Effect algebras with a state operator

Anna Jenčová, Sylvia Pulmannová Mathematical Institute, Slovak Academy of Sciences Bratislava, Slovakia

FSTA, Liptovský Ján, 27.1.2014

State MV-algebras

A state MV-algebra is a structure $(M, \boxplus, ', \sigma)$, where

(M, ⊞, ') is an MV-algebra $\sigma: M \to M$ is a state operator: $\sigma(0) = 0$, $\sigma(x') = \sigma(x)'$, $\sigma(x \boxplus y) = \sigma(x) \boxplus \sigma(y \boxminus (x \boxdot y)), x, y \in M$, $\sigma(\sigma(x) \boxplus \sigma(y)) = \sigma(x) \boxplus \sigma(y), x, y \in M$.

The range $\sigma(M)$ is a sub-MV-algebra of M.

(Flaminio, Montagna, 2009)

State effect algebras

Let *E* be an effect algebra. A state operator on E is mapping $\tau: E \to E$ such that

τ(1) = 1,
 τ(e ⊕ f) = τ(e) ⊕ τ(f), e ⊥ f,
 τ(τ(e)) = τ(e), e ∈ E.

The range $\tau(E)$ of τ is a sub-effect algebra of fixed points of τ .

(Buhagiar, Chetcuti, Dvurečenskij, 2011)

Strong state operators

Let *E* be an effect algebra, $\tau : E \to E$ a state operator. Then τ is strong if for $e, f \in E$

$$\exists \tau(e) \land \tau(f) \implies \tau(\tau(e) \land \tau(f)) = \tau(e) \land \tau(f)$$

• τ is strong $\iff \tau(E)$ is closed under \wedge .

- If E is an MV-effect algebra, then τ is an MV-algebra state operator if and only if τ is strong.
- If τ is faithful ($\tau(e) = 0$ implies e = 0), then τ is strong.

(Buhagiar, Chetcuti, Dvurečenskij, 2011)

Convex effect algebras

A convex structure on E is a bimorphism $[0,1] \times E \to E$, $(\alpha, e) \mapsto \alpha e$, such that

•
$$\alpha(\beta e) = (\alpha \beta)e$$
,

Then E is called convex. Any convex effect algebra is affinely isomorphic to an (essentially unique) algebra of the following form:

Example

Let (V, K) be an ordered real linear space and let $0 \neq u \in K$ be such that $K = \mathbb{R}^+[0, u]$. For $x, y \in [0, u]$, define $x \oplus y = x + y$ if $x + y \leq_K u$. Then $([0, u], \oplus, 0, u)$ is a convex effect algebra.

(Gudder, Pulmannová 1998)

Effect algebras and convex effect algebras

Let E be an effect algebra. Suppose E admits a state.

- The tensor product $[0,1] \otimes E$ exists and is convex.
- *E* embeds into $\tilde{E} := [0, 1] \otimes E$ as $e \mapsto 1 \otimes e$.
- Any morphism $\phi : E \to F$ with F convex uniquely extends to a morphism $\tilde{\phi} : \tilde{E} \to F$.

Any state operator τ on E uniquely extends to a state operator τ̃ : α ⊗ e ↦ α ⊗ τ(e) on [0, 1] ⊗ E.

State operators on convex effect algebras

Let *E* be convex, $E \simeq [0, u]$ a generating interval in an ordered real vector space (V, K). Let $\tau : E \to E$ be a state operator. Then τ uniquely extends to a map $p : V \to V$, which is

linear,

•
$$p(K) \subseteq K$$

$$\blacktriangleright p^2 = p.$$

If τ is strong, then $p(p(x) \land p(y)) = p(x) \land p(y)$ whenever $p(x) \land p(y)$ exists.

We study such maps in some special cases and show their relation to conditional expectation.

Example: von Neumann-Lüders conditional expectation

Let $\mathcal H$ be a Hilbert space, $E = E(\mathcal H)$ effects: $0 \le a \le I$

Let $\{p_i\}$ be projections, $\sum_i p_i = 1$, $\tau(a) = \sum_i p_i a p_i$

- *E* is convex, $V = B_{sa}(\mathcal{H})$, $K = B(\mathcal{H})^+$, u = I
- au is a state operator
- au is faithful, hence strong
- the extension is the von Neumann-Lüders conditional expectation
- let b = ∑λ_ip_i, ρ a state: a → ρ(τ(a)) is the state after measurement of b in the initial state ρ

JC-effect algebras

- ▶ JC-algebra: a norm-closed real vector subspace $\mathcal{J} \subseteq B_{sa}(\mathcal{H})$ closed under the Jordan product $a \circ b = \frac{1}{2}(ab + ba)$. Suppose $l \in \mathcal{J}$.
- ▶ JC-effect algebra: unit interval in \mathcal{J} : $E(\mathcal{J}) = E(\mathcal{H}) \cap \mathcal{J}$
- a state operator \(\tau\) on \(E(\mathcal{J})\) extends to a positive unital idempotent map \(p : \mathcal{J} \rightarrow \mathcal{J}\)

 $p(\mathcal{J})$ is a JC-algebra with product $p(a) * p(b) = p(p(a) \circ p(b))$. If p is faithful, then $p(\mathcal{J})$ is a Jordan subalgebra of \mathcal{J} .

(Effros, Störmer 1979)

Conditional expectations and Jordan operators

Kadison inequality: Let $p: \mathcal{J} \rightarrow \mathcal{J}$ be positive and unital. Then

$$p(a)^2 \leq p(a^2), \qquad a \in \mathcal{J}$$

If p is also idempotent:

$$p(a)^2 \leq p(p(a)^2) \leq p(a^2), \qquad a \in \mathcal{J}$$

Let $\tau: E(\mathcal{J}) \to E(\mathcal{J})$ be additive and unital. Then τ is a

- conditional expectation if $\tau(a)^2 = \tau(\tau(a)^2)$
- Jordan operator if $\tau(\tau(a)^2) = \tau(a^2)$

Conditional expectations and state operators on $E(\mathcal{J})$

Let $au: E(\mathcal{J})
ightarrow E(\mathcal{J})$ be a conditional expectation. Then

- au is a state operator
- $\tau(E(\mathcal{J}))$ is a sub-JC-effect algebra in $E(\mathcal{J})$
- ► the extension p : J → J of τ is a conditional expectation onto p(J) in the algebraic sense:

$$p(p(a) \circ b) = p(a) \circ p(b), \quad a, b \in \mathcal{J}$$

If $\tau : E(\mathcal{J}) \to E(\mathcal{J})$ is a *faithful* state operator, then τ is a conditional expectation.

Strong state operators?

If $\tau(E(\mathcal{J}))$ is commutative, then τ is a strong state operator if and only if τ is a conditional expectation.

Jordan operators and state operators on $E(\mathcal{J})$

Let $\tau: E(\mathcal{J}) \to E(\mathcal{J})$ be a Jordan operator. Then

- τ is a state operator.
- if $p: \mathcal{J} \to \mathcal{J}$ is the extension of τ , then

$$\mathcal{I}_{\tau} := \{a \in \mathcal{J}, p(a^2) = 0\}$$

is a Jordan ideal and $[a]_{\mathcal{I}_{\tau}} \mapsto p(a)$ defines an isometric Jordan isomorphism $\mathcal{J}|_{\mathcal{I}_{\tau}}$ onto $p(\mathcal{J})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• if τ is faithful then p is a Jordan isomorphism

Decomposition of state operators: JW-algebras

JW-effect algebra: $E(\mathcal{J})$, \mathcal{J} closed in the weak topology $\tau : E(\mathcal{J}) \to E(\mathcal{J})$ is normal if it is completely additive

Theorem

Let τ be a normal state operator on a JW-effect algebra $E(\mathcal{J})$. Then there is a

- faithful normal conditional expectation μ on $E(\mathcal{J})$
- normal Jordan operator ϕ on the range of μ

such that $\tau = \phi \circ \mu$.

Decomposition of state operators: JC-algebras

Let $\mathcal J$ be a JC-algebra, $au: E(\mathcal J) o E(\mathcal J)$ a state operator

- \mathcal{J}^{**} is a JW-algebra
- $E(\mathcal{J}^{**})$ is the strong operator closure of $E(\mathcal{J})$ in \mathcal{J}^{**}
- au extends to a normal state operator on $E(\mathcal{J}^{**})$

Theorem

Let τ be a state operator on a JC-effect algebra $E(\mathcal{J})$. Then there is a

- faithful normal conditional expectation μ on $E(\mathcal{J}^{**})$
- Jordan operator ϕ on the range of μ

such that $\tau = \phi \circ \mu|_{\mathcal{E}(\mathcal{J})}$.

Convex σ -MV-algebras

Let M be a convex σ -MV-algebra.

Loomis-Sikorski representation: There is a tribe M* over a compact Hausdorff space X and a σ-homomorphism η of M* onto M.

(Mundici 1999, Dvurečenskij 2000)

- ▶ For $a \in M$, there is a unique $a^* \in C(X)$, such that $\eta(a^*) = a$.
- The map a → a* is an MV-algebra isomorphism onto the unit interval C₁(X) in C(X).

State operators on convex σ -MV-algebras

Let τ be a state operator on M.

- $au^*(a^*) = au(a)^*$ defines a state operator au^* on $C_1(X)$
- ▶ τ is strong $\iff \tau^*$ is strong $\iff \tau^*$ is a conditional expectation

$$au^*(f au^*(g)) = au^*(f) au^*(g), \qquad f,g \in C_1(X)$$

▶ $\exists K \subset X$ closed, $\mu : C_1(K) \to C_1(K)$ faithful conditional expectation, $\phi : C_1(K) \to C_1(X)$ positive unital extension $(\phi(f)(x) = f(x), x \in K)$, such that

$$\tau^*(f) = \phi \circ \mu(f|_K)$$

MV-conditional expectations

Let *M* be a σ -MV-algebra, $N \subseteq M$ a σ -MV-subalgebra, *m* a σ -additive state. Let

- $\mathcal{B}(M)$ -boolean σ -algebra of idempotents in M,
- $\mathcal{B}(M^*)$ -characteristic functions in M^* ,

•
$$m^* := m \circ \eta$$
, $P^* := m^* | \mathcal{B}(M^*)$,

$$\blacktriangleright P^*_{b^*}(a^*) = P^*(b^* \land a^*), b \in \mathcal{B}(N), a \in \mathcal{B}(M)$$

An MV-conditional expectation of $a \in M$ given N in the state m is a $\mathcal{B}(N^*)$ -measurable function $m(a|N) : X \to \mathbb{R}$ such that for any $b \in \mathcal{B}(N)$

$$\int_X m(a|N)(\omega)dP^*_{b^*}(\omega) = m(a \wedge b)$$

(Dvurečenskij, Pulmannová 2005)

 σ -additive state operators and MV-conditional expectations

- Let τ be a σ -additive strong state operator on M. Then there is a convex σ -MV-subalgebra $N \subseteq M$ and a σ -additive state m such that $\tau(a) = \eta(m(a|N))$ for some MV-conditional expectation of a with respect to N in m.
- ► Let m(a|N) be an MV-conditional expectation with respect to a convex σ -MV-subalgebra N. Let $\tilde{M} := M|_{I_m}$, $I_m = \{a \in M, m(a) = 0\}$. Then $\tau([a]) := [\eta(m(a|N))]$ defines a σ -additive strong state operator on \tilde{M} .