On probabilistic-valued decomposable measures and integrals

Lenka Halčinová

Institute of Mathematics, Faculty of Science, Pavol Jozef Šafárik University in Košice Jesenná 5, 040 01 Košice, Slovakia Slovakia

January 2014, Liptovský Ján

Probabilistic (sub)measure

closely related to a numerical submeasure, i.e.

a mapping $\eta : \Sigma \to \mathbb{R}_+$, where Σ be a ring of subsets of $\Omega \neq \emptyset$ such that $\eta(\emptyset) = 0$, $\eta(E) \leq \eta(F)$ for $E, F \in \Sigma, E \subset F$, (monotonicity) $\eta(E \cup F) \leq \eta(E) + \eta(F)$ for $E, F \in \Sigma$. (subadditivity)

- nonadditivity is useful in practical situations (decision making,...)

situations when we have only probabilistic information about measure of a set (e.g. lottery, a horse race,...)

closely related to a Probabilistic metric space

Probabilistic integral

Probabilistic (sub)measure

closely related to a numerical submeasure, i.e.

a mapping $\eta : \Sigma \to \mathbb{R}_+$, where Σ be a ring of subsets of $\Omega \neq \emptyset$ such that $\eta(\emptyset) = 0$, $\eta(E) \leq \eta(F)$ for $E, F \in \Sigma, E \subset F$, (monotonicity) $\eta(E \cup F) \leq \eta(E) + \eta(F)$ for $E, F \in \Sigma$. (subadditivity)

- nonadditivity is useful in practical situations (decision making,...)
- situations when we have only probabilistic information about measure of a set (e.g. lottery, a horse race,...)
- closely related to a Probabilistic metric space
- Probabilistic integral

Probabilistic metric space (K. Menger, 1942)

Problem: How to describe spaces, where we do not know exactly the distance between 2 points?

■ idea: Fréchet metric $d(p,q) \Rightarrow$ distribution function $F_{p,q}(x)$

Definition [Šerstnev, 1962]

Let Ω be a non-empty set, $\mathcal{F} : \Omega \times \Omega \to \Delta^+$ and $\tau : \Delta^+ \times \Delta^+ \to \Delta^+$ a triangle function. If the following properties hold for all $p, q, r \in \Omega$

(i)
$$F_{p,q} = \varepsilon_0$$
 if and only if $p = q$;

(ii)
$$F_{p,q} = F_{q,p};$$

(iii)
$$F_{p,r} \geq \tau(F_{p,q}, F_{q,r}),$$

then the triple $(\Omega, \mathcal{F}, \tau)$ is called a *probabilistic metric space*.

Menger PM-space: $\tau_T(F_{p,q}, F_{q,r})(z) = \sup T(F_{p,q}(x), F_{q,r}(y))$

Probabilistic metric space (K. Menger, 1942)

Problem: How to describe spaces, where we do not know exactly the distance between 2 points?

■ idea: Fréchet metric $d(p,q) \Rightarrow$ distribution function $F_{p,q}(x)$

Definition [Šerstnev, 1962]

Let Ω be a non-empty set, $\mathcal{F} : \Omega \times \Omega \to \Delta^+$ and $\tau : \Delta^+ \times \Delta^+ \to \Delta^+$ a triangle function. If the following properties hold for all $p, q, r \in \Omega$

(i)
$$F_{p,q} = \varepsilon_0$$
 if and only if $p = q$;

(ii)
$$F_{p,q} = F_{q,p};$$

(iii) $F_{p,r} \geq \tau(F_{p,q}, F_{q,r})$,

then the triple $(\Omega, \mathcal{F}, \tau)$ is called a *probabilistic metric space*.

• Menger PM-space: $\tau_T(F_{\rho,q}, F_{q,r})(z) = \sup_{x+y=z} T(F_{\rho,q}(x), F_{q,r}(y))$

Definition [Hutník, Mesiar, 2009]

Let $T : [0, 1]^2 \rightarrow [0, 1]$ be a t-norm, and Σ a ring of subsets of $\Omega \neq \emptyset$. A mapping $\gamma : \Sigma \rightarrow \Delta^+$ (where $\gamma(E)$ is denoted by γ_E) such that (a) if $E = \emptyset$, then $\gamma_{\emptyset}(x) = \varepsilon_0(x), x > 0$; (b) if $E \subset F$, then $\gamma_E(x) \ge \gamma_F(x), x > 0$; (antimonotonicity) (c) $\gamma_{E \cup F}(x + y) \ge T(\gamma_E(x), \gamma_F(y)), x, y > 0, E, F \in \Sigma$, (subadditivity) is said to be a τ_T -submeasure.

"probabilistic version" of triangle inequality

$$F_{p,r}(x+y) \geq T(F_{p,q}(x),F_{q,r}(y))$$

Examples

 universal τ_T-submeasure corresponds to a distribution function of exponential distribution E(λ) with parameter λ

$$\gamma_E(x) = 1 - \exp\left(-\left(rac{cx}{\lambda\eta(E)}
ight)
ight), \ x > 0.$$

• other classes of τ_T -submeasures:

Family of t-norms	Corresponding family of τ_T -submeasures
Schweizer-Sklar t-norms T_{λ}^{SS} , $\lambda \in]-\infty, +\infty[$	$\begin{split} \gamma_{E}^{SS,\lambda}(x) &= \min\left\{ \sqrt[\lambda]{1+\lambda(x-\eta(E))}, 1 \right\}, x > \max\left\{\eta(E) - \frac{1}{\lambda}, 0\right\}\\ \gamma_{E}^{SS,0}(x) &= \min\{\exp(x-\eta(E)), 1\}, x > 0 \end{split}$
Dombi t-norms $T^D_\lambda, \lambda \in]0, +\infty[$	$\gamma_E^{D,\lambda}(x) = \left(1 + \left[\max\{\eta(E) - x, 0\}\right]^{1/\lambda}\right)^{-1}$

Generalization of τ_T -submeasure

Let $T : [0, 1]^2 \to [0, 1]$ be a t-norm, and Σ a ring of subsets of $\Omega \neq \emptyset$. A mapping $\gamma : \Sigma \to \Delta^+$ (where $\gamma(E)$ is denoted by γ_E) such that (a) if $E = \emptyset$, then $\gamma_{\emptyset}(x) = \varepsilon_0(x), x > 0$; (b) if $E \subset F$, then $\gamma_E(x) \ge \gamma_F(x), x > 0$; (antimonotonicity) (c) $\gamma_{E \mapsto F}(L(x, y)) \ge T(\gamma_F(x), \gamma_F(y)), x, y > 0, E, F \in \Sigma$, (subadditivity)

is said to be a $\tau_{L,T}$ -submeasure.

- L is binary operation on $\overline{\mathbb{R}}_+ = [0, \infty]$ such that
 - (a) *L* is commutative and associative;
 - (b) *L* is jointly strictly increasing, i.e., for all $u_1, u_2, v_1, v_2 \in \mathbb{R}_+$ with $u_1 < u_2, v_1 < v_2$ holds $L(u_1, v_1) < L(u_2, v_2)$;
 - (c) *L* is continuous on $\overline{\mathbb{R}}_+ \times \overline{\mathbb{R}}_+$;
 - (d) L has 0 as its neutral element.
- "probabilistic version" of triangle inequality

$$F_{\rho,r}(L(x,y)) \geq T(F_{\rho,q}(x),F_{q,r}(y))$$

- Shen, Y.: On the probabilistic Hausdorff distance and a class of probabilistic decomposable measures Inform. Sci. (2013), in press
- Shen studied the class of probabilistic (sub)measures:

Let \top be a t-norm. A mapping $\mathfrak{M}: \Sigma \to \Delta^+$ with

(a) if
$$E = \emptyset$$
, then $\mathfrak{M}_{\emptyset} = \varepsilon_0$;

(b) $\mathfrak{M}_{E\cup F}(t) \ge \top (\mathfrak{M}_{E}(t), \mathfrak{M}_{F}(t)), \quad E, F \in \Sigma, t > 0,$ (sub

(subadditivity)

is called a probabilistic-valued \top -decomposable supmeasure.

- corresponds to the notion of $\tau_{\max,T}$ -submeasure

What do these concepts have in common?

\(\tau_T\) -submeasure

$$\tau(G,H)(z) = \sup_{x+y=z} T(G(x),H(y)), \tag{1}$$

 \blacksquare $\tau_{L,T}$ -submeasure

$$\tau(G,H)(z) = \sup_{L(x,y)=z} T(G(x),H(y)), \qquad (2)$$

■ *T*-decomposable supmeasure

$$\tau(G,H)(z) = T(G(z),H(z)).$$
(3)

Let τ be a triangle function on Δ^+ and Σ be a ring of subsets of $\Omega \neq \emptyset$. A mapping $\gamma : \Sigma \to \Delta^+$ with

(a) $\gamma_{\emptyset} = \varepsilon_0;$

(b) $\gamma_{E\cup F} \ge \tau(\gamma_E, \gamma_F)$ for each disjoint sets $E, F \in \Sigma$,

is said to be a τ -decomposable submeasure.

A triangle function au is a natural choice for "aggregation" of γ_E and γ_F :

• we expect $\gamma_{E\cup F} = \gamma_{F\cup E}$ for disjoint sets $E, F \in \Sigma$, from which follows that

 $\tau(\gamma_E,\gamma_F)=\tau(\gamma_F,\gamma_E),$

from $\gamma_{(E\cup F)\cup G} = \gamma_{E\cup(F\cup G)}$ we obtain $\tau(\tau(\gamma_E, \gamma_F), \gamma_G) = \tau(\gamma_E, \tau(\gamma_F, \gamma_G))$,

since $\gamma_E = \gamma_{E \cup \emptyset} = \tau(\gamma_E, \gamma_{\emptyset}) = \tau(\gamma_E, \varepsilon_0)$, then ε_0 has to be neutral element of τ ,

■ $\gamma_E \ge \gamma_F$ whenever $E, F \in \Sigma$ such that $E \subseteq F$ follows from monotonicity of τ .

Lenka Halčinová (FSTA 2014)

Let τ be a triangle function on Δ^+ and Σ be a ring of subsets of $\Omega \neq \emptyset$. A mapping $\gamma : \Sigma \to \Delta^+$ with

(a) $\gamma_{\emptyset} = \varepsilon_0;$

(b) $\gamma_{E\cup F} = \tau(\gamma_E, \gamma_F)$ for each disjoint sets $E, F \in \Sigma$,

is said to be a τ -*decomposable measure*.

A triangle function au is a natural choice for "aggregation" of γ_E and γ_F :

• we expect $\gamma_{E\cup F} = \gamma_{F\cup E}$ for disjoint sets $E, F \in \Sigma$, from which follows that

$$\tau(\gamma_E,\gamma_F)=\tau(\gamma_F,\gamma_E),$$

from $\gamma_{(E\cup F)\cup G} = \gamma_{E\cup (F\cup G)}$ we obtain $\tau(\tau(\gamma_E, \gamma_F), \gamma_G) = \tau(\gamma_E, \tau(\gamma_F, \gamma_G))$,

since $\gamma_E = \gamma_{E \cup \emptyset} = \tau(\gamma_E, \gamma_{\emptyset}) = \tau(\gamma_E, \varepsilon_0)$, then ε_0 has to be neutral element of τ ,

■ $\gamma_E \ge \gamma_F$ whenever $E, F \in \Sigma$ such that $E \subseteq F$ follows from monotonicity of τ .

Lenka Halčinová (FSTA 2014)

Let τ be a triangle function on Δ^+ and Σ be a ring of subsets of $\Omega \neq \emptyset$. A mapping $\gamma : \Sigma \to \Delta^+$ with

(a)
$$\gamma_{\emptyset} = \varepsilon_0;$$

(b) $\gamma_{E\cup F} = \tau(\gamma_E, \gamma_F)$ for each disjoint sets $E, F \in \Sigma$,

is said to be a τ -*decomposable measure*.

A triangle function τ is a natural choice for "aggregation" of γ_E and γ_F :

• we expect $\gamma_{E\cup F} = \gamma_{F\cup E}$ for disjoint sets $E, F \in \Sigma$, from which follows that

$$\tau(\gamma_E, \gamma_F) = \tau(\gamma_F, \gamma_E),$$

• from $\gamma_{(E\cup F)\cup G} = \gamma_{E\cup (F\cup G)}$ we obtain $\tau(\tau(\gamma_E, \gamma_F), \gamma_G) = \tau(\gamma_E, \tau(\gamma_F, \gamma_G))$,

since γ_E = γ_{E∪Ø} = τ(γ_E, γ_Ø) = τ(γ_E, ε₀), then ε₀ has to be neutral element of τ,

• $\gamma_E \geq \gamma_F$ whenever $E, F \in \Sigma$ such that $E \subseteq F$ follows from monotonicity of τ .

9/16

Some properties of τ -decomposable measure

Theorem (characterization of τ -decomposable measures)

Let τ be a triangle function on Δ^+ . Then γ is a τ -decomposable measure on Σ if and only if

 $\tau(\gamma_{E\cup F}, \gamma_{E\cap F}) = \tau(\gamma_E, \gamma_F), \text{ for each } E, F \in \Sigma.$

Theorem (Construction of new decomposable (sub)measures)

Let τ, ϑ be two triangle functions on Δ^+ and $\gamma^1, \gamma^2 : \Sigma \to \Delta^+$ be τ -decomposable measures. Then

- (i) if *τ* is distributive, the set function *γ* := *c* ⊙ *γ*¹ is a *τ*-decomposable measure for each *c* ∈ ℝ₊;
- (ii) the set function $\zeta := \tau(\gamma^1, \gamma^2)$ is a τ -decomposable measure;
- (iii) the set function $\lambda := \vartheta(\gamma^1, \gamma^2)$ is a τ -decomposable submeasure if and only if $\vartheta \gg \tau$.

Some properties of τ -decomposable measure

Theorem (Construction of new decomposable (sub)measures)

Let τ, ϑ be two triangle functions on Δ^+ and $\gamma^1, \gamma^2 : \Sigma \to \Delta^+$ be τ -decomposable measures. Then

- (i) if *τ* is distributive, the set function *γ* := *c* ⊙ *γ*¹ is a *τ*-decomposable measure for each *c* ∈ ℝ₊;
- (ii) the set function $\zeta := \tau(\gamma^1, \gamma^2)$ is a τ -decomposable measure;
- (iii) the set function $\lambda := \vartheta(\gamma^1, \gamma^2)$ is a τ -decomposable submeasure if and only if $\vartheta \gg \tau$.

Multiplication on Δ^+ is defined

$$(\boldsymbol{c} \odot \boldsymbol{F})(\boldsymbol{x}) := \begin{cases} \varepsilon_0 & \boldsymbol{c} = \boldsymbol{0}, \\ \boldsymbol{F}\left(\frac{\boldsymbol{x}}{\boldsymbol{c}}\right), & \text{otherwise,} \end{cases} \text{ for } \boldsymbol{F} \in \Delta^+, \boldsymbol{c} \in [\boldsymbol{0}, \infty[.$$

Probabilistic integral with respect to a universal measure (Previous research)

$$\int_{E} f \, \mathrm{d}\vartheta,$$

where

- **E** $\in \Sigma$, where Σ is a ring of subsets of a non-empty set Ω ;
- $f \in \Omega^{\mathbb{R}_+}$ is measurable with respect to Σ ;
- $\vartheta: \Sigma \to \Delta^+$ is a *universal probabilistic measure* satisfying
 - (a) $\vartheta_{\emptyset} = \varepsilon_0$
 - (b) $\vartheta_{E\cup F}(x+y) = \mathbf{M}(\vartheta_E(x), \vartheta_F(y))$ for $x, y > 0, E, F \in \Sigma, E \cap F = \emptyset$.

Probabilistic integral with respect to a τ -decomposable measure

$$\int_{E} f \, \mathrm{d}\gamma,$$

where

- $E \in \Sigma$, where Σ is a ring of subsets of a non-empty set Ω ;
- $f \in \Omega^{\mathbb{R}_+}$ is measurable with respect to Σ ;
- $\gamma : \Sigma \to \Delta^+$ is a τ -decomposable measure, where τ is a distributive triangle function, i.e. for each $c \in \mathbb{R}_+$, $G, H \in \Delta^+$ holds

$$c \odot (G \oplus_{\tau} H) = (c \odot G) \oplus_{\tau} (c \odot H).$$

Operations on Δ^+ :

- addition of d.d.f. may be defined $(G \oplus_{\tau} H)(x) := \tau(G, H)(x)$
- multiplication of d.d.f., for $F \in \Delta^+$, $c \in [0, \infty[$

$$(c \odot F)(x) := \begin{cases} \varepsilon_0 & c = 0, \\ F\left(\frac{x}{c}\right), & \text{otherwise.} \end{cases}$$

Probabilistic integral with respect to a τ -decomposable measure

$$\int_{E} f \, \mathrm{d}\gamma,$$

where

- $E \in \Sigma$, where Σ is a ring of subsets of a non-empty set Ω ;
- $f \in \Omega^{\mathbb{R}_+}$ is measurable with respect to Σ ;
- $\gamma: \Sigma \to \Delta^+$ is a τ -decomposable measure, where τ is a distributive triangle function, i.e. for each $c \in \mathbb{R}_+$, $G, H \in \Delta^+$ holds

$$c \odot (G \oplus_{\tau} H) = (c \odot G) \oplus_{\tau} (c \odot H).$$

Operations on Δ^+ :

- addition of d.d.f. may be defined $(G \oplus_{\tau} H)(x) := \tau(G, H)(x)$.
- multiplication of d.d.f., for $F \in \Delta^+$, $c \in [0, \infty[$

$$(\boldsymbol{c} \odot \boldsymbol{F})(\boldsymbol{x}) := \begin{cases} \varepsilon_0 & \boldsymbol{c} = \boldsymbol{0}, \\ \boldsymbol{F}\left(\frac{\boldsymbol{x}}{\boldsymbol{c}}\right), & \text{otherwise.} \end{cases}$$

(A) If *f* is a characteristic function $f(x) = \begin{cases} 1, & x \in C, \\ 0, & x \notin C, \end{cases}$ where $C \in \Sigma$,

their $\gamma\text{-integral}$ we define as follows

$$\int_E f(x)\,\mathrm{d}\gamma := \gamma_{E\cap C}(x).$$

(B) For a simple non-negative measurable function $f \in \Omega^{\mathbb{R}_+}$

$$f(x) = \sum_{i=1}^n x_i \chi_{E_i}(x)$$

we put

$$\int_E f(x) \, \mathrm{d}\gamma := \bigoplus_{i=1}^n x_i \odot \gamma_{E \cap E_i}(x).$$

(C) For a non-negative measurable function $f \in \Omega^{\mathbb{R}_+}$?

Definition

Let $\gamma : \Sigma \to \Delta^+$ be a τ -decomposable measure, τ is a distributive triangle function. We say that measurable function $f \in \Omega^{\mathbb{R}_+}$ is γ -*integrable* on the set $E \in \Sigma$, if there exists a distribution function $H \in \Delta^+$ such that $\int_E g \, d\gamma \ge H$ for all $g \in S_f$. In this case we put

$$\int_{E} f \,\mathrm{d}\gamma := \inf\left\{\int_{E} g \,\mathrm{d}\gamma; \ g \in \mathcal{S}_{f}
ight\}$$

and is said to be γ -integral function f on $E \in \Sigma$.

• S_{f} is the set of all SNMF such that $g \leq f$ $(\int_{E} g \, d\gamma \geq \int_{E} f \, d\gamma)$

it is sufficient to consider monotonic SNMF i.e. $(f_n)_1^\infty$, where $f_n \in S_f$, such that $f_n \leq f_{n+1}$ for all $n \in \mathbb{N}$ and $f_n \to f$ (pointwise)

(C) For a non-negative measurable function $f \in \Omega^{\mathbb{R}_+}$?

Definition

Let $\gamma : \Sigma \to \Delta^+$ be a τ -decomposable measure, τ is a distributive triangle function. We say that measurable function $f \in \Omega^{\mathbb{R}_+}$ is γ -*integrable* on the set $E \in \Sigma$, if there exists a distribution function $H \in \Delta^+$ such that $\int_E g \, d\gamma \ge H$ for all $g \in S_f$. In this case we put

$$\int_{E} f \,\mathrm{d}\gamma := \inf\left\{\int_{E} g \,\mathrm{d}\gamma; \ g \in \mathcal{S}_{f}
ight\}$$

and is said to be γ -integral function f on $E \in \Sigma$.

• S_{f} is the set of all SNMF such that $g \leq f$ $(\int_{E} g \, d\gamma \geq \int_{E} f \, d\gamma)$

■ it is sufficient to consider monotonic SNMF i.e. $(f_n)_1^\infty$, where $f_n \in S_f$, such that $f_n \leq f_{n+1}$ for all $n \in \mathbb{N}$ and $f_n \to f$ (pointwise)

Fig. Integral of a constant function with respect to a γ^{a_i} measures.

- triangle function τ_M : $\tau(G, H)(z) = \sup_{x+y=z} M(G(x), H(y));$
- $f(x) = x_0\chi_E(x)$; ■ $\gamma^{a_i} \in \Delta^+$, $a_1 \le a_2 \le \cdots \le a_n$, $a_i \in [0, 1]$ are particular τ_M (universal)-decomposable measures

$$\bigoplus_{i=1}^{n} \int_{E_{i}} f \, d\gamma^{a_{i}} = a_{1}\chi_{]0,r_{1}]} + a_{2}\chi_{]r_{1},r_{2}]} + \dots a_{n}\chi_{]r_{n-1},r_{n}]} + \chi_{]r_{n},\infty]}.$$

Thank you for your attention!