Generalized weak pre-pseudo effect algebras

Marek Hyčko¹

¹Mathematical Institute, Slovak Academy of Sciences Štefánikova 49, SK-81473 Bratislava, Slovakia marek.hycko@mat.savba.sk

FSTA 2014, Liptovský Ján, January 27-31, 2014

Outline

- Summary of results pre pseudo EAs
- Generalized pre pseudo EAs
- Results, Unitization
- ▶ RDP₀, RDP properties and proposed generalizations

・ロン ・四 と ・ ヨ と ・ ヨ と

2/27

Attempt to define congruences

Summary of results - pre pseudo effect algebras

- improved method for searching models up to 11 elements
- found models and computer program are available at

http://www.mat.savba.sk/~hycko/wprepea/

Generalized weak pre-pseudo effect algebras

Let $(A; +, \backslash, /, 0)$ be a partial algebra of type (2, 2, 2, 0) satisfying the following properties:

(GWPPEA1) $a \setminus a = 0 = a / a$;

- (GWPPEA2) the relation $a \le b$, iff $b \setminus a$ is defined, iff b / a is defined is a partial order;
- (GWPPEA3) $a \setminus b$ is defined and $a \setminus b \ge c$, iff c + b is defined and $a \ge c + b$. Moreover $(a \setminus b) \setminus c = a \setminus (c + b)$;
- (GWPPEA4) a / b is defined and $a / b \ge c$, iff b + c is defined and $a \ge b + c$. Moreover (a / b) / c = a / (b + c).

Then A is said to be a *generalized weak pre pseudo effect algebra*.

4 / 27

Generalized weak pre-pseudo effect algebras

Let $(A; +, \backslash, /, 0)$ be a partial algebra of type (2, 2, 2, 0) satisfying the following properties:

(GWPPEA1) $a \setminus a = 0 = a / a$;

- (GWPPEA2) the relation $a \le b$, iff $b \setminus a$ is defined, iff b / a is defined is a partial order;
- (GWPPEA3) $a \setminus b$ is defined and $a \setminus b \ge c$, iff c + b is defined and $a \ge c + b$. Moreover $(a \setminus b) \setminus c = a \setminus (c + b)$;
- (GWPPEA4) a / b is defined and $a / b \ge c$, iff b + c is defined and $a \ge b + c$. Moreover (a / b) / c = a / (b + c).

Then A is said to be a generalized weak pre pseudo effect algebra. interpretation: $a \setminus b \equiv a + (-b)$; $a / b \equiv (-b) + a$.

4 / 27

Generalized pre-pseudo effect algebras

Let $(A; +, \backslash, /, 0)$ be a partial algebra of type (2, 2, 2, 0) satisfying the following properties:

(GWPPEA1) $a \setminus a = 0 = a / a$;

- (GWPPEA2) the relation $a \le b$, iff $b \setminus a$ is defined, iff b / a is defined is a partial order;
- (GWPPEA3) $a \setminus b$ is defined and $a \setminus b \ge c$, iff c + b is defined and $a \ge c + b$. Moreover $(a \setminus b) \setminus c = a \setminus (c + b)$;
- (GWPPEA4) a / b is defined and $a / b \ge c$, iff b + c is defined and $a \ge b + c$. Moreover (a / b) / c = a / (b + c);
 - GPA5 if a + b is defined then there are $d, e \in A$ such that a + b = d + a = b + e.

Then A is said to be a generalized pre pseudo effect algebra.

Generalized pre-pseudo effect algebras

Let $(A; +, \backslash, /, 0)$ be a partial algebra of type (2, 2, 2, 0) satisfying the following properties:

(GWPPEA1) $a \setminus a = 0 = a / a$;

- (GWPPEA2) the relation $a \le b$, iff $b \setminus a$ is defined, iff b / a is defined is a partial order;
- (GWPPEA3) $a \setminus b$ is defined and $a \setminus b \ge c$, iff c + b is defined and $a \ge c + b$. Moreover $(a \setminus b) \setminus c = a \setminus (c + b)$;
- (GWPPEA4) a / b is defined and $a / b \ge c$, iff b + c is defined and $a \ge b + c$. Moreover (a / b) / c = a / (b + c);

GPA5 if a + b is defined then there are $d, e \in A$ such that a + b = d + a = b + e.

Then A is said to be a *generalized pre pseudo effect algebra*. Each generalized pseudo effect algebra is generalized pre-pseudo effect algebra.

Properties - GWPPEA

୬ ବ. ୧୦ 6 / 27

2

・ロト ・日下・ ・日下・

Properties - weak contd.

・ロト ・回ト ・ヨト ・ヨト

э

7 / 27

(xvii) \sqsubseteq_L , \sqsubseteq_R implies \leq .

Examples

For any partial order \leq with bottom element 0 it is possible to construct at least one model of generalized weak pre-pseudo effect algebra.

- ► + will be defined only for pairs (0, x) and (x, 0) with the result of x
- / and \ operations will be defined for pairs (b, a) such that b ≥ a with the result equal to 0.

Can be any pre-pseudo effect algebra made to be a generalized pre-pseudo effect algebra?

Can be any pre-pseudo effect algebra made to be a generalized pre-pseudo effect algebra?

Answer: No

Can be any pre-pseudo effect algebra made to be a generalized pre-pseudo effect algebra?

Answer: No

Necessary condition: For any $a, b \in A$, such that $a \ge b$ the sets

$$L_{a,b} := \{k \in A : b + k \le a\}$$

and

$$R_{a,b} = \{k \in A : k+b \le a\}$$

are having the top element.

Can be any pre-pseudo effect algebra made to be a generalized pre-pseudo effect algebra?

Answer: No

Necessary condition: For any $a, b \in A$, such that $a \ge b$ the sets

$$L_{a,b} := \{k \in A : b + k \le a\}$$

and

$$R_{a,b} = \{k \in A : k+b \le a\}$$

are having the top element.

Otherwise, there is not possible to define a / b or $a \setminus b$, respectively.

Can be any pre-pseudo effect algebra made to be a generalized pre-pseudo effect algebra?

Answer: No

Necessary condition: For any $a, b \in A$, such that $a \ge b$ the sets

$$L_{a,b} := \{k \in A : b + k \le a\}$$

and

$$R_{a,b} = \{k \in A : k+b \le a\}$$

are having the top element.

Otherwise, there is not possible to define a / b or $a \setminus b$, respectively.

It turns out to be also the sufficient confition.

Sufficient condition Pre PEA into Generalized Pre PEA

Let $(A; +, {}^{L}, {}^{R}, 0, 1)$ be a pre pseudo effect algebra. [Thus $a \le b$, iff $a + b^{R}$ is defined, iff $b^{L} + a$ is defined.] Let us assume that for any $a, b \in A$, $a \ge b$ the sets $L_{a,b}$ and $R_{a,b}$ posses top elements denoted $l_{a,b}$ and $r_{a,b}$ respectively. Let us define partial operations / and \ for any $a \ge b$, $a / b = l_{a,b}$ and $a \setminus b = r_{a,b}$, otherwise undefined. Then $(A; +, /, \setminus, 0)$ is a generalized pre-pseudo effect algebra.

Unitization

Let $(A; +, \backslash, /, 0)$ be a generalized (weak) pre-pseudo effect algebra. Let us consider disjunctive copy of A, denoted as A^* , and let us denote its elements as a^* for each corresponding $a \in A$. Let us define operation $+_p$ as following:

▶ $a +_p b$ is defined, iff a + b is defined and $a +_p b = a + b$;

- $a +_p b^*$ is defined, iff $b \ge a$ and $a +_p b^* = (b \setminus a)^*$;
- $b^* +_p a$ is defined, iff $b \ge a$ and $b^* +_p a = (b / a)^*$;
- $a^* +_p b^*$ is never defined.

For each element $a \in A$, let $a^R = a^L = a^*$ and for each element $a^* \in A^*$ $(a^*)^R = (a^*)^L = a$. Then $(A \cup A^*; +_p, {}^R, {}^L, 0, 0^*)$ is a weak pre-pseudo effect algebra.

Problems with non-weakness

There are 3 cases to be proved that previous construction of unitization performed on generalized pre-pseudo effect algebras would lead to pre-pseudo effect algebras.

We need to prove that if a + b is defined then there are elements $d, e \in A \cup A^*$ such that a + b = d + a = b + e.

イロト イポト イヨト イヨト

1. $a, b \in A$, 2. $a \in A, b^* \in A^*$ 3. $a^* \in A^*, b \in A$

Unitization - non weak

Let us consider generalized pre-pseudo effect algebra:

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	-	-	-	-	-
2	2	-	5	-	-	-
3	3	-	5	5	5	-
4	4	-	5	-	-	-
5	5	-	-	-	-	-

	0	1	2	3	4	5
0	0	-	-	-	-	-
1	1	0	-	-	-	-
2	2	-	0	-	-	-
3	3	-	-	0	-	-
4	4	-	0	0	0	-
5	5	-	4	3	3	0

0										
/	0	1	2	3	4	5				
0	0	-	-	-	-	-				
1	1	0	-	-	-	-				
2	2	-	0	-	-	-				
3	3	-	-	0	-	-				
4	4	-	0	0	0	-				
5	5	-	2	4	2	0				

Unitization - non weak - contd.

$+_p$	0	1		2	3	4	5	5 *	4 *	3*	2 *	1*	0*
0	0	1		2	3	4	5	5*	4*	3*	2*	1*	0*
1	1	-		-	-	-	-	-	-	-	-	0*	-
2	2	-		5	-	-	-	4*	0*	-	0*	-	-
3	3	-		5	5	5	-	3*	0*	0*	-	-	-
4	4	-		5	-	-	-	3*	0*	-	-	-	-
5	5	-		-	-	-	-	0*	-	-	-	-	-
5*	5*	-		2*	4*	2*	0*	-	-	-	-	-	-
4 *	4*	-		0*	0*	0*	-	-	-	-	-	-	-
3*	3*	-		-	0*	-	-	-	-	-	-	-	-
2*	2*	-		0*	-	-	-	-	-	-	-	-	-
1*	1*	0	*	-	-	-	-	-	-	-	-	-	-
0*	0*	-		-	-	-	-	-	-	-	-	-	-
	۲ (1	2	3	4	5	5*	4*	3*	2*	1*	0*
	0	*	1*	2*	· 3*	4*	5*	5	4	3	2	1	0

・ロ・・雪・・雨・・雨・

^{14 / 27}

Unitization - non weak - contd.

Unitization - linear non weak

Even linearity of underlying generalized pre-pseudo effect algebra does not help.

+	0	1	2	3	4
0	0	1	2	3	4
1	1	4	4	4	-
2	2	4	4	-	-
3	3	4	4	-	-
4	4	-	-	-	-

/	0	1	2	3	4
0	0	-	-	-	-
1	1	0	-	-	-
2	2	0	0	-	-
3	3	0	0	0	-
4	4	3	2	2	0

<ロ> <同> <同> < 回> < 回>

	0	1	2	3	4
0	0	-	-	-	-
1	1	0	-	-	-
2	2	0	0	-	-
3	3	0	0	0	-
4	4	3	3	1	0

Unitization - linear non weak

$+_p$	0	1	2	3	4	4 *	3*	2*	1*	0*
0	0	1	2	3	4	4*	3*	2*	1*	0*
1	1	4	4	4	-	3*	0*	0*	0*	-
2	2	4	4	-	-	3*	0*	0*	-	-
3	3	4	4	-	-	1*	0*	-	-	-
4	4	-	-	-	-	0*	-	-	-	-
4*	4*	3*	2*	2*	0*	-	-	-	-	-
3*	3*	0*	0*	0*	-	-	-	-	-	-
2*	2*	0*	0*	-	-	-	-	-	-	-
1*	1*	0*	-	-	-	-	-	-	-	-
0*	0*	-	-	-	-	-	-	-	-	-

 $3 + 4^* = 1^* = 4^* + ? = ? + 3$

イロン イロン イヨン イヨン

RDP_0 and RDP

Weak Riesz decomposition property - (RDP_0) :

If for any $a, b_1, b_2 \in A$ such that $a \leq b_1 + b_2$, there are elements $a_1, a_2 \in A$ satisfying $a_1 \leq b_1$, $a_2 \leq b_2$ and $a = a_1 + a_2$.

RDP₀ and RDP

Weak Riesz decomposition property - (RDP₀):

If for any $a, b_1, b_2 \in A$ such that $a \leq b_1 + b_2$, there are elements $a_1, a_2 \in A$ satisfying $a_1 \leq b_1$, $a_2 \leq b_2$ and $a = a_1 + a_2$.

Riesz decomposition property - (RDP):

Let for any $a_1, a_2, b_1, b_2 \in A$ holding $a_1 + a_2 = b_1 + b_2$, there are elements $c_{11}, c_{12}, c_{21}, c_{22} \in A$ such that the sums in rows and columns equal to respective elements:

	b_1	b_2
a_1	<i>c</i> ₁₁	c_{12}
a ₂	<i>c</i> ₂₁	<i>c</i> ₂₂

That is $a_1 = c_{11} + c_{12}$, $a_2 = c_{21} + c_{22}$, $b_1 = c_{11} + c_{21}$ and $b_2 = c_{12} + c_{22}$.

(RDP) does not imply (RDP_0)

Only trivial decompositions for $a_1 + a_2 = b_1 + b_2$.

	+	0	1	2	3	$/ = \setminus$	0	1	
ĺ	0	0	1	2	3	0	0		
ĺ	1	1				1	1	0	
Ì	2	2		3		2	2		(
ĺ	3	3				3	3	0	

 $1 \leq 2+2=3$, but no elements $a_1, a_2 \leq 2$ such that $1 = a_1 + a_2$.

3 . . . 0

(RDP) does not imply (RDP_0)

Only trivial decompositions for $a_1 + a_2 = b_1 + b_2$.

+	0	1	2	3
0	0	1	2	3
1	1			
2	2		3	
3	3			•

$/ = \setminus$	0	1	2	3
0	0	•		
1	1	0		
2	2		0	
3	3	0	2	0

 $1 \le 2+2=3$, but no elements $a_1, a_2 \le 2$ such that $1=a_1+a_2$. Linear:

+	0	1	2	3	$/ = \setminus$	0	1	2	3
0	0	1	2	3	0	0			
1	1	3			1	1	0		
2	2				2	2	0	0	
3	3				3	3	1	0	0

 $2 \le 1 + 1 = 3$, but no elements $a_1, a_2 \le 1$ such that $2 = a_1 + a_2$.

19/27

(RDP_0) does not imply (RDP)

On the other hand, there is also the example of RDP_0 , which does not satisfy RDP :

+	0	1	2	3	4	$/ = \setminus$	0	1	2	3	4
0	0	1	2	3	4	0	0				
1	1	3	4			1	1	0			
2	2	4	4			2	2	0	0		
3	3					3	3	1		0	
4	4					4	4	2	2	0	0

There is no decomposition for 1 + 2 = 4 = 2 + 2.

- a = b, implies $a / b = 0 = a \setminus b$
- The converse is not true in general
- Replace the equality with difference.

<ロ> <同> <同> < 回> < 回>

- a = b, implies $a / b = 0 = a \setminus b$
- The converse is not true in general
- Replace the equality with difference.

Left modified RDP₀ - LmodRDP₀: for any $b < b_1 + b_2$ there are $a_1 < b_1$, $a_2 < b_2$ such that

イロト イポト イヨト イヨト

 $(b / a_1) / a_2 = 0 = b / (a_1 + a_2)$

- a = b, implies $a / b = 0 = a \setminus b$
- The converse is not true in general
- Replace the equality with difference.

Left modified RDP₀ - LmodRDP₀:

for any $b\leq b_1+b_2$ there are $a_1\leq b_1$, $a_2\leq b_2$ such that $\left(b \; / \; a_1
ight) / \; a_2 = 0 = b \; / \; (a_1+a_2)$

Right modified RDP₀ - RmodRDP₀: for any $b \le b_1 + b_2$ there are $a_1 \le b_1$, $a_2 \le b_2$ such that $(b \setminus a_2) \setminus a_1 = 0 = b \setminus (a_1 + a_2)$

・ロト ・回ト ・ヨト ・ヨト

- 3

- a = b, implies $a / b = 0 = a \setminus b$
- The converse is not true in general
- Replace the equality with difference.

Left modified RDP₀ - LmodRDP₀: for any $b \le b_1 + b_2$ there are $a_1 \le b_1$, $a_2 \le b_2$ such that $(b / a_1) / a_2 = 0 = b / (a_1 + a_2)$

Right modified RDP₀ - RmodRDP₀: for any $b \le b_1 + b_2$ there are $a_1 \le b_1$, $a_2 \le b_2$ such that $(b \setminus a_2) \setminus a_1 = 0 = b \setminus (a_1 + a_2)$

Left-Right modified RDP₀ - LRmodRDP₀: equivalent to Right-Left modified RDP₀ - RLmodRDP₀: for any $b \le b_1 + b_2$ there are $a_1 \le b_1$, $a_2 \le b_2$ such that $(b / a_1) \setminus a_2 = 0 [= (b \setminus a_2) / a_1]$

$RmodRDP_0$ which is not $LmodRDP_0$, $LRmodRDP_0$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	•					
2	2	5	4			6	
3	3	6	4			6	
4	4	6					
5	5						
6	6						

	0	1	2	3	4	5	6
0	0						
1	1	0					
2	2		0				•
3	3		0	0			•
4	4		3	0	0		•
5	5	2	0			0	
6	6	4	3	0	0	3	0

/	0	1	2	3	4	5	6
0	0						
1	1	0					
2	2	•	0				
3	3		0	0			
4	4		2	2	0		
5	5	0	1			0	
6	6	0	5	5	1	0	0

 $4 \leq 3+1$

イロト イポト イヨト イヨト

$LmodRDP_0$ which is not $LmodRDP_0$, $LRmodRDP_0$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1		5	6	6		
2	2		4	4			
3	3						
4	4						
5	5		6	6			
6	6						

	0	1	2	3	4	5	6
0	0						
1	1	0					
2	2	-	0				
3	3		0	0			•
4	4		2	2	0		
5	5	0	1			0	
6	6	0	5	5	1	0	0

/	0	1	2	3	4	5	6
0	0						
1	1	0					
2	2	•	0				
3	3		0	0			
4	4		3	0	0		
5	5	2	0			0	
6	6	4	3	0	0	3	0

<ロ> <同> <同> < 回> < 回>

 $4 \leq 1+3$

In the definition of RDP there are 5 equalities. Each equality can be modified in the similar way as in the case of RDP_0 :

- unmodified,
- Lmod,
- Rmod,
- LRmod.

Thus there is $4^5 - 1 = 1023$ possibilities to modify the definition of RDP.

Congruences

Let $A = (A; +, /, \backslash, 0)$ be a generalized (weak) pre pseudo effect algebra and let \sim be a relation of equivalence on A.

Weak congruence:

Let $a_1 \sim b_1$ and $a_2 \sim b_2$ and

• if $a_1 + a_2$ and $b_1 + b_2$ are defined, then $a_1 + a_2 \sim b_1 \sim b_2$;

イロト 不得下 イヨト イヨト 二日

25 / 27

• if $a_1 \ge a_2$, $b_1 \ge b_2$, then $a_1 / a_2 \sim b_1 / b_2$ and $a_1 \setminus a_2 \sim b_1 \setminus b_2$.

Congruences

Let $A = (A; +, /, \backslash, 0)$ be a generalized (weak) pre pseudo effect algebra and let \sim be a relation of equivalence on A.

Weak congruence:

Let $a_1 \sim b_1$ and $a_2 \sim b_2$ and

• if $a_1 + a_2$ and $b_1 + b_2$ are defined, then $a_1 + a_2 \sim b_1 \sim b_2$;

イロト 不得 とくほと くほとう ほ

25 / 27

• if $a_1 \ge a_2$, $b_1 \ge b_2$, then $a_1 / a_2 \sim b_1 / b_2$ and $a_1 \setminus a_2 \sim b_1 \setminus b_2$.

- ▶ $[a] + [b] = \{m = a' + b' : a' \in [a], b' \in [b]\}$
- ▶ $[a] / [b] = \{m = a' / b' : a' \in [a], b' \in [b]\}$
- ▶ $[a] \setminus [b] = \{m = a' \setminus b' : a' \in [a], b' \in [b]\}$

Congruences

Let $A = (A; +, /, \backslash, 0)$ be a generalized (weak) pre pseudo effect algebra and let \sim be a relation of equivalence on A.

Weak congruence:

Let $a_1 \sim b_1$ and $a_2 \sim b_2$ and

• if $a_1 + a_2$ and $b_1 + b_2$ are defined, then $a_1 + a_2 \sim b_1 \sim b_2$;

• if $a_1 \ge a_2$, $b_1 \ge b_2$, then $a_1 / a_2 \sim b_1 / b_2$ and $a_1 \setminus a_2 \sim b_1 \setminus b_2$.

[a] + [b] = {m = a' + b' : a' ∈ [a], b' ∈ [b]}
[a] / [b] = {m = a' / b' : a' ∈ [a], b' ∈ [b]}
[a] \ [b] = {m = a' \ b' : a' ∈ [a], b' ∈ [b]}

In general [a] op $[b] \subseteq [t]$.

Congruence:

for any op $\in \{+, /, \setminus\}$ if [a] op $[b] \subseteq [t]$ is non-empty, then for any $t' \in [t]$ there are $a' \in [a]$, $b' \in [b]$ such that t' = a' op b'.

Congruence:

for any op $\in \{+, /, \setminus\}$ if [a] op $[b] \subseteq [t]$ is non-empty, then for any $t' \in [t]$ there are $a' \in [a]$, $b' \in [b]$ such that t' = a' op b'.

We are able to form factor algebra $A/ \sim := \{[a]; a \in A\}$ with operations defined on the previous slide.

Congruence:

for any op $\in \{+, /, \setminus\}$ if [a] op $[b] \subseteq [t]$ is non-empty, then for any $t' \in [t]$ there are $a' \in [a]$, $b' \in [b]$ such that t' = a' op b'.

We are able to form factor algebra $A/ \sim := \{[a]; a \in A\}$ with operations defined on the previous slide.

Unfortunately, even with the congruence relation in place, I was not able to prove that $(A/\sim, +, /, \setminus, [0])$ is generalized weak pre pseudo effect algebra.

Congruence:

for any op $\in \{+, /, \setminus\}$ if [a] op $[b] \subseteq [t]$ is non-empty, then for any $t' \in [t]$ there are $a' \in [a]$, $b' \in [b]$ such that t' = a' op b'.

We are able to form factor algebra $A/ \sim := \{[a]; a \in A\}$ with operations defined on the previous slide.

Unfortunately, even with the congruence relation in place, I was not able to prove that $(A/\sim, +, /, \setminus, [0])$ is generalized weak pre pseudo effect algebra.

The problem: $[a] / [b] \neq \emptyset$ and $[b] / [a] \neq \emptyset$?implies? [a] = [b].

イロト 不得下 イヨト イヨト

References

- Dvurečenskij, A.—Vetterlein, T.: Pseudoeffect algebras. I. Basic properties. Int. J. Theor. Phys. 40 (2001) 83–99.
- Foulis, D.—Bennett, M. K.: *Effect algebras and unsharp equantum logics*, Found. Phys. **24** (1994), 1331–1352.
- Hedlíková, J.—Pulmnannová, S.: *Generalized difference posets and ortholattices*, Acta Math. Univ. Comenianae **45** (1996), 247–279.
- Chajda, I.—Kühr, J.: A generalization of effect algebras and ortholattices, Math. Slovaca 62, no. 6, (2012), 1045–1062. doi: 10.2478/s12175-012-0063-4.
- Kôpka, F—Chovanec, F.: *D-posets*, Math. Slovaca 44 (1994), 21–34.
- Pulmannová, S.—Vinceková, E.: Riesz ideals in generalized effect algebras and in their unitizations., Algebra Universalis 57 (2007), 393–417.

イロト イポト イヨト イヨト