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Adjoint pair of functors

Definition
Let C,D be categories, F : C→ D and G : D→ C be functors.
Then F is left adjoint to G if and only if for all X ∈ C, Y ∈ D.

HomD(F (X ),Y ) ' HomC(X ,G (Y )),

where Hom(A,B) is the set of all morphisms A→ B.



The most important property
Adjoint functors come in pairs

For every functor G , there is (up to isomorphism), at most one F
such that F is left adjoint to G and vice versa.



Free and forgetful

I Let D be a variety of universal algbras,

I let G : D→ Set be the forgetful functor that maps an algebra
to its underlying set,

I let F : Set→ D be the functor that maps a set X to the free
algebra generated by X .

Then,
HomD(F (X ),A) ' HomC(X ,G (A))
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Monads

Let C be a category. A monad is a triple (T , η, µ), where

I T : C→ C is a functor,

I η : 1C → T is a natural transformation,

I µ : T 2 → T is a natural transformation such that

I some diagrams commute.

What is η? A collection of morphisms: ηX : X → T (X ), for every
object X .
What is µ? A collection of morphisms: µX : T 2(X )→ T (X ) for
every object X .
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Examples of monads

Every adjoint pair of functors gives rise to a monad.

Let D be a variety, let F ,G be the free and forgetful functors
mentioned before.

I Composing F and G gives you an endofunctor T = G ◦ F on
Set, call it T .

I So T (X ) is the set of (equivalence classes of) terms over X ...
and, for every set of variables X , ηX : X → T (X ) is what?

I T 2(X ) is the set of (eq. cl. of) terms over T (X )...
and, for every set of variables X , µX : T 2(X )→ T (X ) is
what?
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Examples of monads

I Let Pos be the category of posets, let T be the endofunctor
such that T (X ) is a copy of X with new, fresh top and
bottom elements. (What are η and µ?)

I Let Set be the category of sets, let P be the powerset
endofunctor. (What are η and µ?)
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The Kalmbach embedding

[Kalmbach, 1977] proved the following

Theorem
Every bounded lattice can be embedded into an orthomodular
lattice (as a bounded lattice).

Corollary

Orthomodular lattices do not satisfy any special lattice equation.
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The Kalmbach embedding

I Let L be a bounded lattice. Let K (L) be the set of all finite
chains in L with even number of elements.

I Introduce a partial order on the set K (L) by the following rule:

[a1 < a2 < · · · < a2n−1 < a2n] ≤ [b1 < b2 < · · · < b2n−1 < b2k ]

if and only if for every pair 1 ≤ n there exists 1 ≤ j ≤ k such
that b2j−1 ≤ a2i−1 < a2i ≤ b2j .



I Then K (L) is a bounded lattice (boring proof).

I Moreover, it is an orthomodular lattice: the
orthocomplementation is

({ai}2ni=1)′ := {ai}2ni=1∆{0, 1},

where ∆ denotes the symmetric difference and

I the mapping ηL : L→ K (L) given by ηL(x) = [0 < x ] for
x > 0 and ηL(0) = ∅ is a injective morphism of lattices.



Example

L

1

0

ba

K (L)

[0 < 1]

[a < 1][0 < b]

∅

[0 < a] [b < 1]



The Kalmbach embedding

I [Harding, 2004] K is not the object part of a functor from the
category of bounded lattices into the category of
orthomodular lattices.

I However, [Mayet and Navara, 1995, Harding, 2004] K can be
extended to a functor from the category of bounded posets to
the category of orthomodular posets;

I for f : P → Q is BPos, K (f ) : K (P)→ K (Q) is given by the
rule

K (f )([a1 < a2 < · · · < a2n−1 < a2n]) = ∆2n
i=1{f (ai )}.

I [Harding, 2004] K is left adjoint to the forgetful functor U
from the category of orthomodular posets OMP to the
category of bounded posets BPos.
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The Kalmbach monad

Definition
The Kalmbach monad (T , η, µ) on the category BPos is given as
follows

I T : BPos→ BPos is the Kalmbach embedding
K : BPos→ OMP composed with the forgetful functor
U : OMP→ BPos, that means, T = U ◦ K ;

I ηP : P → T (P) is given by

ηP(x) =

{
[0 < x ] x > 0

∅ x = 0

I µP : T 2(P)→ T (P) is given by

µP([C1 < C2 < · · · < C2n−1 < C2n]) = C1∆C2∆ . . .∆C2n,

where ∆ denotes the symmetric difference of sets.



Algebras for an endofunctor

Let T : C→ C be an endofunctor. The category of algebras of T
is the category with

I Objects: arrows in C of the type T (X )→ X .

I Morphisms: let f : T (X )→ X and g : T (Y )→ Y . An arrow
f → g in the category of algebras is an arrow h : X → Y in C
such that

T (X )
T (h) //

f
��

T (Y )

g

��
X

h
// Y

commutes.



Algebras for a monad

Let (T , µ, η) be a monad on a category C. An algebra
s : T (P)→ P is an algebra for that monad iff the following
diagrams commute:

T 2(P)
T (s) //

µP

��

T (P)

s

��
T (P) s

// P

P
ηP //

1P ""

T (P)

s
��
P

Algebras for a monad form a category, called Eilenberg-Moore
category for the monad and denoted by CT .



Why are algebras called algebras?

Recall, that every variety of algebras D gives us, via the
free-forgetful adjunction, a ,,term monad” T on Set.

Theorem
(don’t know by who, maybe Beck)

D ' SetT



D-posets

A D-poset is a system (P;≤,	, 0, 1) consisting of a partially
ordered set P bounded by 0 and 1 with a partial binary operation
	 satisfying the following conditions.

(D1) b 	 a is defined if and only if a ≤ b.

(D2) If a ≤ b, then b 	 a ≤ b and b 	 (b 	 a) = a.

(D3) If a ≤ b ≤ c , then c 	 b ≤ c 	 a and
(c 	 a)	 (c 	 b) = b 	 a.

A morphism of D-posets is an isotone map preserving 0, 1 and 	.
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D-posets are effect algebras

The categories of effect algebras and D-posets are isomorphic:

a⊕ b = c

is the same thing as
c 	 b = a



Where do the D-posets come from

Theorem
The category of D-posets (and hence the category of effect
algebras) is isomorphic to the Eilenberg-Moore category for the
Kalmbach monad.



From effect algebras to algebras for the Kalmbach monad

I If E is an , then we define s : T (E )→ E

s([x1 < x2 < · · · < x2n−1 < x2n]) = (x2	x1)⊕· · ·⊕(x2n−1	xn).

This is then an algebra for the Kalmbach monad.



From algebras for the Kalmbach monad to effect algebras

I If s : T (P)→ P is an algebra for the Kalmbach monad, then
we define, for a ≤ b

b 	 a =

{
0 a = b

s([a < b]) a < b



T 2(P)
T (s) //

µP

��

T (P)

s

��
T (P) s

// P

P
ηP //

1P ""

T (P)

s
��
P

(D1) b 	 a is defined if and only if a ≤ b.

(D2) If a ≤ b, then b 	 a ≤ b and b 	 (b 	 a) = a.

(D3) If a ≤ b ≤ c , then c 	 b ≤ c 	 a and
(c 	 a)	 (c 	 b) = b 	 a.

b 	 a =

{
0 a = b

s([a < b]) a < b



Thank you for your attention
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