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Introduction

» A well-known basis for games is the set of unanimity games.
Coordinates correspond to the Mdbius transform.

» Many other transforms exist (interaction, Walsh or Fourier,
etc.), however the obvious duality basis<linear transform has
been overlooked.

» As a consequence, the inverse problem for games (find all
games having the same Shapley value) has been solved in a
tedious way.

» The Shapley value is an example of a least square value as it
optimizes some least square criterion on games.

» Aim of the paper: to give a systematic analysis of the above
aspects.
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Preliminary notions

N set of n players, N' = 2N
game v : 2N — R (here v((}) = 0 is not imposed).

v

v

v

The set of games on N, G(N), forms a vector space of
dimension 27,

» Unanimity games (s, S C N:
1, fSDOT
(s = .
0, otherwise.
> Identity games s, S C N:

1, ifS=T
0s = .
0, otherwise.
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Preliminary notions

N set of n players, N' = 2N
game v : 2N — R (here v((}) = 0 is not imposed).

vV v Vv

The set of games on N, G(N), forms a vector space of
dimension 27,

v

Unanimity games (s, S C N:

1, ifSDOT
CSZ{

0, otherwise.

v

Identity games 65, S C N:

1, ifS=T
0s = .
0, otherwise.

v

scalar product (v, w) = > sy v(S)w(S)
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Bases and linear transforms

> A transform is a linear invertible mapping ¥V : G(N) — G(N);
Vi WY

» To a game v, we make correspond a row vector v € RN

» To a basis (fs)senr, we make correspond the matrix F = [f]
of row vectors fs. Hence v =) ¢\ wsfs = wF is the
expression of v in this basis.

Lemma (Equivalence between bases and transforms)
For every basis F, there is a (unique) transform V such that for
any v € RV,

V=) V(S (1)

SeN

whose inverse V™1 is given by v — (W™1)Y =3¢\ v(S)fs = VF.
Conversely, to any transform V corresponds a unique basis F such
that (1) holds, given by fs = (W~1)%
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The Mabius transform: associated with the basis of unanimity
games

v(§)= > m(T)r(S)=>_ m"(T), (TCN),
TeN TCS
with

m(S) =Y _(-1)P\TIv(T).

TCS
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The Mabius transform: associated with the basis of unanimity
games

v(§) =D m“(T)r(S) =) m'(T), (TCN),
TeN TCS
with
m(S) =Y _(-1)P\TIv(T).

TCS

The co-Mabius (or commonality) transform:

m'(S)= Y (~1)"T(T) =3 (-DITW(N\T) (SeN)
TON\S TCS

and v(S) = ZTgN\S(—l)mmV(T). By the Lemma, the

associated basis is

fr(S)=>_ (—1)55T(3):{ (DI ifSNT =0

0 otherwise.
BCN\S
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The (Shapley) interaction transform:
(n —t—s)lt! S\L
1'(S) = ( LIS\Hy(TUL)

and the inverse relation

v(S) =D Blau! (K,

KCN

where

and By, By, ... are the Bernoulli numbers.
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The (Shapley) interaction transform:

1V(S) = Z MZ( 1IS\Uy(TUL)

1)
TCN\S s+1)
and the inverse relation

v(S) =D Blau! (K,

KCN

where

Lk

Be=> ( .)B,_J- (k< 1),

— \J

j=0
and By, By, ... are the Bernoulli numbers. The associated basis
{bIT}TeN’ is

bI(S) = Brhs (S EN)
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The Banzhaf interaction transform:
1\ n—s
_ (= _1)IS\K]|
BS) = (5) Y 1v(k)
KCN
with inverse relation

Y6 =Y (5) 0K,

KCN
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The Banzhaf interaction transform:
1\ n—s
_ (= _1)IS\K]|
BS) = (5) Y 1v(k)
KCN
with inverse relation

Y6 =Y (5) 0K,

KCN

The associated basis {b'ff}re/\/ is

HOESY (%)k(—1)\K\5|5T(K) _ (%)'T‘(_l)msy

KCN
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The Hadamard transform:

HV( 2,,/2 Z \SﬁK|V(K)

KCN

(self-inverse relation).
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The Hadamard transform:

2,,/2 Z \SﬁK|V(K)

KCN

(self-inverse relation). The corresponding basis {b4} 1 is

1
H _ SNK snT
bi(S) = 2"/2;;\/ 1)S0I57(K) = 25 (1),
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The Walsh basis {w1}1cn:
wr(S) = (-1 TS (S e ).

It is an orthogonal basis.
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The Walsh basis {wr}rcp:
wr(S) = (-1)ITSl (S eN).

It is an orthogonal basis. The corresponding Walsh transform W

satisfies
v(§) =Y WY (T)(-)I™ (Sen),
TCN
which yields
w(s)=(5) ") (5w
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The Walsh basis {w1}1cn:
wr(S) = (-1 TS (S e ).

It is an orthogonal basis. The corresponding Walsh transform W
satisfies

v(S) =Y WH(T)(=1IT (Sen),

TCN
which yields

w(s)=(5) ") (5w

Relation between the Hadamard basis and the Walsh basis:

1 1 1
B(S) = BE(T) = Sy (DS = o (<1 = (W T)
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The inverse problem

> A linear value is a mapping ¢ : RN — RN assigning to any
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The inverse problem

> A linear value is a mapping ¢ : RN — RN assigning to any
game a n-dim vector. Examples: the Shapley value ®5", the
Banzhaf value ®B.

» Fact: the Shapley (resp., Banzhaf) interaction transform
extends the Shapley (resp., Banzhaf) value in the sense that

(V) = 1"({i}),  PP(v) = I5({i}), (i€N)
> The inverse problem: Given a linear value ® and a game v,

find all games v/ such that ®(v) = ®(V').

» Observe that v/ is a solution iff &(v —v') =0, i.e,
v — v/ € ker(®). So its suffices to determine the kernel of the
linear map ¢.
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The inverse problem: Solution 1

Suppose you know a transform W extending the value. Then the
kernel is just the space spanned by the vectors fs of the
corresponding basis with |S| > 1.

v= D IM(S)bs =3 OF ()bl + 3 1(S)bs,

SeN ieN |S|#£1
which implies
vEker(®) = v=")1Y(S)b§
IS|#1

ie.,
ker(®5h) = { 3" Asbh | As € R}
SI71
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The inverse problem: Solution 1

Suppose you know a transform W extending the value. Then the
kernel is just the space spanned by the vectors fs of the
corresponding basis with |S| > 1.

Illustration with the Shapley value:

v=) 1"(S)bs = 0P (v)bjy + Y 1"(S)bs,
SeN ieN |S|#1
which implies
vEker(dh) = v=>) 1(S)bs
IS|#1

ie.,

ker(®Sh) = { 3" Asbh | As € ]R}
SI71
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The inverse problem: Solution 2

> Let k = dim ®(R") < n be the dimension of ®, and select a
basis £ = {ey,...,ex} of (RV).
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> Let k = dim ®(R") < n be the dimension of ®, and select a
basis £ = {ey,...,ex} of (RV).
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The inverse problem: Solution 2

> Let k = dim ®(R") < n be the dimension of ®, and select a
basis £ = {ey,...,ex} of (RV).

» Find by, ..., by such that (b)) =¢ (i=1,...,k).

> Then {by,..., by} is a basis of ®(RV), which can be
completed by {bxi1,...,bon} to form a basis of RV,

» Denote by e(’) . (J) the coordinates of ®(b;) in the basis
E, for j = k+ 1 2 .

> Put bf:bj—z,k:lef.”b,- for j=k+1,...,2"

Theorem
Let B® = {b1,... b, by, ..., b3:}. Then

(i) B® is a basis for RV,
(i) B ={bP.1.-.., b3} is a basis for ker .
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Least square values

» A least square value ® is given by the solution of a least
square optimization problem

min D as(v(S) = x(5))* st x(N) = v(N)
x€ SeN

for given coefficients as, S € N, and the convention
x(8) =3 jcsxi- Then ®;(v) = x¥, i€ N.
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Least square values

» A least square value ® is given by the solution of a least
square optimization problem

min D as(v(S) = x(5))* st x(N) = v(N)
x€ SeN

for given coefficients as, S € N, and the convention
x(8) =3 jcsxi- Then ®;(v) = x¥, i€ N.

» Well-known fact 1: the Banzhaf value is the solution of the
above unweighted (s = 1,VS) unconstrained problem
(Hammer and Holzman 1987).

» Well-known fact 2: the Shapley value is the solution of the
above problem with

(n—2)!
(s—1l(n—1-15s)!

(Charnes et al., 1988)

0452045:

(s = [S])-
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Least square values

» It can be shown that the above problem reduces to

T

min xQxT —xcT st x1=g(v)

xERN

with gjj = > s-; ;s and ¢; = Y 55, asv(S). It has always a
solution, which is unique iff Q is positive definite.

U. Faigle & M. Grabisch ©2014 Linear transforms, bases and quadratic optimization



Least square values

» It can be shown that the above problem reduces to

T

min xQxT —xcT st x1=g(v)

xERN

with gjj = > s-; ;s and ¢; = Y 55, asv(S). It has always a
solution, which is unique iff Q is positive definite.

> @ is said to be regular if gjj = q,Vi and g;; = p for all i # j.

U. Faigle & M. Grabisch ©2014 Linear transforms, bases and quadratic optimization



Least square values

» It can be shown that the above problem reduces to

min xQxT —xcT st x1=g(v)
x€ERN

with gjj = > s-; ;s and ¢; = Y 55, asv(S). It has always a
solution, which is unique iff Q is positive definite.
> @ is said to be regular if gjj = q,Vi and g;; = p for all i # j.
» Fact: Q regular is positive definite iff g > p > 0.
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Least square values

» It can be shown that the above problem reduces to

min xQxT —xcT st x1=g(v)
x€ERN

with gjj = > s-; ;s and ¢; = Y 55, asv(S). It has always a
solution, which is unique iff Q is positive definite.

> @ is said to be regular if gjj = q,Vi and g;; = p for all i # j.
» Fact: Q regular is positive definite iff g > p > 0.

Theorem

If Q is regular and positive definite, the (unique) optimal solution
x* is given by:

= (2(q+(n—1)p)g—C)/n (withC:CIT:Z,-E,VC,')
xi = (c¢+2" —2pg)/(29—2p) (i€ N).
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