The Order Generated by Implications

M. Nesibe Kesicioğlu¹ and Radko Mesiar²

¹Recep Tayyip Erdoğan University, Rize, Turkey²Slovak Technology University, Bratislava, Slovakia

FSTA, 2014

Outline

2 Notations, Definitions and A Review of Previous Results

3 Main Paper

4 References

- ● ● ●

э

- Fuzzy implications are one of the most important operations in fuzzy logic having a significant role in many applications, viz., approximate reasoning, fuzzy control, fuzzy image processing, etc.
- They generalize the classical implication, which takes values in {0,1}, to fuzzy logic, where the truth values belong to the unit interval [0,1]. In general situation, since [0,1] is a bounded lattice, like in the case of other logical operators, the problem of introducing implications on a bounded lattice laid bare and Ma and Wu, Logical operators on complete lattices, have introduced them at first. Several authors have investigated the implications on a bounded lattice and their relations to the other logical operators [11, 16, 17, 20, 21, 22].

・ 一 ・ ・ ・ ・ ・ ・

In this paper:

- We introduce an order by means of an implication possessing some special properties on a lattice and discuss some of its properties.
- We determine the relationship between the order induced by an implication and the order on the lattice. Giving example, we show that a bounded lattice needs not be a lattice with respect to the order induced by an implication.
- Also, we give an example for an implication making the unit interval [0,1] a lattice with respect to the order induced by it.

- Moreover, we obtain that such a generating method of an order is independent from the order induced by an adjoint t-norm (*T*-partial order)[10].
- We prove that under the conditions required to define implication based order, the considered implication must be an S-implication, and so we obtain that the order induced by an implication coincides with the order which is generated in a similar way from a t-conorm.
- Consequently, we obtain that an implication on the unit interval [0,1] is continuous if and only if the implication based order and the dual of the natural order on [0,1] coincide.

T-norm and T-conorm

Definition (De Baets and Mesiar, 1999)

Let $(L, \leq, 0, 1)$ be a bounded lattice. A binary operation T (S) on L is called a t-norm (t-conorm) if it satisfies the following conditions:

(1) T(T(a,b),c) = T(a,T(b,c)) (associative law), (2) T(a,b) = T(b,a) (commutative law), (3) $b \le c \Rightarrow T(a,b) \le T(a,c)$ (monotonicity), (4) T(a,1) = a (S(a,0) = a) (boundary condition), where a, b and c are any elements of L.

- **→** → **→**

- The four basic t-norms on [0,1] are the minimum T_M , which is the largest t-norm, the product T_P , the Łukasiewicz t-norm T_L and the drastic product T_D , which is the smallest t-norm, given by, respectively, $T_M(x,y) = min(x,y),$ $T_P(x,y) = xy,$ $T_L(x,y) = max(0, x + y 1) \text{ and}$ $T_D(x,y) = \begin{cases} x & if \quad y = 1, \\ y & if \quad x = 1, \\ 0 & \text{otherwise.} \end{cases}$
- Also, t-norms on a bounded lattice $(L, \leq, 0, 1)$ are defined in similar way, and then extremal t-norms T_D as well as T_{\wedge} on L are defined similarly as T_D and T_M on [0, 1].

伺 と く ヨ と く ヨ と …

Negation

Definition (Ma and Wu, 1991)

Let $(L, \leq, 0, 1)$ be a bounded lattice. A decreasing function $N: L \to L$ is called a negation if N(0) = 1 and N(1) = 0. A negation N on L is called strong if it is an involution, i.e., N(N(x)) = x, for all $x \in L$.

 $\bullet\,$ On each bounded lattice L we have two extremal negations $N^+, N^-: L \to L$ given by

$$N^{-}(x) = \begin{cases} 1 & \text{if } x = 0, \\ 0 & \text{otherwise} \end{cases}$$

and

$$N^+(x) = \begin{cases} 0 & \text{if } x = 1, \\ 1 & \text{otherwise.} \end{cases}$$

 $\bullet\,$ On each bounded lattice L we have two extremal negations $N^+, N^-: L \to L$ given by

$$N^{-}(x) = \begin{cases} 1 & \text{if } x = 0, \\ 0 & \text{otherwise} \end{cases}$$

and

$$N^+(x) = \begin{cases} 0 & \text{if } x = 1, \\ 1 & \text{otherwise.} \end{cases}$$

• Obviously, for any negation $N: L \to L$, it holds $N^- \leq N \leq N^+$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Implication

Definition (Baczynski and Jayaram, Fuzzy implications, 2008)

Let $(L, \leq, 0, 1)$ be a bounded lattice. A binary operator $I: L^2 \to L$ is said to be an implication function, shortly an implication, if it satisfies

- 4 同 6 4 日 6 4 日 6

Implication

Definition (Baczynski and Jayaram, Fuzzy implications, 2008)

Let $(L, \leq, 0, 1)$ be a bounded lattice. A binary operator $I: L^2 \to L$ is said to be an implication function, shortly an implication, if it satisfies (11) For every elements a, b with $a \leq b$, $I(a, y) \geq I(b, y)$ for all $y \in L$.

Implication

Definition (Baczynski and Jayaram, Fuzzy implications, 2008)

Let $(L, \leq, 0, 1)$ be a bounded lattice. A binary operator $I: L^2 \to L$ is said to be an implication function, shortly an implication, if it satisfies (11) For every elements a, b with $a \leq b$, $I(a, y) \geq I(b, y)$ for all $y \in L$. (12) For every elements a, b with $a \leq b$, $I(x, a) \leq I(x, b)$ for all $x \in L$.

Implication

Definition (Baczynski and Jayaram, Fuzzy implications, 2008)

Let $(L, \leq, 0, 1)$ be a bounded lattice. A binary operator $I: L^2 \to L$ is said to be an implication function, shortly an implication, if it satisfies (11) For every elements a, b with $a \leq b$, $I(a, y) \geq I(b, y)$ for all $y \in L$. (12) For every elements a, b with $a \leq b$, $I(x, a) \leq I(x, b)$ for all $x \in L$. (13) I(1, 1) = 1, I(0, 0) = 1 and I(1, 0) = 0.

Note that from the definition, it follows that I(0,x) = 1 and I(x,1) = 1, for all $x \in L$.

- **→** → **→**

Note that from the definition, it follows that I(0,x) = 1 and I(x,1) = 1, for all $x \in L$. Special interesting properties for implications are:

I(0, x) = 1 and I(x, 1) = 1, for all $x \in L$. Special interesting properties for implications are:

• The exchange principle (EP) I(x, I(y, z)) = I(y, I(x, z)) for all $x, y, z \in L$

I(0, x) = 1 and I(x, 1) = 1, for all $x \in L$. Special interesting properties for implications are:

- The exchange principle (EP) I(x, I(y, z)) = I(y, I(x, z)) for all $x, y, z \in L$
- The left neutrality principle (NP) I(1, y) = y, for every $y \in L$

I(0, x) = 1 and I(x, 1) = 1, for all $x \in L$. Special interesting properties for implications are:

- The exchange principle (EP) I(x, I(y, z)) = I(y, I(x, z)) for all $x, y, z \in L$
- The left neutrality principle (NP) I(1, y) = y, for every $y \in L$
- The contrapositive symmetry to a negation N (CP-N) I(x,y) = I(N(y),N(x)), for every $x,y \in L$

- A 🗄 🕨

I(0, x) = 1 and I(x, 1) = 1, for all $x \in L$. Special interesting properties for implications are:

- The exchange principle (EP) I(x, I(y, z)) = I(y, I(x, z)) for all $x, y, z \in L$
- The left neutrality principle (NP) I(1, y) = y, for every $y \in L$
- The contrapositive symmetry to a negation N (CP-N) I(x,y) = I(N(y),N(x)), for every $x,y \in L$
- The left contrapositive symmetry to a negation N (L-CP(N)) I(N(x), y) = I(N(y), x), for every $x, y \in L$

/⊒ > < ∃ >

I(0, x) = 1 and I(x, 1) = 1, for all $x \in L$. Special interesting properties for implications are:

- The exchange principle (EP) I(x, I(y, z)) = I(y, I(x, z)) for all $x, y, z \in L$
- The left neutrality principle (NP) I(1, y) = y, for every $y \in L$
- The contrapositive symmetry to a negation N (CP-N) I(x,y) = I(N(y),N(x)), for every $x,y \in L$
- The left contrapositive symmetry to a negation N (L-CP(N)) I(N(x), y) = I(N(y), x), for every $x, y \in L$

Obviously, for a strong negation N, the left contrapositive symmetry and the contrapositive symmetry coincide.

Natural negation

Definition (Baczynski and Jayaram, Fuzzy implications, 2008)

Let $(L, \leq, 0, 1)$ be a lattice and I be an implication on L. The function $N_I : L \to L$ given by $N_I = I(x, 0)$ for all $x \in L$ is a negation and it is called the natural negation of I.

伺 ト く ヨ ト く ヨ ト

S-implication

Definition (F. Karaçal, 2006)

Let $(L, \leq, 0, 1)$ be a lattice. An implication $I: L^2 \to L$ is called an *S*-implication if there exists a t-conorm S and a strong negation N such that for every $x, y \in L$

$$I(x,y) = S(N(x),y).$$

▲ 同 ▶ → 三 ▶

T-partial order

Definition (Karaçal and Kesicioğlu, 2011)

Let L be a bounded lattice, T be a t-norm on L. The order defined as following is called a T- partial order (triangular order) for t-norm T

$$x \preceq_T y :\Leftrightarrow T(\ell, y) = x$$
 for some $\ell \in L$.

▲ 同 ▶ → 三 ▶

T-partial order

Definition (Karaçal and Kesicioğlu, 2011)

Let L be a bounded lattice, T be a t-norm on L. The order defined as following is called a T- partial order (triangular order) for t-norm T

$$x \preceq_T y :\Leftrightarrow T(\ell, y) = x$$
 for some $\ell \in L$.

Proposition (Karaçal and Kesicioğlu, 2011)

Let T be a t-norm on a bounded lattice $(L, \leq, 0, 1)$. Then, if $x \preceq_T y$ necessarily we have also $x \leq y$.

Definition (Klement, Mesiar, Pap, Triangular Norms, 2000) Let $T: [0,1]^2 \rightarrow [0,1]$ be a left-continuous t-norm. The function $I_T: [0,1]^2 \rightarrow [0,1]$ given by

$$I_T(x,y) = \sup\{z \in [0,1] | T(x,z) \le y\}$$
(1)

is an implication and it is called as a residual implication.

Definition (Klement, Mesiar, Pap, Triangular Norms, 2000)

Let $T:[0,1]^2\to [0,1]$ be a left-continuous t-norm. The function $I_T:[0,1]^2\to [0,1]$ given by

$$I_T(x,y) = \sup\{z \in [0,1] | T(x,z) \le y\}$$
(1)

is an implication and it is called as a residual implication.

Observe that the definition (1) can be applied to any t-norm
 T: L² → L acting on a complete lattice L, and the resulting function I_T: L² → L is an implication on L.

(日本) (日本) (日本)

Definition

Let $(L, \leq, 0, 1)$ be a bounded lattice and $I : L^2 \to L$ be an implication. Define the relation \preceq_I on L as follows: For every $x, y \in L$

 $y \preceq_I x :\Leftrightarrow \exists \ell \in L \quad such \quad that \quad I(\ell, x) = y.$ (2)

э

Proposition

The relation \leq_I is a partial order on L, whenever $I : L^2 \to L$ is an implication satisfying the exchange principle (EP) and the contrapositive symmetry (CP) with respect to the strong natural negation N_I .

▲ 同 ▶ → 三 ▶

Proposition

The relation \leq_I is a partial order on L, whenever $I : L^2 \to L$ is an implication satisfying the exchange principle (EP) and the contrapositive symmetry (CP) with respect to the strong natural negation N_I .

We will call such an order defined in (2) as the ordering based on the implication I.

Observe that the converse of Proposition does not hold.

Example

Consider Goguen implication $I:[0,1]^2 \rightarrow [0,1]$ given by

$$I(x,y) = \left\{ egin{array}{ccc} 1 & & if \quad x \leq y \ y/x & & ext{otherwise.} \end{array}
ight.$$

Obviously, its natural negation is the Gödel negation,

$$N^{-}(x) = \begin{cases} 1 & \text{if } x = 0, \\ 0 & \text{otherwise,} \end{cases}$$

which is not involutive. Therefore, I can not satisfy the contrapositive symmetry.

On the other side,

$$\leq_I = \{(x,y) | 0 < y \le x \le 1\} \cup \{(0,0), (1,0)\}$$
(3)

is a partial order on $\left[0,1\right]$, whose Hasse diagram is depicted on Figure 1.

Figure: Hasse diagram of \leq_I given by (3)

Proposition

Let $(L, \leq, 0, 1)$ be a bounded lattice and $I : L^2 \to L$ be an implication satisfying (EP) and (CP) with respect to the strong natural negation N_I . If $(x, y) \in \leq_I$, then $(y, x) \in \leq$.

□→ < □→</p>

Remark

Let $(L, \leq, 0, 1)$ be a bounded lattice and I be an implication satisfying (EP) and (CP- N_I).

• It is clear that 0 and 1 are the greatest and the least element with respect to \leq_I , respectively.

- 4 同 6 4 日 6 4 日 6

Remark

Let $(L, \leq, 0, 1)$ be a bounded lattice and I be an implication satisfying (EP) and (CP- N_I).

- It is clear that 0 and 1 are the greatest and the least element with respect to \leq_I , respectively.
- The converse of the previous Proposition may not be satisfied.

< □ > < □ >

For example: Consider the lattice $(L = \{0, a, b, c, 1\}, \leq, 0, 1)$ whose lattice diagram is displayed in Figure 2:

Figure: $(L = \{0, a, b, c, 1\}, \leq, 0, 1)$

Define the function $I: L^2 \rightarrow L$ as follows:

Ι	0	a	b	c	1
0	1	1	1	1	1
a	a	1	1	1	1
b	c	1	1	1	1
с	b	1	1	1	1
1	0	a	b	с	1

Table: The implication I on L

Obviously, I is an implication on L satisfying the exchange principle (EP) and the contrapositive symmetry (CP) with respect to the strong natural negation N_I defined as

troduction

Notations, Definitions and A Review of Previous Results

Main Paper References

 $N_{I}(x) = \begin{cases} a & if \quad x = a, \\ c & if \quad x = b, \\ b & if \quad x = c, \\ 1 & if \quad x = 0, \\ 0 & if \quad x = 1. \end{cases}$

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

It is clear that $b \leq c$, but $c \not\preceq_I b$. The order \preceq_I on L has its Hasse diagram as follows:

Figure:
$$(L = \{0, a, b, c, 1\}, \leq_I, 0, 1)$$

• Even if $(L, \leq, 0, 1)$ is a chain, the partially ordered set (L, \preceq_I) may not be a chain.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Even if (L, ≤, 0, 1) is a chain, the partially ordered set (L, ≤_I) may not be a chain.
 For example: consider L = [0, 1] and take the Fodor implication I = I_{FD} defined as

$$I_{FD}(x,y) = \begin{cases} 1 & if \ x \le y, \\ \max(1-x,y) & if \ x > y. \end{cases}$$
(4)

Even if (L, ≤, 0, 1) is a chain, the partially ordered set (L, ≤_I) may not be a chain.
 For example: consider L = [0, 1] and take the Fodor.

For example: consider L = [0, 1] and take the Fodor implication $I = I_{FD}$ defined as

$$I_{FD}(x,y) = \begin{cases} 1 & if \ x \le y, \\ \max(1-x,y) & if \ x > y. \end{cases}$$
(4)

It is clear that I_{FD} satisfies the exchange principle (EP) and the contrapositive symmetry (CP) with respect to the strong natural negation $N_{I_{FD}} = N_C$, $N_C(x) = 1 - x$. Obviously, 1/2 and 3/4 are not comparable with respect to $\leq I_{I_{FD}}$.

Remark

Let T be a left continuous t-norm on [0,1] and I_T be the corresponding residual implication. Then, the implication based ordering and the T-partial order are **independent**. For example: consider the nilpotent minimum t-norm T^{nM} given by

$$T^{nM}(x,y) = \begin{cases} 0 & x+y \le 1, \\ \min(x,y) & \text{otherwise.} \end{cases}$$

Then, its corresponding residual implication is the Fodor implication I_{FD} , see (4). It is clear that $1/2 \preceq_{I_{FD}} 1/8$, but $1/8 \not\preceq_{T^{nM}} 1/2$ and conversely, $1/2 \preceq_{T^{nM}} 3/4$, but $3/4 \not\preceq_{I_{FD}} 1/2$.

- 4 同 6 4 日 6 4 日 6

Notations

Let $(L, \leq, 0, 1)$ be a bounded lattice and $I : L^2 \to L$ be an implication satisfying the exchange principle (EP) and the contrapositive symmetry (CP) with respect to the strong natural negation N_I . For $X \subseteq L$, we denote the set of the upper (lower) bounds of X w.r.t. \leq_I on L by \overline{X}_I (\underline{X}_I). We denote the least upper bound (the greatest lower bound) w.r.t. \leq_I by \vee_I (\wedge_I).

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Example

Let L = [0, 1] and take the implication I_{FD} given by (4).

- 4 同 6 4 日 6 4 日 6

Example

Let L = [0, 1] and take the implication I_{FD} given by (4).

• For any incomparable elements $x, y \in [0, 1]$, since $x \wedge_{I_{FD}} y = 1$, $(L, \preceq_{I_{FD}})$ is a meet-semi lattice.

- 4 同 6 4 日 6 4 日 6

Example

Let L = [0, 1] and take the implication I_{FD} given by (4).

- For any incomparable elements $x, y \in [0, 1]$, since $x \wedge_{I_{FD}} y = 1$, $(L, \preceq_{I_{FD}})$ is a meet-semi lattice.
- There does not exist the least element of the upper bound $\overline{\{1/2,3/4\}}_{I_{FD}} = [0,1/4).$

Example

Let L = [0, 1] and take the implication I_{FD} given by (4).

- For any incomparable elements $x, y \in [0, 1]$, since $x \wedge_{I_{FD}} y = 1$, $(L, \preceq_{I_{FD}})$ is a meet-semi lattice.
- There does not exist the least element of the upper bound $\overline{\{1/2,3/4\}}_{I_{FD}} = [0,1/4).$ So, $(L, \preceq_{I_{FD}})$ is not a lattice.

Proposition

For every implication I satisfying (EP) and the contrapositive symmetry (CP) with respect to the natural strong negation N_I , there exists a t-conorm S such that

 $I(x,y) = S(N_I(x),y),$

that is, I is an S-implication.

▲ 同 ▶ → 三 ▶

Corollary

Let $I : L^2 \to L$ be an implication satisfying (EP) and the contrapositive symmetry (CP) with respect to the natural strong negation N_I . Then, for any $a, b \in L$ $a \preceq_I b$ if and only if $N_I(a) \preceq_T N_I(b)$, where $T : L^2 \to L$ is a t-norm given by $T(x, y) = N_I(I(x, N_I(y)))$.

< @ > < E >

Theorem

Let $I : [0,1]^2 \rightarrow [0,1]$ be a fuzzy implication satisfying (EP) and the contrapositive symmetry (CP) with respect to the natural strong negation N_I and \preceq_I be the order linked to the implication I. Then, I is continuous if and only if $\preceq_I = \geq$.

◆ 同 ▶ → (目 ▶

Proposition (Baczynski, 2010)

Let $(L,\leq,0,1)$ be a bounded lattice and $I:L^2\to L$ a function defined as

$$I(x,y) = N(x) \lor y, \quad \forall x, y \in L,$$
(5)

where $N: L \to L$ is a strong negation on L. Then, I is an implication on L satisfying the exchange principle (EP) and the strong negation N is its natural negation. Moreover, I satisfies the contrapositive symmetry (CP) w.r.t. the natural negation N.

Proposition

Let $(L, \leq, 0, 1)$ be a bounded lattice and let I be defined as (5). Then, the order obtained from the implication I is equal to the dual of the order on L, that is, $\leq_I = \geq$.

▲ 同 ▶ → 三 ▶

- ₹ 🖬 🕨

Remark

For a general bounded lattice, a strong negation on L need not be existing (see [11], example 2). If (L, \leq, \wedge, \vee) is a Boolean algebra, it can be found always a strong negation on L defined as N(x) = x'. So, the previous Proposition is always true for Boolean algebras.

< A > < 3

One can wonder whether L is a bounded lattice w.r.t. an order obtained from an implication (under which conditions). In the next Proposition, we give some sufficient conditions.

3

A D

One can wonder whether L is a bounded lattice w.r.t. an order obtained from an implication (under which conditions). In the next Proposition, we give some sufficient conditions.

Proposition

Let $(L, \leq, 0, 1)$ be a bounded lattice and $I : L^2 \to L$ an implication on L defined as I(x, y) = 1 when $x \neq 1$ and $y \neq 0$, satisfying the exchange principle (EP) and the contrapositive symmetry (CP) with respect to the strong natural negation N_I , that is the implication $I : L^2 \to L$ determined by

$$I(x,y) = \begin{cases} y & x = 1, \\ N_I(x) & y = 0, \\ 1 & \text{otherwise.} \end{cases}$$

Then, (L, \preceq_I) is a lattice.

(日) (同) (三) (三)

References

- M. Baczyński, B. Jayaram, Fuzzy implications, Studies in Fuzziness and Soft Computing, vol. 231, Springer, Berlin, Heidelberg, 2008.
- M. Baczyński, S-implications in Atanassov's intuitionistic and interval-valued fuzzy set theory revisited, In: K.T. Atanassov et al (Eds.), Developments in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics. Vol. I: Foundations, SRI PAS/IBS PAN, Warsaw 2010, 33-42.
- B. De Baets, R. Mesiar, Triangular norms on product lattices, Fuzzy Sets and Systems, 104 (1999), 61-75.
- G. Birkhoff, Lattice Theory, 3 rd edition, Providence, 1967.

- J. Casasnovas, G. Mayor, Discrete t-norms and operations on extended multisets, Fuzzy Sets and Systems, 159 (2008), 1165-1177.
- D. Dubois, H. Prade, Fuzzy sets in approximate reasoning.
 Part 1: Inference with possibility distributions, Fuzzy Sets and Systems, 40 (1991), 143-202.
- J.C. Fodor, Contrapositive symmetry of fuzzy implications, Fuzzy Sets and Systems 69 (1995), 141-156.
- J.C. Fodor, On fuzzy implications operators, Fuzzy Sets and Systems 42 (1991), 293-300.
- J.A. Goguen, The logic of inexact concepts, Synthese 19 (1968/1969), 325-373.
- F. Karaçal, M. N. Kesicioğlu, A T-partial order obtained from t-norms, Kybernetika, 47 (2011), 300-314.

- F. Karaçal, On the direct decomposability of strong negations and S-implication operators on product lattices, Information Sciences, 176 (2006), 3011-3025.
- E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic Publishers, Dordrecht, 2000.
- Z. Ma, W.M. Wu, Logical operators on complete lattices, Information Sciences 55 (1991), 77-97.
- M. Mas, M. Monserrat, J. Torrens, The law of importation for discrete implications, Information Sciences 179 (2009), 4208-4218.
- M. Mas, M. Monserrat, J. Torrens, E. Trillas, A survey on fuzzy implication functions, IEEE Trans. Fuzzy Syst., 15 (2007), 1107-1121.

・ 同・ ・ ヨ・

- J. Medina, M. Ojeda-Aciego, Multi- adjoint t-concept lattices, Information Sciences, 180 (2010), 712-725.
- J. Pócs, Note on generation fuzzy concept lattices via Galois connections, Information Sciences, 185 (2012), 128-136.
- J.V. Riera, J. Torrens, Residual implications on the set of discrete fuzzy numbers, Information Sciences (2013), http://dx.doi.org/10.1016/j.ins.2013.06.008.
- B. Schweizer, A. Sklar, Probabilistic Metric Spaces, Elsevier, Amsterdam, 1983.
- Z. Wang, Y. Yu, Pseudo t-norms implications operators on a complete Brouwerian lattice, Fuzzy Sets and Systems, 132 (2002), 113-124.

A (10) < A (10) </p>

- Z.D. Wang, J.X. Fang, Residual operators of left and right uninorms on a complete lattice, Fuzzy Sets and Systems, 160 (2009), 22-31.
- Z.D. Wang, J.X. Fang, Residual coimplicators of left and right uninorms on a complete lattice, Fuzzy Sets and Systems 160 (2009), 2086-2096.
- S. Weber, A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms, Fuzzy Sets and Systems, 11 (1983), 115-134.