Local Finiteness in t-Norm Based Algebras

Siegfried Gottwald Leipzig University

gottwald@uni-leipzig.de

FSTA 2014

(本間) (本語) (本語)

Background

Starting point:

The local finiteness of bimonoids is an interesting property for weighted automata.

- 4 回 2 - 4 □ 2 - 4 □

æ

Background

Starting point:

The local finiteness of bimonoids is an interesting property for weighted automata.

Manfred Droste, Torsten Stüber, and Heiko Vogler: *Weighted finite automata over strong bimonoids*, Information Sciences **180** (2010), 156–166.

・ 同 ト ・ ヨ ト ・ ヨ ト

Background

Starting point:

The local finiteness of bimonoids is an interesting property for weighted automata.

Manfred Droste, Torsten Stüber, and Heiko Vogler: *Weighted finite automata over strong bimonoids*, Information Sciences **180** (2010), 156–166.

Problem: Which t-norm based bimonoids have this property?

・ 同 ト ・ ヨ ト ・ ヨ ト

Background

Starting point:

The local finiteness of bimonoids is an interesting property for weighted automata.

Manfred Droste, Torsten Stüber, and Heiko Vogler: *Weighted finite automata over strong bimonoids*, Information Sciences **180** (2010), 156–166.

Problem: Which t-norm based bimonoids have this property?

Some results:

S.G.: Local and relativized local finiteness in t-norm based structures, Information Sciences **228** (2013), 26–36.

- 4 同 6 4 日 6 4 日 6

Preliminaries

A finite set $G = \{b_1, \ldots, b_m\}$ generates in an abelian semigroup $\mathfrak{A} = (A, *)$ the set

$$\langle G \rangle_{\mathfrak{A}} = \{ b_1^{k_1} * \ldots * b_m^{k_m} \mid k_1, \ldots, k_m \in \mathbb{N} \}.$$

イロン イヨン イヨン イヨン

3

Preliminaries

A finite set $G = \{b_1, \ldots, b_m\}$ generates in an abelian semigroup $\mathfrak{A} = (A, *)$ the set

$$\langle G \rangle_{\mathfrak{A}} = \{ b_1^{k_1} * \ldots * b_m^{k_m} \mid k_1, \ldots, k_m \in \mathbb{N} \}.$$

Definition

An algebraic structure \mathfrak{A} is **locally finite** iff each of its finite subsets *G* generates a finite subalgebra $\langle G \rangle_{\mathfrak{A}}$ only.

イロン イヨン イヨン イヨン

Preliminaries

A finite set $G = \{b_1, \ldots, b_m\}$ generates in an abelian semigroup $\mathfrak{A} = (A, *)$ the set

$$\langle G \rangle_{\mathfrak{A}} = \{ b_1^{k_1} * \ldots * b_m^{k_m} \mid k_1, \ldots, k_m \in \mathbb{N} \}.$$

Definition

An algebraic structure \mathfrak{A} is **locally finite** iff each of its finite subsets *G* generates a finite subalgebra $\langle G \rangle_{\mathfrak{A}}$ only. A **t-norm** is a binary operation in [0, 1] which makes it into an ordered abelian monoid with 1 as unit. A **t-conorm** is a binary operation in [0, 1] which makes it into an ordered abelian monoid with 0 as unit.

・ロン ・回と ・ヨン ・ヨン

More Preliminaries

Remark:

A continuous t-norm T has an **ordinal sum representation** $T = \sum_{i \in I} ([I_i, r_i], T_i, \varphi_i)$ with non-overlapping intervals $[I_i, r_i]$, order automorphisms φ_i of the unit interval, and $T_i = T_L$ or $T_i = T_P$.

▲□→ ▲目→ ▲目→

More Preliminaries

Remark:

A continuous t-norm T has an **ordinal sum representation** $T = \sum_{i \in I} ([I_i, r_i], T_i, \varphi_i)$ with non-overlapping intervals $[I_i, r_i]$, order automorphisms φ_i of the unit interval, and $T_i = T_L$ or $T_i = T_P$.

Such an order automorphisms h shall be called **rational based** iff its restriction $h \upharpoonright \mathbb{Q}$ is an order automorphism of the rational unit interval $[0,1] \cap \mathbb{Q}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

More Preliminaries

Remark:

A continuous t-norm T has an **ordinal sum representation** $T = \sum_{i \in I} ([I_i, r_i], T_i, \varphi_i)$ with non-overlapping intervals $[I_i, r_i]$, order automorphisms φ_i of the unit interval, and $T_i = T_L$ or $T_i = T_P$.

Such an order automorphisms h shall be called **rational based** iff its restriction $h \upharpoonright \mathbb{Q}$ is an order automorphism of the rational unit interval $[0,1] \cap \mathbb{Q}$.

Proposition

A t-conorm monoid $([0,1], S_T, 0)$ is locally finite iff its corresponding t-norm monoid ([0,1], T, 1) is.

・ロン ・回と ・ヨン ・ヨン

Some Definitions

Definition

For any $a \in [0, 1]$ and any t-norm * let the *-order of a be the smallest integer $0 \neq n \in \mathbb{N}$ such that $a^n = a^{n+1}$, if such an integer exists. Otherwise a shall be of infinite *-order.

|| (同) || (三) (=)

Some Definitions

Definition

For any $a \in [0, 1]$ and any t-norm * let the *-order of a be the smallest integer $0 \neq n \in \mathbb{N}$ such that $a^n = a^{n+1}$, if such an integer exists. Otherwise a shall be of infinite *-order. A t-norm * shall be of finite order iff each $a \in [0, 1]$ is of finite *-order; otherwise * shall be of infinite order.

- 4 周 ト - 4 日 ト - 4 日 ト

Some Definitions

Definition

For any $a \in [0,1]$ and any t-norm * let the *-order of a be the smallest integer $0 \neq n \in \mathbb{N}$ such that $a^n = a^{n+1}$, if such an integer exists. Otherwise a shall be of infinite *-order. A t-norm * shall be of finite order iff each $a \in [0,1]$ is of finite *-order; otherwise * shall be of infinite order. A t-norm * shall be of order n, or n-contractive, iff each $a \in [0,1]$ is of *-order $\leq n$.

||▲ 同 ト || 三 ト || (三 ト

Some Definitions

Definition

For any $a \in [0,1]$ and any t-norm * let the *-order of a be the smallest integer $0 \neq n \in \mathbb{N}$ such that $a^n = a^{n+1}$, if such an integer exists. Otherwise a shall be of infinite *-order. A t-norm * shall be of finite order iff each $a \in [0,1]$ is of finite *-order; otherwise * shall be of infinite order. A t-norm * shall be of order n, or n-contractive, iff each $a \in [0,1]$ is of *-order $\leq n$. A t-norm * shall be weakly nilpotent iff each $a \in [0,1[$ is a nilpotent element, i.e. has a power n with $a^n = 0$.

イロト イポト イヨト イヨト

Local Finiteness for t-Norm Monoids 1

Theorem

Let G be a finite subset of a t-norm monoid $\mathfrak{A} = ([0, 1], *, 1)$. $\langle G \rangle_{\mathfrak{A}}$ is finite iff G consists of elements of finite order only.

・日本 ・ モン・ ・ モン

Local Finiteness for t-Norm Monoids 1

Theorem

Let G be a finite subset of a t-norm monoid $\mathfrak{A} = ([0, 1], *, 1)$. $\langle G \rangle_{\mathfrak{A}}$ is finite iff G consists of elements of finite order only.

Proof.

$$(\Leftarrow)$$
: In this case one has for a suitable *n*

$$\langle G \rangle_{\mathfrak{A}} \subseteq \{ b_1^{k_1} * \ldots * b_m^{k_m} \mid 0 \leq k_1, \ldots, k_m \leq n \}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Local Finiteness for t-Norm Monoids 1

Theorem

Let G be a finite subset of a t-norm monoid $\mathfrak{A} = ([0, 1], *, 1)$. $\langle G \rangle_{\mathfrak{A}}$ is finite iff G consists of elements of finite order only.

Proof.

$$(\Leftarrow)$$
: In this case one has for a suitable *n*

$$\langle G \rangle_{\mathfrak{A}} \subseteq \{ b_1^{k_1} * \ldots * b_m^{k_m} | 0 \leq k_1, \ldots, k_m \leq n \}.$$

 (\Rightarrow) : But if there is a $b \in G$ of infinite order, then $\langle G \rangle_{\mathfrak{A}}$ is infinite.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Local Finiteness for t-Norm Monoids 2

Proposition

A t-norm monoid $\mathfrak{A} = ([0,1], T, 1)$ is locally finite iff the t-norm T is of finite order.

- 4 回 2 - 4 □ 2 - 4 □

Local Finiteness for t-Norm Monoids 2

Proposition

A t-norm monoid $\mathfrak{A} = ([0,1], T, 1)$ is locally finite iff the t-norm T is of finite order.

Corollary

The Gödel monoid $([0,1], T_G, 1)$ is locally finite.

- 4 回 2 - 4 □ 2 - 4 □

Local Finiteness for t-Norm Monoids 2

Proposition

A t-norm monoid $\mathfrak{A} = ([0,1], T, 1)$ is locally finite iff the t-norm T is of finite order.

Corollary

The Gödel monoid $([0, 1], T_G, 1)$ is locally finite. The Łukasiewicz monoid $([0, 1], T_L, 1)$ is locally finite.

▲圖▶ ▲屋▶ ▲屋▶

Local Finiteness for t-Norm Monoids 2

Proposition

A t-norm monoid $\mathfrak{A} = ([0,1], T, 1)$ is locally finite iff the t-norm T is of finite order.

Corollary

The Gödel monoid $([0, 1], T_G, 1)$ is locally finite. The Łukasiewicz monoid $([0, 1], T_L, 1)$ is locally finite. The product monoid $([0, 1], T_P, 1)$ is not locally finite.

A (1) > A (1) > A

Local Finiteness for t-Norm Monoids 2

Proposition

A t-norm monoid $\mathfrak{A} = ([0,1], T, 1)$ is locally finite iff the t-norm T is of finite order.

Corollary

The Gödel monoid $([0, 1], T_G, 1)$ is locally finite. The Łukasiewicz monoid $([0, 1], T_L, 1)$ is locally finite. The product monoid $([0, 1], T_P, 1)$ is not locally finite. If T is weakly nilpotent then the monoid ([0, 1], T, 1) is locally finite.

(4月) (4日) (4日)

Continuous t-Norms

Theorem

A t-norm monoid ([0,1], T, 1) with a continuous t-norm T is locally finite iff T does only have locally finite summands in its representation as ordinal sum of archimedean summands,

同 ト イヨ ト イヨト

Continuous t-Norms

Theorem

A t-norm monoid ([0,1], T, 1) with a continuous t-norm T is locally finite iff T does only have locally finite summands in its representation as ordinal sum of archimedean summands, i.e. iff T does not have a product-norm isomorphic summand in this representation.

t-Norm Bimonoids

Definition

A bimonoid is an algebraic structure $\mathfrak{A} = (A, *_1, *_2, e_1, e_2)$ such that both $(A, *_1, e_1)$ and $(A, *_2, e_2)$ are monoids.

Definition

A bimonoid is an algebraic structure $\mathfrak{A} = (A, *_1, *_2, e_1, e_2)$ such that both $(A, *_1, e_1)$ and $(A, *_2, e_2)$ are monoids.

Proposition

The Gödel-bimonoid $([0,1], T_G, S_G, 1, 0)$ is locally finite.

Proposition

The product-bimonoid $([0,1], T_P, S_P, 1, 0)$ is not locally finite.

・ロト ・回ト ・ヨト ・ヨト

The Łukasiewicz-Bimonoid

The situation, however, is more difficult in the Łukasiewicz case.

(4回) (1日) (日)

æ

The Łukasiewicz-Bimonoid

The situation, however, is more difficult in the Łukasiewicz case.

Proposition

The Łukasiewicz-bimonoid $([0,1], T_L, S_L, 1, 0)$ is not locally finite.

高 とう モン・ く ヨ と

The Łukasiewicz-Bimonoid

The situation, however, is more difficult in the Łukasiewicz case.

Proposition

The Łukasiewicz-bimonoid $([0,1], T_L, S_L, 1, 0)$ is not locally finite.

Proof: Consider $\alpha_0 \in (0, \frac{1}{2}) \setminus \mathbb{Q}$.

The Łukasiewicz-Bimonoid

The situation, however, is more difficult in the Łukasiewicz case.

Proposition

The Łukasiewicz-bimonoid $([0,1], T_L, S_L, 1, 0)$ is not locally finite.

Proof: Consider $\alpha_0 \in (0, \frac{1}{2}) \setminus \mathbb{Q}$. Let $k_0 = \lfloor \alpha_0^{-1} \rfloor \ge 2$. Form the largest S_L -multiple $k_0 \cdot \alpha_0$ of α_0 which is < 1.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Łukasiewicz-Bimonoid

The situation, however, is more difficult in the Łukasiewicz case.

Proposition

The Łukasiewicz-bimonoid $([0,1], T_L, S_L, 1, 0)$ is not locally finite.

Proof: Consider $\alpha_0 \in (0, \frac{1}{2}) \setminus \mathbb{Q}$. Let $k_0 = \lfloor \alpha_0^{-1} \rfloor \ge 2$. Form the largest S_L -multiple $k_0 \cdot \alpha_0$ of α_0 which is < 1. Consider now $\alpha_1 = (k_0 + 1) \cdot \alpha_0 - 1$.

高 とう モン・ く ヨ と

The situation, however, is more difficult in the Łukasiewicz case.

Proposition

The Łukasiewicz-bimonoid $([0,1], T_L, S_L, 1, 0)$ is not locally finite.

Proof: Consider $\alpha_0 \in (0, \frac{1}{2}) \setminus \mathbb{Q}$. Let $k_0 = \lfloor \alpha_0^{-1} \rfloor \ge 2$. Form the largest S_L -multiple $k_0 \cdot \alpha_0$ of α_0 which is < 1. Consider now $\alpha_1 = (k_0 + 1) \cdot \alpha_0 - 1$. Obviously α_1 is irrational, and also $\alpha_1 < \alpha_0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The situation, however, is more difficult in the Łukasiewicz case.

Proposition

The Łukasiewicz-bimonoid $([0,1], T_L, S_L, 1, 0)$ is not locally finite.

Proof: Consider $\alpha_0 \in (0, \frac{1}{2}) \setminus \mathbb{Q}$. Let $k_0 = \lfloor \alpha_0^{-1} \rfloor \ge 2$. Form the largest S_L -multiple $k_0 \cdot \alpha_0$ of α_0 which is < 1. Consider now $\alpha_1 = (k_0 + 1) \cdot \alpha_0 - 1$. Obviously α_1 is irrational, and also $\alpha_1 < \alpha_0$. Iteration of this construction yields an infinite descending sequence of irrationals from [0, 1]. Hence $\langle \alpha_0 \rangle$ is infinite.

・ 同 ・ ・ ヨ ・ ・ ヨ ・

The situation, however, is more difficult in the Łukasiewicz case.

Proposition

The Łukasiewicz-bimonoid $([0,1], T_L, S_L, 1, 0)$ is not locally finite.

Proof: Consider $\alpha_0 \in (0, \frac{1}{2}) \setminus \mathbb{Q}$. Let $k_0 = \lfloor \alpha_0^{-1} \rfloor \ge 2$. Form the largest S_L -multiple $k_0 \cdot \alpha_0$ of α_0 which is < 1. Consider now $\alpha_1 = (k_0 + 1) \cdot \alpha_0 - 1$. Obviously α_1 is irrational, and also $\alpha_1 < \alpha_0$.

Iteration of this construction yields an infinite descending sequence of irrationals from [0, 1]. Hence $\langle \alpha_0 \rangle$ is infinite.

Remark:

The reference to an irrational number is essential;

イロト イポト イヨト イヨト

The situation, however, is more difficult in the Łukasiewicz case.

Proposition

The Łukasiewicz-bimonoid $([0,1], T_L, S_L, 1, 0)$ is not locally finite.

Proof: Consider $\alpha_0 \in (0, \frac{1}{2}) \setminus \mathbb{Q}$. Let $k_0 = \lfloor \alpha_0^{-1} \rfloor \ge 2$. Form the largest S_L -multiple $k_0 \cdot \alpha_0$ of α_0 which is < 1. Consider now $\alpha_1 = (k_0 + 1) \cdot \alpha_0 - 1$.

Obviously α_1 is irrational, and also $\alpha_1 < \alpha_0$.

Iteration of this construction yields an infinite descending sequence of irrationals from [0, 1]. Hence $\langle \alpha_0 \rangle$ is infinite.

Remark:

The reference to an irrational number is essential;

as is the simultaneous availability of the operations T_L and S_L .

t-Norm Bimonoids

Proposition

The rational Łukasiewicz-bimonoid ([0,1] $\cap \mathbb{Q}, T_L, S_L, 1, 0$) is locally finite.

・ 回 と ・ ヨ と ・ ヨ と

æ

Proposition

The rational Łukasiewicz-bimonoid $([0,1]\cap\mathbb{Q},$ $T_L,$ $S_L,$ 1,0) is locally finite.

Proposition

The t-norm bimonoid ([0,1], $T_{n\mathsf{M}},S_{n\mathsf{M}},1)$ based upon the nilpotent minimum

$$T_{nM}(x,y) = \begin{cases} \min\{x,y\}, & \text{if } x + y > 1\\ 0 & \text{otherwise} \end{cases}$$

is locally finite.

イロト イヨト イヨト イヨト

t-Norm Bimonoids

The situation is even more difficult for bimonoids.

< 口 > < 回 > < 回 > < 回 > < 回 > <

æ

The situation is even more difficult for bimonoids.

Example

The t-norm bimonoid ([0, 1], T^* , S_{T^*} , 1, 0) with the continuous t-norm

$$T^* = \sum_{i \in \{1\}} ([rac{1}{2}, 1], T_{\mathsf{L}}, arphi^*)$$

イロン イヨン イヨン イヨン

æ

The situation is even more difficult for bimonoids.

Example

The t-norm bimonoid ([0, 1], T^* , S_{T^*} , 1, 0) with the continuous t-norm

$$T^* = \sum_{i \in \{1\}} ([rac{1}{2}, 1], T_{\mathsf{L}}, \varphi^*)$$

and the order isomorphism $\varphi^* : [\frac{1}{2}, 1] \to [0, 1]$ given by $\varphi^*(x) = 2x - 1$ is locally finite.

イロン イヨン イヨン イヨン

t-Norm Bimonoids

Here T^* acts on the square $u_r = [\frac{1}{2}, 1] \times [\frac{1}{2}, 1]$ as (an isomorphic copy of) T_L , and acts as the min-operation otherwise.

イロン イヨン イヨン イヨン

æ

Here T^* acts on the square $u_r = [\frac{1}{2}, 1] \times [\frac{1}{2}, 1]$ as (an isomorphic copy of) T_L , and acts as the min-operation otherwise. And S_{T^*} acts on the square $l_l = [0, \frac{1}{2}] \times [0, \frac{1}{2}]$ as S_L , and as the min-operation otherwise.

・ 同 ト ・ ヨ ト ・ ヨ ト

Here T^* acts on the square $u_r = [\frac{1}{2}, 1] \times [\frac{1}{2}, 1]$ as (an isomorphic copy of) T_L , and acts as the min-operation otherwise. And S_{T^*} acts on the square $l_l = [0, \frac{1}{2}] \times [0, \frac{1}{2}]$ as S_L , and as the min-operation otherwise.

Hence it is impossible to have (the isomorphic copies of) T_L and S_L simultaneously available.

・ 同 ト ・ ヨ ト ・ ヨ ト

Here T^* acts on the square $u_r = [\frac{1}{2}, 1] \times [\frac{1}{2}, 1]$ as (an isomorphic copy of) T_L , and acts as the min-operation otherwise. And S_{T^*} acts on the square $h = [0, \frac{1}{2}] \times [0, \frac{1}{2}]$ as S_L , and as the

min-operation otherwise.

Hence it is impossible to have (the isomorphic copies of) T_L and S_L simultaneously available.

The reconstruction of the proof idea for the Łukasiewicz bimonoid becomes impossible, $([0, 1], T^*, S_{T^*}, 1, 0)$ remains locally finite.

・ロト ・回ト ・ヨト ・ヨト

Here T^* acts on the square $u_r = [\frac{1}{2}, 1] \times [\frac{1}{2}, 1]$ as (an isomorphic copy of) T_L , and acts as the min-operation otherwise. And S_{T^*} acts on the square $l_l = [0, \frac{1}{2}] \times [0, \frac{1}{2}]$ as S_L , and as the min-operation otherwise.

Hence it is impossible to have (the isomorphic copies of) T_L and S_L simultaneously available.

The reconstruction of the proof idea for the Łukasiewicz bimonoid becomes impossible, $([0, 1], T^*, S_{T^*}, 1, 0)$ remains locally finite.

NB: The particular choice of the order isomorphism φ^* is unimportant here.

・ロト ・回ト ・ヨト ・ヨト

A general result

Theorem

Suppose that T is a continuous t-norm such that

• T has an ordinal sum representation $T = \sum_{i \in I} ([I_i, r_i], T_i, \varphi_i)$ without product-isomorphic summands,

- 4 回 2 - 4 回 2 - 4 回 2

A general result

Theorem

Suppose that T is a continuous t-norm such that

- T has an ordinal sum representation $T = \sum_{i \in I} ([l_i, r_i], T_i, \varphi_i)$ without product-isomorphic summands,
- for each Łukasiewicz summand $([l_k, r_k], T_L, \varphi_k)$ the interval $[1 r_k, 1 l_k]$ does **not overlap** with any domain interval $[l_i, r_i]$ for a Łukasiewicz summand $([l_i, r_i], T_L, \varphi_i), i \in I$.

▲圖▶ ★ 国▶ ★ 国▶

A general result

Theorem

Suppose that T is a continuous t-norm such that

- T has an ordinal sum representation $T = \sum_{i \in I} ([I_i, r_i], T_i, \varphi_i)$ without product-isomorphic summands,
- for each Łukasiewicz summand $([l_k, r_k], T_L, \varphi_k)$ the interval $[1 r_k, 1 l_k]$ does **not overlap** with any domain interval $[l_i, r_i]$ for a Łukasiewicz summand $([l_i, r_i], T_L, \varphi_i), i \in I$.

Then the t-norm bimonoid $([0,1], T, S_T, 1, 0)$ is locally finite.

イロン イヨン イヨン イヨン

A general result

Theorem

Suppose that T is a continuous t-norm such that

- T has an ordinal sum representation $T = \sum_{i \in I} ([I_i, r_i], T_i, \varphi_i)$ without product-isomorphic summands,
- for each Łukasiewicz summand $([l_k, r_k], T_L, \varphi_k)$ the interval $[1 r_k, 1 l_k]$ does **not overlap** with any domain interval $[l_i, r_i]$ for a Łukasiewicz summand $([l_i, r_i], T_L, \varphi_i), i \in I$.

Then the t-norm bimonoid $([0,1], T, S_T, 1, 0)$ is locally finite.

Problem:

What in the case of overlap ?

▲祠 ▶ ▲ 臣 ▶ ★ 臣 ▶

Overlap situations

Figure: $\langle T_i, S_k \rangle$ -overlap: partial (left) and total (right)

イロト イヨト イヨト イヨト

æ

Overlap situations

Proposition

If in a t-norm bimonoid \mathfrak{A} its t-norm T has a summand $([l_i, r_i], T_L, h_i)$ with a rational-based order automorphism h_i and with full self-overlap, then \mathfrak{A} is not locally finite.

▲圖▶ ▲屋▶ ▲屋▶

Overlap situations

Proposition

If in a t-norm bimonoid \mathfrak{A} its t-norm T has a summand $([l_i, r_i], T_L, h_i)$ with a rational-based order automorphism h_i and with full self-overlap, then \mathfrak{A} is not locally finite.

Here **full self-overlap** of the *i*-th summand T_i means that the domains of T_i and $S_i = S_{T_i}$ coincide.

・ 同 ト ・ ヨ ト ・ ヨ ト

Overlap situations

Example

For each $0 < a < \frac{1}{2}$ the t-norm $T = ([a, 1 - a], T_L, id)$ has full self-overlap and determines, thus, a bimonoid which is not locally finite.

イロト イヨト イヨト イヨト

Overlap situations

Example

For each $0 < a < \frac{1}{2}$ the t-norm $T = ([a, 1 - a], T_L, id)$ has full self-overlap and determines, thus, a bimonoid which is not locally finite.

Proposition

Suppose to have partial $\langle T_i, S_k \rangle$ -overlap with rational borders of the overlap interval [a, b], and that T_i, T_k are zoomed versions of T_L . Then each irrational $c \in [a, b]$ is of infinite \mathfrak{A} -order.

・ロト ・日本 ・モート ・モート

Overlap situations

Proposition

Suppose to have partial $\langle S_k, T_i \rangle$ -overlap in the t-norm bimonoid \mathfrak{A} together with $T_i(b, b) \leq a$, then each $c \in [a, b]$ is of finite \mathfrak{A} -order.

Overlap situations

Proposition

Suppose to have partial (S_k, T_i) -overlap in the t-norm bimonoid \mathfrak{A} together with $T_i(b, b) \leq a$, then each $c \in [a, b]$ is of finite \mathfrak{A} -order.

Proposition

Suppose to have total $\langle T_i, S_k \rangle$ -overlap in the t-norm bimonoid \mathfrak{A} . If $T_i(b, b) \leq a$ and the T_i -domain does not overlap with another S_j -domain, $j \neq k$, then each $c \in [a, b]$ is of finite \mathfrak{A} -order.

- 4 同 6 4 日 6 4 日 6

Overlap situations

Example

< 🗇 > < 🖃 >

∃ >

Overlap situations

Proposition

Suppose to have total $\langle T_i, S_k \rangle$ -overlap in the t-norm bimonoid \mathfrak{A} . Let the T_i -range totally overlap with just the S_j -ranges for $j \in J$, and let be b the supremum of all $1 - I_j$ for $j \in J$. If each one of these S_j -ranges is covered by one of the intervals $[T_i(b, b), b]$, $[T_i(b, b, b), T_i(b, b)], \ldots$, then each $c \in [I_i, r_i]$ is of finite \mathfrak{A} -order.

(4月) イヨト イヨト

Overlap situations

Proposition

Suppose to have total $\langle T_i, S_k \rangle$ -overlap in the t-norm bimonoid \mathfrak{A} . Let the T_i -range totally overlap with just the S_j -ranges for $j \in J$, and let be b the supremum of all $1 - l_j$ for $j \in J$. If each one of these S_j -ranges is covered by one of the intervals $[T_i(b, b), b]$, $[T_i(b, b, b), T_i(b, b)], \ldots$, then each $c \in [l_i, r_i]$ is of finite \mathfrak{A} -order.

Example

$$T = ([\frac{1}{6}, \frac{2}{6}], T_{\mathsf{L}}, \textit{id}) \oplus ([\frac{2}{6}, \frac{1}{2}], T_{\mathsf{L}}, \textit{id}) \oplus ([\frac{1}{2}, 1], T_{\mathsf{L}}, \textit{id})$$

・ロン ・回と ・ヨン ・ヨン

Overlap situations

Thank You

(4日) (日)

< ≣ >