

There does not exist the least element of the upper bound
{1/2, 3/4}IFD

= [0, 1/4).
So, (L,�IFD

) is not a lattice.
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For any incomparable elements x, y ∈ [0, 1], since
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y = 1, (L,�IFD
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Proposition

For every implication I satisfying (EP) and the contrapositive
symmetry (CP) with respect to the natural strong negation NI ,
there exists a t-conorm S such that

I(x, y) = S(NI(x), y),

that is, I is an S-implication.
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Corollary

Let I : L2 → L be an implication satisfying (EP) and the
contrapositive symmetry (CP) with respect to the natural strong
negation NI . Then, for any a, b ∈ L

a �I b if and only if NI(a) �T NI(b),
where T : L2 → L is a t-norm given by T (x, y) = NI(I(x,NI(y))).
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Theorem

Let I : [0, 1]2 → [0, 1] be a fuzzy implication satisfying (EP) and
the contrapositive symmetry (CP) with respect to the natural
strong negation NI and �I be the order linked to the implication
I. Then, I is continuous if and only if �I=≥.
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Proposition (Baczynski, 2010)

Let (L,≤, 0, 1) be a bounded lattice and I : L2 → L a function
defined as

I(x, y) = N(x) ∨ y, ∀x, y ∈ L, (5)

where N : L → L is a strong negation on L. Then, I is an
implication on L satisfying the exchange principle (EP) and the
strong negation N is its natural negation. Moreover, I satisfies the
contrapositive symmetry (CP) w.r.t. the natural negation N .
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Proposition

Let (L,≤, 0, 1) be a bounded lattice and let I be defined as (5).
Then, the order obtained from the implication I is equal to the
dual of the order on L, that is, �I=≥.
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Remark

For a general bounded lattice, a strong negation on L need not be
existing (see [11], example 2). If (L,≤,∧,∨) is a Boolean algebra,
it can be found always a strong negation on L defined as
N(x) = x′. So, the previous Proposition is always true for Boolean
algebras.
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One can wonder whether L is a bounded lattice w.r.t. an order
obtained from an implication (under which conditions). In the next
Proposition, we give some sufficient conditions.

Proposition

Let (L,≤, 0, 1) be a bounded lattice and I : L2 → L an
implication on L defined as I(x, y) = 1 when x 6= 1 and y 6= 0,
satisfying the exchange principle (EP) and the contrapositive
symmetry (CP) with respect to the strong natural negation NI ,
that is the implication I : L2 → L determined by

I(x, y) =


y x = 1,
NI(x) y = 0,
1 otherwise.

Then, (L,�I) is a lattice.
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F. Karaçal, M. N. Kesicioğlu, A T-partial order obtained from
t-norms, Kybernetika, 47 (2011), 300-314.
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