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Motivation, basic notions

Probabilistic (sub)measure

closely related to a numerical submeasure, i.e.

a mapping η : Σ→ R+, where Σ be a ring of subsets of Ω 6= ∅ such that
η(∅) = 0,
η(E) ≤ η(F ) for E ,F ∈ Σ, E ⊂ F , (monotonicity)
η(E ∪ F ) ≤ η(E) + η(F ) for E ,F ∈ Σ. (subadditivity)

- nonadditivity is useful in practical situations (decision making,...)

situations when we have only probabilistic information about
measure of a set (e.g. lottery, a horse race,...)

closely related to a Probabilistic metric space

Probabilistic integral
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Motivation, basic notions

Probabilistic metric space (K. Menger, 1942)

Problem: How to describe spaces, where we do not know exactly the
distance between 2 points?

idea: Fréchet metric d(p,q)⇒ distribution function Fp,q(x)

Definition [Šerstnev, 1962]

Let Ω be a non-empty set, F : Ω× Ω→ ∆+ and τ : ∆+ ×∆+ → ∆+ a
triangle function. If the following properties hold for all p,q, r ∈ Ω

(i) Fp,q = ε0 if and only if p = q;

(ii) Fp,q = Fq,p;

(iii) Fp,r ≥ τ(Fp,q ,Fq,r ),

then the triple (Ω,F , τ) is called a probabilistic metric space.

Menger PM-space: τT (Fp,q,Fq,r )(z) = sup
x+y=z

T (Fp,q(x),Fq,r (y))
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probabilistic-valued decomposable measures

Definition [Hutnı́k, Mesiar, 2009]

Let T : [0,1]2 → [0,1] be a t-norm, and Σ a ring of subsets of Ω 6= ∅. A
mapping γ : Σ→ ∆+ (where γ(E) is denoted by γE ) such that
(a) if E = ∅, then γ∅(x) = ε0(x), x > 0;
(b) if E ⊂ F , then γE (x) ≥ γF (x), x > 0; (antimonotonicity)
(c) γE∪F (x + y) ≥ T (γE (x), γF (y)), x , y > 0, E ,F ∈ Σ, (subadditivity)

is said to be a τT -submeasure.

where ε0 : R→ [0,1] is ”unit step”

0

1

x

ε0(x)

”probabilistic version” of triangle inequality

Fp,r (x + y) ≥ T (Fp,q(x),Fq,r (y))
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probabilistic-valued decomposable measures

Examples

universal τT -submeasure corresponds to a distribution function of
exponential distribution E(λ) with parameter λ

γE (x) = 1− exp
(
−
(

cx
λη(E)

))
, x > 0.

other classes of τT -submeasures:

Family of t-norms Corresponding family of τT -submeasures

Schweizer-Sklar t-norms
T SS
λ , γ

SS,λ
E (x) = min

{
λ
√

1 + λ(x − η(E)), 1
}
, x > max

{
η(E)− 1

λ
, 0
}

λ ∈]−∞,+∞[ γ
SS,0
E (x) = min{exp(x − η(E)), 1}, x > 0

Dombi t-norms γ
D,λ
E (x) =

(
1 +

[
max{η(E)− x, 0}

]1/λ
)−1

T D
λ , λ ∈]0,+∞[

...
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probabilistic-valued decomposable measures

Generalization of τT -submeasure

Let T : [0,1]2 → [0,1] be a t-norm, and Σ a ring of subsets of Ω 6= ∅. A
mapping γ : Σ→ ∆+ (where γ(E) is denoted by γE ) such that
(a) if E = ∅, then γ∅(x) = ε0(x), x > 0;
(b) if E ⊂ F , then γE (x) ≥ γF (x), x > 0; (antimonotonicity)
(c) γE∪F (L(x , y)) ≥ T (γE (x), γF (y)), x , y > 0, E ,F ∈ Σ, (subadditivity)

is said to be a τL,T -submeasure.

L is binary operation on R+ = [0,∞] such that
(a) L is commutative and associative;
(b) L is jointly strictly increasing, i.e., for all u1, u2, v1, v2 ∈ R+ with u1 < u2, v1 < v2

holds L(u1, v1) < L(u2, v2);
(c) L is continuous on R+ × R+;
(d) L has 0 as its neutral element.

”probabilistic version” of triangle inequality

Fp,r (L(x , y)) ≥ T (Fp,q(x),Fq,r (y))
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probabilistic-valued decomposable measures

Shen, Y.: On the probabilistic Hausdorff distance and a class of
probabilistic decomposable measures Inform. Sci. (2013), in press
Shen studied the class of probabilistic (sub)measures:

Definition
Let > be a t-norm. A mapping M : Σ→ ∆+ with

(a) if E = ∅, then M∅ = ε0;

(b) ME∪F (t) ≥ >(ME (t),MF (t)), E ,F ∈ Σ, t > 0, (subadditivity)

is called a probabilistic-valued >-decomposable supmeasure.

- corresponds to the notion of τmax,T -submeasure
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probabilistic-valued decomposable measures

What do these concepts have in common?

τT -submeasure

τ(G,H)(z) = sup
x+y=z

T (G(x),H(y)), (1)

τL,T -submeasure

τ(G,H)(z) = sup
L(x ,y)=z

T (G(x),H(y)), (2)

>-decomposable supmeasure

τ(G,H)(z) = T (G(z),H(z)). (3)
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probabilistic-valued decomposable measures

Definition
Let τ be a triangle function on ∆+ and Σ be a ring of subsets of Ω 6= ∅.
A mapping γ : Σ→ ∆+ with
(a) γ∅ = ε0;
(b) γE∪F ≥ τ(γE , γF ) for each disjoint sets E ,F ∈ Σ,

is said to be a τ -decomposable submeasure.

A triangle function τ is a natural choice for ”aggregation” of γE and γF :

we expect γE∪F = γF∪E for disjoint sets E ,F ∈ Σ, from which follows that

τ(γE , γF ) = τ(γF , γE ),

from γ(E∪F )∪G = γE∪(F∪G) we obtain τ(τ(γE , γF ), γG) = τ(γE , τ(γF , γG)),

since γE = γE∪∅ = τ(γE , γ∅) = τ(γE , ε0), then ε0 has to be neutral
element of τ ,

γE ≥ γF whenever E ,F ∈ Σ such that E ⊆ F follows from monotonicity
of τ .
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probabilistic-valued decomposable measures

Some properties of τ -decomposable measure

Theorem (characterization of τ -decomposable measures)

Let τ be a triangle function on ∆+. Then γ is a τ -decomposable
measure on Σ if and only if

τ(γE∪F , γE∩F ) = τ(γE , γF ), for each E ,F ∈ Σ.

Theorem (Construction of new decomposable (sub)measures)

Let τ, ϑ be two triangle functions on ∆+ and γ1, γ2 : Σ→ ∆+ be
τ -decomposable measures. Then

(i) if τ is distributive, the set function γ := c � γ1 is a τ -decomposable
measure for each c ∈ R+;

(ii) the set function ζ := τ(γ1, γ2) is a τ -decomposable measure;
(iii) the set function λ := ϑ(γ1, γ2) is a τ -decomposable submeasure if

and only if ϑ� τ .

Multiplication on ∆+ is defined

(c � F ) (x) :=

{
ε0 c = 0,
F
( x

c

)
, otherwise,

for F ∈ ∆+, c ∈ [0,∞[.
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Probabilistic integral

Probabilistic integral with respect to a universal measure
(Previous research) ∫

E
f dϑ,

where
E ∈ Σ, where Σ is a ring of subsets of a non-empty set Ω;
f ∈ ΩR+ is measurable with respect to Σ;
ϑ : Σ→ ∆+ is a universal probabilistic measure satisfying
(a) ϑ∅ = ε0
(b) ϑE∪F (x + y) = M(ϑE (x), ϑF (y)) for x , y > 0, E ,F ∈ Σ, E ∩ F = ∅.
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Probabilistic integral

Probabilistic integral with respect to a τ -decomposable measure∫
E

f dγ,

where

E ∈ Σ, where Σ is a ring of subsets of a non-empty set Ω;

f ∈ ΩR+ is measurable with respect to Σ;

γ : Σ→ ∆+ is a τ -decomposable measure, where τ is a distributive
triangle function, i.e. for each c ∈ R+, G,H ∈ ∆+ holds

c � (G ⊕τ H) = (c �G)⊕τ (c � H).

Operations on ∆+:

- addition of d.d.f. may be defined (G ⊕τ H)(x) := τ(G,H)(x).

- multiplication of d.d.f., for F ∈ ∆+, c ∈ [0,∞[

(c � F ) (x) :=

{
ε0 c = 0,
F
( x

c

)
, otherwise.
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Probabilistic integral

(A) If f is a characteristic function f (x) =

{
1, x ∈ C,
0, x /∈ C,

where C ∈ Σ,

their γ-integral we define as follows∫
E

f (x) dγ := γE∩C(x).

(B) For a simple non-negative measurable function f ∈ ΩR+

f (x) =
n∑

i=1

xiχEi (x)

we put ∫
E

f (x) dγ :=
n⊕

i=1

xi � γE∩Ei (x).
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Probabilistic integral

(C) For a non-negative measurable function f ∈ ΩR+?

Definition
Let γ : Σ→ ∆+ be a τ -decomposable measure, τ is a distributive
triangle function. We say that measurable function f ∈ ΩR+ is
γ-integrable on the set E ∈ Σ, if there exists a distribution function
H ∈ ∆+ such that

∫
E g dγ ≥ H for all g ∈ Sf . In this case we put∫

E
f dγ := inf

{∫
E

g dγ; g ∈ Sf

}
and is said to be γ-integral function f on E ∈ Σ.

Sf - is the set of all SNMF such that g ≤ f
(∫

E g dγ ≥
∫

E f dγ
)

it is sufficient to consider monotonic SNMF i.e. (fn)∞1 , where
fn ∈ Sf , such that fn ≤ fn+1 for all n ∈ N and fn → f (pointwise)
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Probabilistic integral

0

a1

a2

an

1

r1 r2 rn−1 rn x

F (x)

Fig. Integral of a constant function with respect to a γai measures.

triangle function τM : τ(G,H)(z) = sup
x+y=z

M(G(x),H(y));

f (x) = x0χE (x);

γai ∈ ∆+, a1 ≤ a2 ≤ · · · ≤ an, ai ∈ [0,1] are particular
τM (universal)-decomposable measures

n⊕
i=1

∫
Ei

f dγai = a1χ]0,r1] + a2χ]r1,r2] + . . . anχ]rn−1,rn] + χ]rn,∞].
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Probabilistic integral

Thank you for your attention!
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