The General Nilpotent System

József Dombi1,2 Orsolya Csiszár1

1Óbuda University, Budapest, Hungary

2University of Szeged, Hungary

FSTA, Liptovský Ján, 2014
OUTLINE

1 Motivation and background

2 Basic preliminaries
 - Negations
 - Triangular norms and conorms
 - Nilpotent operators

3 Connective Systems
 - Notations
 - Consistency

4 Results
 - Bounded Systems
 - Examples

5 Conclusion and further work
Motivation and background
Motivation and background

Nilpotent Connective Systems

Fuzzy set theory
Proper choice of fuzzy connectives

Nilpotent operators
Nilpotent t-norms and t-conorms: preferable properties

Operators – Systems
Instead of pure operators, we examine connective SYSTEMS

Our results
Consistent nilpotent connective systems which are not isomorphic to Łukasiewicz system
Basic preliminaries
Negations

Definition
A decreasing function $n(x) : [0, 1] \rightarrow [0, 1]$ is a fuzzy negation, if $n(0) = 1$ and $n(1) = 0$.

Definition
A fuzzy negation is
- **strict**, if it is strictly decreasing and continuous
- **strong**, if it is involutive, i.e. $n(n(x)) = x$ for $\forall x \in [0, 1]$.

Trillas’ Theorem

$n(x)$ is a strong negation if and only if

$$n(x) = f_n(x)^{-1}(1 - f_n(x)),$$

where $f_n(x) : [0, 1] \rightarrow [0, 1]$ is continuous and strictly increasing.
Triangular norms and conorms
(Schweizer and Sklar, 1960)

T-norm T (Conjunction)

A t-norm T is a function on $[0, 1]^2$ that satisfies, for all $x, y, z \in [0, 1]$:
- $T(x, 1) = x$ (neutral element 1);
- $x \leq y \Rightarrow T(x, z) \leq T(y, z)$ (monotonicity);
- $T(x, y) = T(y, x)$ (commutativity);
- $T(T(x, y), z) = T(x, T(y, z))$ (associativity).

T-conorm S (Disjunction)

- $S(x, 0) = x$ (neutral element 0) plus the other three properties above.
A continuous t-norm T is said to be
- **Archimedean** if $T(x, x) < x$ holds for all $x \in (0, 1)$,
- **strict** if T is strictly monotone i.e. $T(x, y) < T(x, z)$ whenever $x \in [0, 1]$ and $y < z$, and
- **nilpotent** if there exist $x, y \in (0, 1)$ such that $T(x, y) = 0$.

A continuous t-conorm S is said to be
- **Archimedean** if $S(x, x) > x$ holds for every $x, y \in (0, 1)$,
- **strict** if S is strictly monotone i.e. $S(x, y) < S(x, z)$ whenever $x \in [0, 1]$ and $y < z$, and
- **nilpotent** if there exist $x, y \in (0, 1)$ such that $S(x, y) = 1$.
Additive generators

A function \(T : [0, 1]^2 \rightarrow [0, 1] \) is a continuous Archimedean t-norm iff it has a continuous additive generator, i.e. there exists a continuous strictly decreasing function \(t : [0, 1] \rightarrow [0, \infty] \) with \(t(1) = 0 \), which is uniquely determined up to a positive multiplicative constant, such that

\[
T(x, y) = t^{-1}(\min(t(x) + t(y), t(0)), \quad x, y \in [0, 1]. \tag{1}
\]

A function \(S : [0, 1]^2 \rightarrow [0, 1] \) is a continuous Archimedean t-conorm iff it has a continuous additive generator, i.e. there exists a continuous strictly increasing function \(s : [0, 1] \rightarrow [0, \infty] \) with \(s(0) = 0 \), which is uniquely determined up to a positive multiplicative constant, such that

\[
S(x, y) = s^{-1}(\min(s(x) + s(y), s(1)), \quad x, y \in [0, 1]. \tag{2}
\]
A t-norm T is \textit{strict} if and only if $t(0) = \infty$.

A t-norm T is \textit{nilpotent} if and only if $t(0) < \infty$.

A t-conorm S is \textit{strict} if and only if $s(1) = \infty$.

A t-conorm S is \textit{nilpotent} if and only if $s(1) < \infty$.
Nilpotent operators

Preferable Properties

Law of contradiction $c(x, n(x)) = 0$

Excluded middle $d(x, n(x)) = 1$

Coincidence of residual and S-implications...

\[
T_L(x, y) = \max(x + y - 1, 0)
\]

\[
S_L(x, y) = \min(x + y, 1)
\]
Normalized generator functions — uniquely determined

\[f_c(x) := \frac{t(x)}{t(0)}, \quad f_d(x) := \frac{s(x)}{s(1)}. \]

\[f_c(x), f_d(x), f_n(x) : [0, 1] \to [0, 1]. \]

Cutting operation

\[[x] = \begin{cases} 0 \text{ if } x < 0 \\ x \text{ if } 0 \leq x \leq 1 \\ 1 \text{ if } 1 < x \end{cases} \]
Cutting function

\[c(x, y) = f_c^{-1}[f_c(x) + f_c(y)] \]
\[d(x, y) = f_d^{-1}[f_d(x) + f_d(y)] \]

Min

\[\text{Min}(x, y) = f_c^{-1} [f_c(x) + [f_c(y) - f_c(x)]] \]

Max

\[\text{Max}(x, y) = n \left(f_c^{-1} [f_c(n(x)) + [f_c(n(y)) - f_c(n(x))]] \right) \]

\[T_L(x, y) = [x + y - 1] \]
\[S_L(x, y) = [x + y] \]
Connective Systems
Connective Systems

- **strong negation** $n(x)$
- **conjunction** $c(c, y)$
- **disjunction** $d(x, y)$

Definition
The triple $(c(x, y), d(x, y), n(x))$, where $c(x, y)$ is a t-norm, $d(x, y)$ is a t-conorm and $n(x)$ is a strong negation, is called a **connective system**.

Definition
A connective system is **nilpotent**, if the conjunction is a nilpotent t-norm, and the disjunction is a nilpotent t-conorm.
Definition

Two connective systems \((c_1(x, y), d_1(x, y), n_1(x))\) and \((c_2(x, y), d_2(x, y), n_2(x))\) are **isomorphic**, if there exists a bijection \(\phi : [0, 1] \to [0, 1]\) such that

\[
\phi^{-1}(c_1(\phi(x), \phi(y))) = c_2(x, y)
\]

\[
\phi^{-1}(d_1(\phi(x), \phi(y))) = d_2(x, y)
\]

\[
\phi^{-1}(n_1(\phi(x))) = n_2(x)
\]

Definition

A connective system is called **Łukasiewicz** system, if it is isomorphic to \(([x + y - 1], [x + y], 1 - x)\), i.e. it has the form \((\phi^{-1}[\phi(x) + \phi(y) - 1], \phi^{-1}[\phi(x) + \phi(y)], \phi^{-1}[1 - \phi(x)])\).
Classification Property:

- **law of contradiction:**
 \[c(x, n(x)) = 0, \]

- **excluded middle:**
 \[d(x, n(x)) = 1. \]

De Morgan Laws:

\[c(n(x), n(y)) = n(d(x, y)) \]

or

\[d(n(x), n(y)) = n(c(x, y)). \]
IS IT SENSIBLE TO USE MORE THAN ONE GENERATOR FUNCTIONS?
Results
Among nilpotent systems, Łukasiewicz connective system \((T_L, S_L, \text{standard negation})\) is characterized by \(f_c(x) + f_d(x) = 1, \quad \forall x \in [0, 1]\).

For \(f_c(x) + f_d(x) < 1, \quad \forall x \in [0, 1]\): the system is not consistent.

For \(f_c(x) + f_d(x) > 1, \forall x \in [0, 1]\): BOUNDED SYSTEMS
Bounded Systems

Three different negations

\[
\begin{align*}
n_d(x) &= f_d^{-1}(1 - f_d(x)) < n(x) < n_c(x) = f_c^{-1}(1 - f_c(x)). \\

f_c(x) + f_d(x) &= 1 \iff n_c(x) = n(x) = n_d(x)
\end{align*}
\]
Theorem

In a connective structure the *classification property* holds if and only if

\[n_d(x) \leq n(x) \leq n_c(x), \quad \forall x \in [0, 1]. \]
THEOREM

In a connective structure the *classification property* holds if and only if

\[n_d(x) \leq n(x) \leq n_c(x), \quad \forall x \in [0, 1]. \]

THEOREM

In a connective system the *De Morgan law* holds if and only if

\[n(x) = f_c^{-1}(f_d(x)) = f_d^{-1}(f_c(x)), \quad \forall x \in [0, 1]. \]
Consistency

1. If \(c(x, y), d(x, y) \) and \(n(x) \) fulfil the De Morgan identity and the classification property (i.e. they form a consistent system), then
\[
f_c(x) + f_d(x) \geq 1, \quad \forall x \in [0, 1].
\]

2. If \(f_c(x) + f_d(x) \geq 1, \quad \forall x \in [0, 1] \) and the De Morgan law holds, then the classification property also holds (which now means that the system is consistent).
Example for \(f_c(x) + f_d(x) > 1 \)

For \(f_c(x) := 1 - x^\alpha, f_d(x) := 1 - (1 - x)^\alpha, n(x) := 1 - x, \quad \alpha \in (1, \infty) \).

- the connective system is consistent,
- \(f_c(x) + f_d(x) > 1, \quad \forall x \in [0, 1] \)
 (or equivalently \(n_d(x) < n(x) < n_c(x), \quad \forall x \in [0, 1] \)).
RATIONAL GENERATORS

For the Dombi functions (from 'pliant systems')

\[f_n(x) = \frac{1}{1 + \frac{\nu}{1-\nu} \frac{1-x}{x}} \]

\[f_c(x) = \frac{1}{1 + \frac{\nu_c}{1-\nu_c} \frac{x}{1-x}} \]

\[f_d(x) = \frac{1}{1 + \frac{\nu_d}{1-\nu_d} \frac{1-x}{x}} \]

the following statements are equivalent:

1. The connective structure defined by the Dombi functions satisfies the De Morgan law.

\[\left(\frac{1-\nu}{\nu} \right)^2 = \frac{\nu_c}{1-\nu_c} \frac{1-\nu_d}{\nu_d}. \]
RATIONAL GENERATORS

For the Dombi functions (from 'pliant systems')

\[f_n(x) = \frac{1}{1 + \frac{\nu}{1-\nu} \frac{1-x}{x}} \]

\[f_c(x) = \frac{1}{1 + \frac{\nu_c}{1-\nu_c} \frac{x}{1-x}} \]

\[f_d(x) = \frac{1}{1 + \frac{\nu_d}{1-\nu_d} \frac{1-x}{x}} \]

the following statements are equivalent:

1. \(n_d(x) < n(x) < n_c(x) \)
2. \(\nu_d < \nu < \nu_c \)
3. Given that the De Morgan property holds, \(f_c(x) + f_d(x) > 1 \), or equivalently \(\nu_c + \nu_d < 1 \).
Examples

Rational generators

\[\nu_c = 0.6 \text{ and } \nu_d = 0.4 \]

\[\nu_c = 0.4 \text{ and } \nu_d = 0.2 \]
Conclusion and further work
Consistent nilpotent connective systems using more than one generator functions (not new operators, new system)

\[f_c(x) + f_d(x) > 1 \]
\[n_d(x) < n(x) < n_c(x) \]

2 naturally derived thresholds \((\nu_c, \nu_d)\)

Further work: implication, equivalence
THANK YOU FOR YOUR ATTENTION!

"Life is like riding a bicycle. To keep your balance you must keep moving."

/Einstein/