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STARRING: COGENERATOR

COGENERATOR

= a set carrying a structure suitable

to evaluate random events
to capture logical operations on the events

inside powers of the cogenerator live domains of generalized
probability (models of random experiments)

serves as the range of a generalized probability measure

Today’s programme:
two traditional cogenerators {0, 1} and [0, 1], and their
relationships + properties of the corresponding probability domains

GOOD LANGUAGE for this job: a categorical approach
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A categorical approach to domains of probability

Start with a “system A of events”;

Choose an “evaluator C ”—a cogenerator; usually a structured
set suitable for “evaluating” (e.g. the two element Boolean
algebra, unit interval carrying  Lukasiewicz MV-structure,
D-poset, simplex, . . . );

Choose a set X of “properties” evaluated via C such that X
separates A;

Represent each event a ∈ A via the “evaluation” of A into
CX assigning each a ∈ A its evaluation aX ∈ CX ,
aX ≡ {x(a); x ∈ X};
Form the minimal “subalgebra” D of CX containing
{aX ; a ∈ A};
The subalgebra forms a probability domain D ⊆ CX .
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Representation of an event
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Goal

Domain of classical probability theory (CPT):

random events form a σ-field A of sets

cogenerated by the two-element Boolean algebra {0, 1}
Domain of fuzzy probability theory (FPT):

random events form an MV-algebra of [0, 1]-valued
measurable functions M(A)

cogenerated by the MV-algebra [0, 1]

OUR GOAL: to characterize the transition from {0, 1} to [0, 1]
and from A to M(A)
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# 1 is the unit interval as D-poset

Based on our previous results in

R. Frič and M. Papčo.
On probability domains.
Internat. J. Theoret. Phys., 49:3092–3100, 2010,

R. Frič and M. Papčo.
On probability domains II.
Internat. J. Theoret. Phys., 50:3778–3786, 2011,

we claim that:
The unit interval I = [0, 1] considered as a D-poset is the
cogenerator which yields a suitable reference category, namely the
category ID of D-posets of fuzzy sets and sequentially continuous
D-homomorphisms.
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D-posets

introduced by F. Kôpka & F. Chovanec in order to model
quantum phenomena (effect algebras introduced by J. Foulis
& M.K. Bennett are isomorphic structures)

generalization of various structures, e.g. D-lattices,
orthoalgebras, Boolean algebras, MV-algebras

a category in which states and observables become morphisms

D-poset is a partially order set X with the least element 0X ,
the greatest element 1X , and a partial binary operation called
difference, such that a	 b is defined iff b ≤ a, and the
following axioms are assumed:

(D1) a	 0X = a for every a ∈ X ;
(D2) If c ≤ b ≤ a, then a	 b ≤ a	 c and (a	 c)	 (a	 b) = b	 c

D-homomorphism: preserves the structure (order and
difference)
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D-posets of fuzzy sets

Essential to probabilistic applications: D-posets of fuzzy sets
ID-poset = system X ⊆ IX equipped with

the coordinatewise partial order,

coordinatewise convergence of sequences,

the bottom and the top element of IX ,

and closed with respect to the partial operation difference
defined coordinatewise.

We always assume that X is REDUCED: for each x , y ∈ X , x 6= y ,
there exists u ∈ X such that u(x) 6= u(y).

D-posets of fuzzy sets as objects and sequentially continuous
D-homomorphisms as morphisms = the category ID
(objects of ID are subobjects of the powers IX )
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Morphisms

Let (X ,A, p) be a classical probability space.
⇒ the probability integral p̃(f ) =

∫
f dp is a sequentially

continuous D-homomorphism

More important and surprising:

Theorem

(i) Let p be a sequentially continuous D-homomorphism of A
into I . Then p is a probability measure.

(ii) Let h be a sequentially continuous D-homomorphisms of
M(A) into I . Then h is a probability integral, i.e., there exists
a probability measure p on A such that, h(f ) =

∫
f dp,

f ∈M(A).

(iii) Let (Y ,B) be a measurable space. Then each sequentially
continuous D-homomorphism on B into A can be uniquely
extended to a sequentially continuous D-homomorphism on
M(B) into M(A).
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Observation

If {a} is a singleton and T = {∅, {a}} is the corresponding trivial
field of all subsets of {a}, then I and M(T) coincide.
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Theorem

Let S be a linearly ordered σ-complete D-poset. Then the
following are equivalent:

(i) S and I are isomorphic;

(ii) S is totally non-atomic;

(iii) S is divisible;

(iv) If T is a linearly ordered, σ-complete and divisible D-poset
and S is a sub-D-poset of T , then S = T .
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Next step: Fuzzification of a cogenerator

BOLD ALGEBRA

A system X ⊆ [0, 1]X

containing the constant functions 0X , 1X and closed with
respect to the complement and ( Lukasiewicz) operations
⊕, �: for a, b ∈ X put
(a⊕ b)(x) = a(x)⊕ b(x) = min{1, a(x) + b(x)},
(a� b)(x) = a(x)� b(x) = max{0, a(x) + b(x)− 1}, x ∈ X .

MV-algebra representable as [0, 1]-valued function.

MV-algebras generalize Boolean algebras,
bold algebras generalize in a natural way fields of sets.

Also the unit interval I = [0, 1] can be considered as a bold
algebra of all measurable [0, 1]-valued functions.

Sequentially closed bold algebra X ⊆ [0, 1]X in [0, 1]X (with
respect to the coordinatewise sequential convergence) =
 Lukasiewicz tribe.
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Properties of probability domains

1 ID-posets model the sure event, the impossible event, and the
negation of an event. The structure of events is determined
by states.

2 Sequentially closed ID-posets satisfy a natural requirement:
the probability domains should be closed with respect to
sequential limits.

3 Lattice ID-posets are bold algebras.

4 Closed lattice ID-posets are  Lukasiewicz tribes.

5 The transition from the classical random events represented
by σ-fields to fuzzy random events represented by measurable
functions is characterized by “divisibility”.
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Properties of probability domains

6  Lukasiewicz tribes form a category in which both classical and
fuzzy events live and the probability of an event can be
calculated via an integral.
From AX ⊆ X ⊆M(AX ) it follows that the classical events
(σ-fields of sets) are “minimal” and the fuzzy events
(generated  Lukasiewicz tribes) are “maximal” probability
domains having nice properties.
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Divisibility

Definition

Let A be a D-poset and let n be a natural number, n > 1. Assume
that for each a ∈ A, a 6= 0, there exists an element a(n) ∈ A such
that 0 < a(n) < a and, for each k = 1, 2, . . . , n − 1, we can
subtract from a successively k-times a(n) and the result is greater
or equal to a(n), and if we subtract from a successively n-times
a(n), then the result is 0.
Then A is said to be divisible by n. If A is divisible by n for each
natural number n, n > 1, then A is said to be divisible.

Definition

Let A be a D-poset and let B be a sub-D-poset of A. Assume that
for each countable set S ⊂ B there exists the supremum sup S of
S in A and sup S ∈ B. Then B is said to be σ-complete in A.
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Definition of fuzzification

Lemma

Let B be a sub-D-poset of I . If B is divisible and σ-complete in I ,
then B = I .

Corollary

I is the smallest of all sub-D-posets B of I such that B is divisible
and σ-complete in I .

Definition

Let A be a σ-complete divisible D-poset and let B be a
sub-D-poset of A. Let A be the smallest of all sub-D-posets C of
A such that

(i) B is a sub-D-poset of C ; (iii) C is σ-complete in A.
(ii) C is divisible;

Then A is said to be a fuzzification of B.
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Fuzzification of objects

A ... a (reduced) σ-field of subsets of a set X

M(A) ... the set of all measurable functions ranging in [0, 1]

NOTE: A and M(A) are  Lukasiewicz tribes and D-posets of
fuzzy sets

Lemma

The sub-D-poset M(A) of [0, 1]X is divisible and σ-complete in
[0, 1]X .

Lemma

Let X be a sub-D-poset of [0, 1]X such that A ⊆ X . If X is
divisible and σ-complete in [0, 1]X , then M(A) ⊆ X and the
sub-D-poset M(A) is σ-complete in X .
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Fuzzification of objects

Corollary

M(A) is the smallest of all sub-D-posets X of [0, 1]X such that A
is contained in X and X is divisible and σ-complete in [0, 1]X .

⇒M(A) is a fuzzification of A
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Transition from CP to FP – definitions

(Ω,A,P), (Ξ,B,Q) ... classical probability spaces

h ... a sequentially continuous D-homomorphisms of B into A
such that Q(B) = P(h(B)) for all B ∈ B

: h = measure preserving = classical observable

M(A) ... the corresponding ID-poset of measurable fuzzy sets∫
(·) dP ... the probability integral with respect to P

: (Ω,M(A),
∫

(·) dP) = fuzzy probability space

(Ω,M(A),
∫

(·) dP), (Ξ,M(B),
∫

(·) dQ) ... fuzzy probability
spaces

h ... a sequentially continuous D-homomorphisms of M(B)
into M(A) such that

∫
v dQ =

∫
h(v) dP for each v ∈M(B)

: h = probability integral preserving = fuzzy observable

: h = restricted fuzzy observable if h(B) ∈ A for all B ∈ B
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Transition from CP to FP – categorical aspects

CP ... the category having classical probability spaces as objects
and measure preserving classical observables as morphisms
FP ... the category having fuzzy probability spaces as objects and
probability integral preserving fuzzy observables as morphisms
RFP ... the subcategory of FP having the fuzzy probability spaces
as objects and the restricted fuzzy observables as morphisms

QUESTION: How are the categories CP and FP related?

Theorem

Let (Ω,A,P) and (Ξ,B,Q) be classical probability spaces and let
(Ω,M(A),

∫
(·) dP ) and (Ξ,M(B),

∫
(·)dQ) be the corresponding

fuzzy probability spaces. Let hc be a classical observable. Then
there exists a unique fuzzy observable h such that hc(B) = h(B)
for all B ∈ B.

Roman Frič, Martin Papčo Cogenerators in generalized probability



Transition from CP to FP – SUMMARY

Theorem

The categories CP and RFP are isomorphic.

ANSWER: There is a canonical isomorphism between CP,
representing the classical probability theory, and the subcategory
RFP of FP, representing the fuzzy probability theory. The objects
of the two categories are in a canonical one-to-one correspondence,
but the fuzzy probability theory has “more” morphisms: a fuzzy
observable can map a crisp random event to a genuine fuzzy
random event.
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