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Group Decision Making (GDM) Problem

We have a set of options or alternatives

X = {x1, · · · , xp} (p ≥ 2)

and a set of criteria or experts

E = {e1, · · · , en} (n ≥ 2)

each of whom provides his/her preferences over the set of alternatives

The problem is to find a solution, which will be an alternative or a set of
alternatives, which is (are) the most accepted one(s) by the whole set of
experts.
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GDM

Most of resolution procedures are based in comparing alternatives
pairwise, with each expert providing his/her preferences in a matrix as
follows:

rel =







− r(el)12 ··· r(el)1p

r(el)21 − ··· r(el)2p

··· ··· − ···

r(el)p1 ··· ··· −







Usually there exists uncertainty −→ fuzzy sets.

Vague concepts as, for instance, that of majority −→ fuzzy sets.
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GDM

Typically, a selection process for GDM consists:

(1) Uniform representation of information.

(2) Application of a selection procedure. This procedure consists of two
phases:

(2.1) Aggregation phase. A collective preference structure is built from the
set of individual homogeneous preference structures.

(2.2) Exploitation phase. A given method is applied to the collective
preference structure to obtain a selection of alternatives.
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GDM
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Aggregation to be used: penalty functions

Definition

A function M : [a, b]n → [a, b] is an aggregation function if it is monotone
increasing in each component and M(a) = M(a, · · · , a) = a and
M(b) = M(b, · · · , b) = b

Definition

An aggregation function M is averaging (or compensative or a mean) if

mı́n(x) = mı́n(x1, · · · , xn) ≤ M(x1, · · · , xn) ≤ máx(x1, · · · , xn) = máx(x)
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GDM

Aggregation phase: Up to now, the aggregation we have used for every Ai

has been the same.

Data must impose:

1 The aggregation to be used

2 The way in which we represent
information.
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Aggregation to be used: penalty functions
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Aggregation to be used: penalty functions

Definition

A penalty function is a function

P : [a, b]n+1 → R
+ = [0,∞]

such that:

1 P (x, y) = 0 if xi = y for every i = 1, · · · , n;

2 P (x, y) is quasiconvex in y for every x; that is,

P (x, λ · y1 + (1− λ) · y2) ≤ máx(P (x, y1), P (x, y2))

T. Calvo, R. Mesiar, R. Yager, A quantitative weights and aggregation, IEEE Transactions on Fuzzy Systems 12 (2004)
6269

T. Calvo, G. Beliakov, Aggregation functions based on penalties, Fuzzy Sets and Systems 161 (10) (2010) 14201436.
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Aggregation to be used: penalty functions

We call function based on the penalty function P (or penalty-based
function) to the function

f(x) = argmı́n
y

P (x, y),

ifi y is the unique minimum, and y = c+d
2 if the set of minima is the

interval [c, d]

Theorem

Every averaging aggregation function can be represented as a
penalty-based function in the sense of the previous definition.

(FSTA 2014,Slovakia) 11 / 70



Penalty functions on a Cartesian product of lattices

(FSTA 2014,Slovakia) 12 / 70



Cartesian product of lattices

Definition

A poset (P,≤) is a set P with a relation ≤ which is reflexive,
antisymmetric and transitive. A chain in a poset is a totally ordered set.
The length of a finite chain is equal to the number of elements in that
chain minus one.

Definition

Let L be a set. A lattice L = (L,≤,∧,∨) is a poset with respect to the
partial order ≤ in L and the operations ∧ and ∨ which satisfy the
properties of absortion, idempotency, commutativity and associativity.
That is, a bounded poset such that every pair of elements has a unique
minimal upper bound and a unique maximal lower bound en L.
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Cartesian product of lattices

Proposition

Let L1 = (L1,≤1,∧1,∨1) and L2 = (L2,≤2,∧2,∨2) be two lattices. The
Cartesian product

L1 × L2 = (L1 × L2,≤,∧,∨)

with ≤ defined by

(x1, x2) ≤ (y1, y2) iff x1 ≤ y1 and x2 ≤ y2

and
∧ ((x1, x2), (y1, y2)) = (∧1(x1, y1),∧2(x2, y2))

∨ ((x1, x2), (y1, y2)) = (∨1(x1, y1),∨2(x2, y2))

is a lattice.
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Cartesian product of lattices

Remarks:

In this work we use the Cartesian product of finite chains C with
supremum and infimum.

All the finite chains of the same length n are isomorphic to each other
and isomorphic to the chain C = 0 ≤ 1 ≤ 2 ≤ · · · ,≤ n− 1

The Cartesian product of chains needs not be a chain.

Theorem

Let Lm = (C1 × · · · × Cm,≤,∧,∨). Let a and b be two elements of Lm

such that a ≤ b. Then all the minimal chains that join a and b have the
same length.
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Cartesian product of lattices

Corollary

Let a, b ∈ Lm = (C1 × · · · × Cm,≤,∧,∨). Then all the minimal chains
which join ∧(a, b) and ∨(a, b) have the same length.

If Lm is a Cartesian product of m chains, then the distance between
x, y ∈ Lm may be defined as the length of the chain C with minimal
element a = ∧(x, y) and maximal element b = ∨(x, y).That is:

d(x, y) = length(C)− 1

This definition is equivalent to:

d(x, y) =
m
∑

i=1

di(xi, yi) =
m
∑

i=1

|xi − yi|

Natural distance

(FSTA 2014,Slovakia) 16 / 70



Restricted lattice dissimilarity functions

Let’s consider the lattice Lm = (C1 × · · · × Cm,≤,∧,∨). Take

1Lm = (∨(C1), · · · ,∨(Cm))

0Lm = (∧(C1), · · · ,∧(Cm))

Definition
Let Lm = (C1 × · · · × Cm,≤,∧,∨). A mapping

δR : Lm × Lm → Lm

is a restricted lattice dissimilarity function if

1 δR(x, y) = δR(y, x) for each x, y ∈ Lm;

2 δR(x, y) = 1Lm iff for every i = 1, · · · ,m
xi = Sup(Ci) and yi = Inf(Ci)

or

xi = Inf(Ci) and yi = Sup(Ci)

3 δR(x, y) = 0Lm iff x = y;

4 If x ≤ y ≤ z then δR(x, y) ≤ δR(x, z) and δR(y, z) ≤ δR(x, z).
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Restricted lattice dissimilarity functions

Proposition

Let x, y ∈ Lm = (C1 × · · · × Cm,≤,∧,∨) and let δRi
: Ci × Ci → Ci be a

restricted lattice dissimilarity function for each i. Then the mapping

δR(x, y) = (δR1(x1, y1), · · · , δRm(xm, ym))

is a restricted lattice dissimilarity function.
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L-Multisets

L-Multisets: FS(U)m is the class of sets A = (A1, · · · , Am) with Ai : U → Ci

A(ui) = (A1(ui), · · · , Am(ui)) for every ui ∈ U
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Lattice distances

L-Multisets: FS(U)m is the class of sets A = (A1, · · · , Am) with Ai : U → Ci

A(ui) = (A1(ui), · · · , Am(ui)) for every ui ∈ U

Definition
Let Lm = (C1 × · · · × Cm,≤,∧,∨). A mapping

Ω : FS(U)m ×FS(U)m → Lm

is a lattice distance in FS(U)m if

1 Ω(A,B) = Ω(B,A) for every A,B ∈ FS(U)m;

2 Ω(A,B) = 0Lm iff Ai = Bi for every i = 1, · · · ,m;

3 Ω(A,B) = 1Lm iff Ai y Bi are sets such that uj

Ai(uj) = ∨(Ci) and Bi(uj) = ∧(Ci) or

Ai(uj) = ∧(Ci) and Bi(uj) = ∨(Ci);

4 If A ≤ A′ ≤ B′ ≤ B, then Ω(A,B) ≥ Ω(A′,B′) where
A = (A1, · · · , Am) ≤ (A′

1, · · · , A
′
m) = A′ if Ai ≤ A′

i for each i.
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Aggregation functions on lattices

Definition

Let L be a bounded lattice. An aggregation function over the lattice L is a
mapping:

M : L × L → L

such that

i) M(0L, 0L) = 0L and M(1L, 1L) = 1L;

ii) M is increasing with respect to ≤.
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Aggregation functions on lattices

Proposition

Let δR1 , · · · , δRm be restricted lattice dissimilarity functions such that
δRi

: Ci × Ci → Ci. Let M1, · · · ,Mm be aggregation functions
Mi : Ci × · · · × Ci → Ci such that

(L1) Mi(x1, · · · , xn) = 1L iff xi = ∨(Ci) for each i = 1, · · · , n

(L2) Mi(x1, · · · , xn) = 0L iff xi = ∧(Ci) for each i = 1, · · · , n

Then

Ω(A,B) =

(

n

M1
i=1

(δR1(A1(ui), B1(ui))), · · · ,
n

Mm
i=1

(δRm(Am(ui), Bm(ui)))

)

is a lattice distance in FS(U)m.
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Penalty functions on a Cartesian product of lattices
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Construction method of PFCPL

Theorem

Let Y = (y1, · · · , ym) ∈ Lm. For each yi (i = 1, · · · ,m) let’s consider the set

Byi (uj) = yi for every uj ∈ U

and let BY = (By1 , · · · , Bym ) ∈ FS(U)m. Consider the aggregation functions M1, · · · ,Mm

given by Mi : Ci × · · · × Ci → Ci such that each of them, when it is composed with a convex

function, gives back a convex function. Let’s consider the restricted lattice dissimilarity functions

δR(x, y) = (δR1
(x1, y1), · · · , δRm

(xm, ym)) such that δRi
with i = 1, · · · ,m is convex in one

variable. Then:

PΩ : FS(U)m ×FS(U)m → Lm given by

PΩ(A, Y ) = Ω(A,BY ) =

(

n

M1
i=1

(δR1
(A1(ui), y1)), · · · ,

n

Mm
i=1

(δRm
(Am(ui), ym))

)

satisfies:

1 PΩ(A, Y ) ≥ 0Lm
;

2 PΩ(A, Y ) = 0Lm
si Ak(uj) = yk for each k and each j;

3 Each of the components is convex with respect to the corresponding yk.

H. Bustince, E. Barrenechea, T. Calvo, S. James, G. Beliakov, Consensus in multi-expert decision making problems
using penalty functions defined over a Cartesian product of lattices, Information Fusion, In Press, Corrected Proof,
Available online 18 November 2011(FSTA 2014,Slovakia) 24 / 70



Construction method of PFCPL

Faithful restricted lattice dissimilarity functions:

δR(x, y) = K(d(x, y)) = K(
m
∑

i=1

|xi − yi|)

with K : C → C a convex function with a unique minimum at K(0) = 0.
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Construction method of PFCPL

Byq is the fuzzy set over U such that all memberships are equal to
yq ∈ [0, 1]; that is, Byq(ui) = yq ∈ [0, 1] for every ui ∈ U .

Let Y = (y1, · · · , ym) and BY = (By1 , · · · , Bym) ∈ FS(U)m.

we denote by C∗ a finite chain of elements in [0, 1] and

L∗
m = C∗ × · · · × C∗
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Penalty functions on a Cartesian product of lattices
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Construction method of PFCPL

Theorem

Let Ki : R → R
+ be convex functions with a unique minimum at Ki(0) = 0

(i = 1, · · · ,m), and consider the distance between fuzzy sets given by:

D(A,B) =
n
∑

i=1

|A(ui)−B(ui)|

where A,B ∈ FS(U) and Cardinal(U) = n. Then the mapping

P∇ : FS(U)m × L∗
m → R

+ given by

P∇(A, Y ) = D(A,BY ) =
m
∑

q=1

Kq(D(Aq, Byq )) =
m
∑

q=1

Kq

( n
∑

p=1

|Aq(up)− yq|

)

satisfies

1 P∇(A, Y ) ≥ 0;

2 P∇(A, Y ) = 0 iff Aq = yq for every q = 1, · · · ,m;

3 is convex in yq for each q = 1, · · · ,m.

H. Bustince, E. Barrenechea, T. Calvo, S. James, G. Beliakov, Consensus in multi-expert decision making problems
using penalty functions defined over a Cartesian product of lattices, Information Fusion, In Press, Corrected Proof,
Available online 18 November 2011(FSTA 2014,Slovakia) 28 / 70



Construction method of PFCPL

Note that P∇ is a penalty function over the Cartesian product of lattices
L∗n+1
m .

Example

If we take Kq(x) = x2 for every q ∈ {1, · · · ,m), then

P∇(A, Y ) =
m
∑

q=1

( n
∑

p=1

|Aq(up)− yq|

)2

If Kq(x) = x for every q ∈ {1, · · · ,m), then

P∇(A, Y ) =
m
∑

q=1

n
∑

p=1

|Aq(up)− yq|
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GDM. Algorithm

Take q (q ≤ p− 1) aggregation functions
M1, · · · ,Mq.
Let Pq be the set of variations with
repetition of the q aggregation functions
taken in groups of p− 1 elements.
we denote:

Mσ(i) = {M(σ(i),1), · · · ,M(σ(i),p−1)}

where M(σ(i),j) represents the j-th element
of Mσ(i)

(FSTA 2014,Slovakia) 30 / 70



GDM. Algorithm

(A) Select P∇.For instance:

P∇(A, Y ) =

m
∑

q=1

( n
∑

p=1

|Aq(up) − yq |

)2

(B) For the first row take:

(

r((e1)12), · · · , r((en)12)

)

, · · · ,

(

r((e1)1p), · · · , r((en)1p)

)

where each of these tuples is an element in the Cartesian product of n copies of the
considered chain.
(B1) we take the first element of Pq ,
Mσ(1) = {M(σ(1),1), · · · ,M(σ(1),p−1)} and calculate:

M(σ(1),1)

(

r((e1)12), · · · , r((en)12)

)

= y((σ(1),1),12),

M(σ(1),2)

(

r((e1)13), · · · , r((en)13)

)

= y((σ(1),2),13),

· · ·

M(σ(1),p−1)

(

r((e1)1p), · · · , r((en)1p)

)

= y((σ(1),p−1),1p).
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GDM. Algorithm

(B2) we calculate::

P∇(A, Y ) =
m
∑

q=1

( n
∑

p=1

|Aq(up) − yq |

)2

(B3) We repeat step (B2) for the other elements of Pq .
(B4) we take as solution the element of Pq which minimizes:

P∇(A, Y ) =

m
∑

q=1

( n
∑

p=1

|Aq(up) − yq |

)2

we denote this element by M1σ(∗), where 1 means that we are in the first row.

r
c
=







− M1(σ(∗),1)(r((e1)12),··· ,r((en)12)) ······ M1(σ(∗),p−1)(r((e1)1p)

−

−

(C) we repeat step (B) for every row.
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GDM. Algorithm

Example

A diagnosis of hypertension has been confirmed to a 45 years old patient.
The corresponding higienic-dietetical indications have been given to him,
and eventually the doctors have decided to start a pharmacological
treatment.
From the following set of alternatives (pharmacological groups):

{Beta-blockers, calcium antagonists, diuretical, IECA,Ara II,Alfablockers}

four doctors have been asked for providing their corresponding preference
matrix of one medicament over another for the considered patient. The
proposed normalized preference relations are:
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GDM. Algorithm

Example

e1 =





















− 0,8000 0,8000 0,5000 0,5000 1

0,2000 − 0,4000 0,4167 0,4167 1

0,2000 0,6000 − 0,5000 0,5000 1

0,5000 0,5833 0,5000 − 0,5000 1

0,5000 0,5833 0,5000 0,5000 − 1

0,0000 0,0000 0,0000 0,0000 0,0000 −





















e2 =





















− 0,8000 0,3636 0,5000 0,4000 0,7500

0,2000 − 0,5263 0,2500 0,3333 0,8182

0,6364 0,4737 − 0,6000 0,6000 0,5000

0,5000 0,7500 0,4000 − 0,6923 0,5000

0,6000 0,6667 0,4000 0,3077 − 1

0,2500 0,1818 0,5000 0,5000 0,0000 −





















e3 =





















− 0,3636 0,5000 0,0000 0,2727 0,7000

0,6364 − 0,5833 0,0000 0,2727 0,7692

0,5000 0,4167 − 0,0000 0,2000 0,5833

1 1 1 − 1 1

0,7273 0,7273 0,8000 0,0000 − 0,7273

0,3000 0,2308 0,4167 0,0000 0,2727 −





















e4 =





















− 0,7000 0,8000 0,5000 0,2000 1

0,3000 − 0,4000 0,3320 0,4167 1

0,2000 0,6000 − 0,4000 0,6000 1

0,5000 0,6680 0,6000 − 0,5000 1

0,8000 0,5833 0,4000 0,5000 − 1

0,0000 0,0000 0,0000 0,0000 0,0000 −
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GDM. Algorithm

Example

We take Kkj(x) = x2 for every k, j and for every x ∈ [0, 1] and

M1 : arithmetic mean M1(xi) =
1
n

n
∑

i=1

xi;

M2 : OWA operator associated to the quantifier at least one half with the pair
(a = 0, b = 0,5) whose weighing vector is: w = (0,5, 0,5, 0, 0);

M3 : OWA operator associated to the quantifier the largest possible amount with the
pair (a = 0,5, b = 1) whose weighing vector is: w = (0, 0, 0,5, 0,5);

M4 : OWA operator associated to the quantifier most of with the pair (a = 0,3, b = 0,8)
whose weighing vector is: w = (0, 0,4, 0,5, 1);

M5 : minimum;

M6 : geometric mean.
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GDM. Algorithm

Example

In this setting, the collective preference relation is:

r
c =

















− 0,8000 0,6159 0,5000 0,3432 0,8625

0,2000 − 0,4774 0,2578 0,3599 0,8969

0,3841 0,5226 − 0,4000 0,6000 0,7708

0,5000 0,6923 0,5300 − 0,6731 1

0,6568 0,6402 0,4000 0,3269 − 1

0,1375 0,0000 0,1031 0,2292 0,0000 −

















which corresponds to the following choice of aggregation functions:

















− M2 M1 M2 M1 M1

M3 − M1 M4 M1 M1

M1 M1 − M4 M2 M1

M3 M4 M4 − M1 M2

M1 M1 M3 M1 − M2

M1 M1 M1 M3 M3 −

















(FSTA 2014,Slovakia) 36 / 70



Exploitation phase. Voting or penalty functions

Exploitation phase: voting method

xbest = arg máx
i=1,··· ,p

∑

1≤j 6=i≤p

rcij

x1 → 0,8000 + 0,6159 + 0,5000 + 0,3432 + 0,8625 = 3,1216

x2 → 0,2000 + 0,4774 + 0,2578 + 0,3599 + 0,8969 = 2,192

x3 → 0,3841 + 0,5226 + 0,4000 + 0,6000 + 0,7708 = 2,6775

x4 → 0,5000 + 0,6923 + 0,5300 + 0,6731 + 1,0000 = 3,3954

x5 → 0,6568 + 0,6402 + 0,4000 + 0,3269 + 1,0000 = 3,0239

x6 → 0,1375 + 0,0000 + 0,1031 + 0,2292 + 0,0000 = 0,4698

In our example, the solution alternative is x4; that is, IECA

Bustince, H.; Jurio, A.; Pradera, A.; Mesiar, R.; Beliakov, G., Generalization of the weighted voting method using
penalty functions constructed via faithful restricted dissimilarity functions, European Journal of Operational Research,
225(3), (2013), 472-478
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GDM. And when it does not work?

If the preference matrices have all their entries close to 0.5, we have that:

(1) The penalty function selects the same aggregation function in every
case.

(2) Experts find difficulties to select one preference over another. That is,
we are working with imperfect information.

In this setting, Zadeh suggests the use of extensions of fuzzy sets.





















− 0,59 0,61 0,48 0,41 0,49

0,41 − 0,59 0,49 0,61 0,48

0,39 0,41 − 0,40 0,55 0,50

0,52 0,51 0,60 − 0,37 0,58

0,59 0,39 0,45 0,63 − 0,37

0,51 0,52 0,50 0,42 0,63 −
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Fuzzy sets and L-fuzzy sets

Definition
A fuzzy set A over a referential set U is an object:

A = {(ui, A(ui) = µA(ui))|ui ∈ U}

where A = µA : U −→ [0, 1].

A ∪ B(ui) = max(A(ui), B(ui))
A ∩ B(ui) = min(A(ui), B(ui))

(FS(U),∪,∩) is a complete lattice

Definition
Let (L,∨,∧) be a complete lattice. A L-fuzzy set over the referential set U is a mapping

A : U → L

A ∪ B(ui) = ∨(A(ui), B(ui))
A ∩ B(ui) = ∧(A(ui), B(ui))

(L-FS(U),∪,∩) is a complete lattice
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Origin of the extensions

LA Zadeh, Fuzzy Algorithms, Information and Control, 12(2), (1968)

M. Nasu, N. Honda, Fuzzy Events Realized by Finite Probabilistic Automata,
Information and Control, 12(4), (1969)

M. Mizumoto, J. Toyoda, K. Tanaka, Some Considerations on Fuzzy
Automata, Electronics and Communications in Japan, 52(7), (1969)

PN, Marinos, Fuzzy Logic and its Application to Switching Systems, IEEE
Transactions on Computers, 18(4), (1969)

...

L. A. Zadeh, Quantitative fuzzy semantics, Inform. Sci. 3 (1971) 159-176
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Type-2 fuzzy sets

L. A. Zadeh, Quantitative fuzzy semantics, Inform. Sci. 3 (1971) 159-176

Definition

A type-2 fuzzy set is a mapping:
A : U → FS([0, 1])

U

t

A(u,t)

Type-2 fuzzy sets are a particular case of L-fuzzy
sets.

T2FS(U) ≡ (FS([0, 1]))U
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Type-2 fuzzy sets

Problems:

1 Notation
M. Mizumoto, K. Tanaka, Some properties of fuzzy sets of type 2, Inform.
Control, 31, (1976), 312-340
J.M. Mendel, R. John, Type-2 Fuzzy Sets Made Simple, IEEE Transactions on
Fuzzy Systems 10(2) (2002) 117–127

∫

u∈U

∫

t∈Ju

A(u, t)/(u, t) Ju ⊂ [0, 1]

Definition
Let A : U → FS([0, 1]) be a type 2 fuzzy set. Then A is denoted
as

{(ui, A(ui, t)) | ui ∈ U , t ∈ [0, 1]} .

where A(ui, ·) : [0, 1] → [0, 1] is defined as
A(ui, t) = A(ui)(t)
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Type-2 fuzzy sets

2 Structure
M. Mizumoto, K. Tanaka, Some properties of fuzzy sets of type 2, Inform.
Control, 31, (1976), 312-340
D. Dubois, H. Prade, Operations in a fuzzy-valued logic, Inform. Control,
43(2), (1979) 224-254

Definition

A ∪T2 B(ui) = A(ui) ∪B(ui)
A ∩T2 B(ui) = A(ui) ∩B(ui)

Proposition

(T2FS(U),∪T2,∩T2) is a bounded lattice with respect
to the order: A ≤T2FS(U) B if and only if A∪T2B = B
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Type-2 fuzzy sets

Definition

A = {(ui, A(ui, t)) | ui ∈ U , t ∈ [0, 1]}
B = {(ui, B(ui, t)) | ui ∈ U , t ∈ [0, 1]}

•A ⊓B = {(ui, A ⊓B(ui, t)) | ui ∈ U , t ∈ [0, 1]}
A ⊓B(ui, t) = supmin(z,w)=tmin(A(ui, z), B(ui, w))

•A ⊔B = {(ui, A ⊔B(ui, t)) | ui ∈ U , t ∈ [0, 1]}
A ⊔B(ui, t) = supmax(z,w)=tmin(A(ui, z), B(ui, w))

(T2FS(U),⊔,⊓) is NOT a lattice

C. Walker, E. Walker, Type-2 operations on finite chains, Fuzzy Sets and Systems, In
Press (2013)
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Type-2 fuzzy sets

3 Computational efficiency: regression to infinity

4 Applications
It does not exist yet an application that shows the
advantage of using these sets.

1 Computing with words:
J.M. Mendel Type-2 fuzzy sets for computing with words Conference
Information: IEEE International Conference on Granular Computing,
MAY 10-12, 2006 Atlanta, (2006) GA 8-8.
J.M. Mendel, Computing with words and its relationships with
fuzzistics Information sciences 177(4) (2007) 988-1006

2 Perceptual computing: JM Mendel,

3 Control:
H. Hagras, A Hierarchical Type-2 Fuzzy Logic Control Architecture for
Autonomous Mobile Robots, IEEE Transactions on Fuzzy Systems 12,
(2004) 524–539.
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Interval-valued fuzzy sets

Definition

An interval-valued fuzzy set is a mapping:
A : U → L([0, 1])

A(ui) = [A(ui), A(ui)] denotes the membership degree of
ui to A.

They are a particular case of L-fuzzy sets

L([0, 1]) = {x = [x, x]|(x, x) ∈ [0, 1]2 and x ≤ x}

1 In 1975 Sambuc: Φ-flou

2 Name of interval-valued fuzzy sets, 80s
(Gorzalczany and Turksen)

J.L. Deng, Introduction to grey system theory, Journal of Grey Systems 1 (1989) 1–24
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Interval-valued fuzzy sets

Definition

A ∪L([0,1]) B(ui) =

[max(A(ui), B(ui)),max(A(ui), B(ui))]

A ∩L([0,1]) B(ui) =

[min(A(ui), B(ui)),min(A(ui), B(ui))]

(IV FS(U),∪L([0,1]),∩L([0,1])) is a complete lattice

(FSTA 2014,Slovakia) 48 / 70



Two interpretations of IVFSs

A.- Mathematical interpretation. Theoretical interest.

D. Dubois’ paradox:

min(A(ui), 1−A(ui)) ≤ 0,5

min([A(ui), A(ui)], [1−A(ui), 1−A(ui)]) ≤??

H.Bustince, F.Herrera, J.Montero (Eds.), Fuzzy Sets and Their Extensions:
Representation Aggregation and Models, Springer, Berlin, 2007.

B.- The expert does not know the exact value of the
membership of the element to the fuzzy set.
However, the expert knows that this value is
bounded by the bounds of the interval-valued
membership to the IVFS.
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Interval-valued fuzzy sets and type-2 fuzzy sets

G. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall,
Upper Saddle River, NJ, 1995.

G. Deschrijver, E.E. Kerre, On the position of intuitionistic fuzzy set theory in the
framework of theories modeling imprecision, Information Sciences 177, (2007)
1860-1866

J.M. Mendel, Advances in type-2 fuzzy sets and systems, Information Sciences 177,
(2007) 84-110

2000, Name:
Interval type-2 fuzzy sets
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Problems with interval-valued fuzzy sets

1.- Computational efficiency. Double information used.
Numerical measures.

2.- A great number of works are a straight
adaptation of developments already done for
fuzzy sets without taking into account the specific
characteristics of intervals.

It is not considered:

1 The length of the intervals and its meaning.

2 ORDER:the usual order between real numbers is
linear.IT DOES NOT EXIST A NATURAL
LINEAR ORDER BETWEEN INTERVALS.
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Admissible orders

Proposition

Let A, B : [0, 1]2 → [0, 1] be two aggregation functions, such that
for all (x, y), (u, v) ∈ K([0, 1]), the equalities A(x, y) = A(u, v)
and B(x, y) = B(u, v) can hold only if (x, y) = (u, v). Define the
relation �A,B on L([0, 1]) by

[x, y] �A,B [u, v] if and only if

A(x, y) < A(u, v)

or A(x, y) = A(u, v) and B(x, y) ≤ B(u, v). (1)

Then �A,B is an admissible order on L([0, 1]).

Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R. Generation of linear orders for
intervals by means of aggregation functions. Fuzzy Sets and Systems, 220, (2013), pp.
69-77.
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Defining linear orders

The linear order �A,B refines the standard partial order ≤ on intervals,

[x, y] ≤ [u, v] whenever x ≤ u and y ≤ v

That is, [x, y] ≤ [u, v] implies [x, y] �A,B [u, v] whichever A and B are.

And we can also recover some orders...
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Defining linear orders: the lexicographical order

The lexicographical orders :

[x, y] �P1 [u, v] whenever x < u or x = u and y ≤ v

and
[x, y] �P2 [u, v] whenever y < v or y = v and x ≤ u

can be recovered by taking

A(x, y) = x and B(x, y) = y, in the first case, or

A(x, y) = y and B(x, y) = x for the second case.
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Defining linear orders: Yager-Xu’s order

We can also recover the Yager-Xu’s order:

[x, y] �Y X [u, v]

whenever

x+ y − 1 < u+ v − 1 (score) or

x+ y − 1 = u+ v − 1 and x− y + 1 ≤ u− v + 1 (accuracy)

since it can be seen as a linear order �M,G on L([0, 1]), where

M is the arithmetic mean and

G is the geometric mean.

Z.Xu and R.Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. General Syst, 35,

(2006) 417-433
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Interval-valued OWA operators

Definition

Let � be an admissible order on L([0, 1]) and w = (w1, . . . , wn) ∈ [0, 1]n,
w1 + · · ·+ wn = 1, a weighting vector. An interval-valued OWA operator
associated with � and w is a mapping
IV OWA�

w
: (L([0, 1]))n → L([0, 1]) defined by

IV OWA�
w
([a1, b1], . . . , [an, bn]) =

n
∑

i=1

wi · [a(i), b(i)],

where [a(i), b(i)], i = 1, . . . , n, denotes the ith greatest interval of the
input intervals with respect to the order �.
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Interval-valued OWA operators

The above Definition extends the usual definition of OWA operators, as is
shown in the next proposition.

Proposition

Let � be an admissible order on L([0, 1]) and let w = (w1, . . . , wn)
∈ [0, 1]n with w1 + · · ·+ wn = 1 be a weighting vector. Then

OWAw(x1, . . . , xn) = IV OWA�
w
([x1, x1], . . . , [xn, xn]).
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Interval-valued OWA operators

However, in general the representability of IVOWA operators in the form

IV OWA�
w
([a1, b1], . . . , [an, bn]) = [OWAw(a1, . . . , an), OWAw(b1, . . . , bn)]

does not hold, as is shown in the following example.

Example

Consider the weighting vector w = (1, 0, 0) and the lexicographical order �Lex1. For the intervals
[

1
2
, 3
4

]

,
[

1
3
, 1
2

]

and
[

1
3
, 1

]

it holds
[

1

3
,
1

2

]

�Lex1

[

1

3
, 1

]

�Lex1

[

1

2
,
3

4

]

.

Therefore

IV OWA
�Lex1
w

([

1

2
,
3

4

]

,

[

1

3
,
1

2

]

,

[

1

3
, 1

])

=

[

1

2
,
3

4

]

,

and on the other hand,
[

OWAw

(

1

2
,
1

3
,
1

3

)

, OWAw

(

3

4
,
1

2
, 1

)]

=

[

1

2
, 1

]

.
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Interval-valued Choquet integrals

Definition

Let F : U → L([0, 1]) be an interval–valued fuzzy set, and m : 2U → [0, 1]
a fuzzy measure. The (A, B)–Choquet integral CA,B

m (F ) is given by

C
A,B
m (F ) =

n
∑

i=1

F (uσA,B(i))(m(
{

uσA,B(i), . . . , uσA,B(n)

}

)

−m(
{

uσA,B(i+1), . . . , uσA,B(n)

}

)),

where σA,B : {1, . . . , n} → {1, . . . , n} is a permutation such that
F (uσA,B(1)) �A,B F (uσA,B(2)) �A,B · · · �A,B F (uσA,B(n)).
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Interval-valued Choquet integrals

Remark

(i) The concept of an interval–valued (A,B)–Choquet integral CA,B
m

extends the standard discrete Choquet integral. Indeed if
F : U → L([0, 1]) is singleton–valued, i.e., F is a fuzzy subset of U,
then Cm(F ) = Cm(F ) = C

A,B
m (F ) independently of A, B.

(ii) For a fixed F : U → L([0, 1]) such that f∗ and f∗ are comonotone,
i.e., (f∗(ui)− f∗(uj)) · (f

∗(ui)− f∗(uj)) ≥ 0 for all ui, uj ∈ U , for

any A, B satisfying our constraints, Cm(F ) = C
A,B
m (F ).

(iii) In general the integral Cm cannot be expressed in the form C
A,B
m ,

since representability in terms of the bounds of the considered
intervals is not assured.
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Interval-valued Choquet integrals

For several couples (A1, B1), (A2, B2), . . . , the linear orders �A1,B1 ,
�A2,B2 , . . . , may coincide.

Indeed, then C
A1,B1
m = C

A2,B2
m .

For instance, we can take �Min,Max≡�P1,P2≡�P1,B, where
P1, P2 : [0, 1]

2 → [0, 1] are projections, P1(x, y) = x, P2(x, y) = y
and B : [0, 1]2 → [0, 1] is an arbitrary cancellative (strictly monotone)
aggregation function.
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Interval-valued Choquet integrals

Let us consider the projections P1 and P2. The next relationship holds:

Proposition

Let a fuzzy set F : U → L([0, 1]) and a fuzzy measure m : 2U → [0, 1] be
fixed. Denote

Cm(F ) = [α, β], CP1,P2
m (F ) = [a, b], CP2,P1

m (F ) = [c, d]

Then α = a and β = d.
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GDM with IVFS. Why?

ei =















− 0,59 0,61 0,48 0,41 0,49

0,41 − 0,59 0,49 0,61 0,48

0,39 0,41 − 0,40 0,55 0,50

0,52 0,51 0,60 − 0,37 0,58

0,59 0,39 0,45 0,63 − 0,37

0,51 0,52 0,50 0,42 0,63 −
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Construction of intervals: Ignorance functions

Definition
An ignorance function is a continuous function Gi : [0, 1]2 → [0, 1] such that:

Gi1) Gi(x, y) = Gi(y, x) for every x, y ∈ [0, 1];

Gi2) Gi(x, y) = 0 if and only if x = 1 or y = 1;

Gi3) If x = 0,5 and y = 0,5, then Gi(x, y) = 1;

Gi4) Gi is decreasing in [0,5, 1]2;

Gi5) Gi is increasing in [0, 0,5]2.

H. Bustince, M. Pagola, E. Barrenechea, J. Fernandez, P. Melo-Pinto, P. Couto, H.R. Tizhoosh, J. Montero, Ignorance
functions. An application to the calculation of the threshold in prostate ultrasound images, Fuzzy Sets and Systems,
161(1) 2010, 20-36
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GDM with IVFS

We have n experts and p alternatives, so we have n interval-valued
preference matrices:

eIV i
=













x1 x2 ··· , ··· , xp

x1 − [ei12
,ei12 ] [ei13

,ei13 ] ··· , [ei1p
,ei1p ]

x2 [ei21
,ei21 ] − [ei23

,ei23 ] ··· , [ei2p
,ei2p ]

··· ··· ··· − ···

xp [eip1
,eip1 ] [eip2

,eip2 ] ··· ··· −
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GDM with IVFS

Aggregation phase:
PROBLEM: we do not know how to define interval-valued penalty
functions

1.- Apply the previous algorithm to the lower bounds, using penalty
functions;

2.- Apply the previous algorithm to the upper bounds, using penalty
functions and the same aggregation functions;

2.1- If for some position we don’t recover an interval, delete the chosen
aggregation and repeat the algorithm until we get an interval.

r
c
=

















x1 x2 ··· , ··· , xp

x1 − [ri12
,ri12

] [ri13
,ri13

] ··· , [ri1p
,ri1p

]

x2 [ri21
,ri21

] − [ri23
,ri23

] ··· , [ri2p
,ri2p

]

··· ··· ··· − ···

xp [rip1
,rip1

] [rip2
,rip2

] ··· ··· −
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GDM with IVFS

Exploitation phase:
1.-Select an interval-valued aggregation function Ag to aggregate

the elements of each row

Ag

(

[ri12
, ri12

] [ri13
, ri13

] · · · , [ri1p
, ri1p

]

)

= [r1, r1]

Ag

(

[ri21
, ri21

] [ri23
, ri23

] · · · , [ri2p
, ri2p

]

)

= [r2, r2]

· · · · · · · · · · · ·

Ag

(

[rip1
, rip1

] [rip3
, rip3

] · · · , [ripp , ripp ]

)

= [rp, rp]

2.- Select a linear order and take the biggest as the
solution alternative:

xbest = arg máx
1≤i≤p

(

[ri, ri]

)

Bustince, H.; Jurio, A.; Pradera, A.; Mesiar, R.; Beliakov, G., Generalization of the weighted voting method using
penalty functions constructed via faithful restricted dissimilarity functions, European Journal of Operational Research,
225(3), (2013), 472-478
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GDM with IVFS

PROBLEM: WHICH ORDER DO WE CHOOSE?

If the application determines the order, then we are done.

Otherwise, we can choose different linear orders:

If with every linear order we get the same solution alternative, we are
done.

Otherwise, use game theory to measure the relevance of each possible
winning alternative in coalitions with the others.

Bustince, H. ; Galar, M. ; Bedregal, B. ; Kolesárová, A. ; Mesiar, R., A new approach to interval-valued Choquet
integrals and the problem of ordering in interval-valued fuzzy sets applications , IEEE Transactions on Fuzzy Systems, In
Press
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Conclusions

Choice of the aggregation using penalty functions.

Methods to build penalty functions on a Cartesian product on lattices.

Algorithm for the aggregation phase.

Conditions under which we must use IVFSs.

Admissible orders for intervals.

Interval-valued OWA operators.

Interval-valued Choquet integrals.

Algorithm in GDM using IVFSs and penalty functions.
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Thanks for your attention
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