E-Fuzzy Groups

Andreja Tepavčević University of Novi Sad *Co-authors*: Branka Budimirović, Vjekoslav Budimirović Branimir Šešelja

FSTA 2014

Liptovsky Jan, January 27, 2014

B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups

Abstract

B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups

・ロ・ ・ 日・ ・ 田・ ・ 田・

æ

Abstract

An *E*-fuzzy group is a lattice-valued algebraic structure, defined on a crisp algebra which is not necessarily a group. The crisp equality is replaced by a particular fuzzy one - denoted by *E*. Classical group-like properties are formulated as appropriate fuzzy identities - special lattice theoretic formulas. We prove basic features of *E*-fuzzy groups: properties of the unit and inverses, cancellability, solvability of equations, subgroup properties and others. We also prove that for every cut of an *E*-fuzzy group, which is a classical subalgebra of the underlying algebra, the quotient structure over the corresponding cut of the fuzzy equality is a classical group.

문 🕨 🗉 문

₫ ▶

Some investigations relevant for our approach:

æ

Some investigations relevant for our approach:

• L-fuzzy sets: Goguen 1967.

Some investigations relevant for our approach:

- L-fuzzy sets: Goguen 1967.
- Fuzzy subgroups of a group, fuzzy groups: Rosenfeld 1971; Das 1981; Malik, Mordeson, Bhutani, Rosenfeld 1998, 2003, 2005; Demirci 1999 – 2003.

Some investigations relevant for our approach:

- *L*-fuzzy sets: Goguen 1967.
- Fuzzy subgroups of a group, fuzzy groups: Rosenfeld 1971; Das 1981; Malik, Mordeson, Bhutani, Rosenfeld 1998, 2003, 2005; Demirci 1999 – 2003.
- Fuzzy equality, weak fuzzy reflexivity: Yeh, Bang 1971; Höhle 1988; Filep 1998; Demirci 2003.

Some investigations relevant for our approach:

- L-fuzzy sets: Goguen 1967.
- Fuzzy subgroups of a group, fuzzy groups: Rosenfeld 1971; Das 1981; Malik, Mordeson, Bhutani, Rosenfeld 1998, 2003, 2005; Demirci 1999 – 2003.
- Fuzzy equality, weak fuzzy reflexivity: Yeh, Bang 1971; Höhle 1988; Filep 1998; Demirci 2003.
- Fuzzy structures and general algebra: Di Nola, Gerla 1987; Kuraoka, Suzuki 2002; Bělohlávek, Vychodil 2002; 2005; 2006.

< 🗇 > < 🖃 >

Some investigations relevant for our approach:

- L-fuzzy sets: Goguen 1967.
- Fuzzy subgroups of a group, fuzzy groups: Rosenfeld 1971; Das 1981; Malik, Mordeson, Bhutani, Rosenfeld 1998, 2003, 2005; Demirci 1999 – 2003.
- Fuzzy equality, weak fuzzy reflexivity: Yeh, Bang 1971; Höhle 1988; Filep 1998; Demirci 2003.
- Fuzzy structures and general algebra: Di Nola, Gerla 1987; Kuraoka, Suzuki 2002; Bělohlávek, Vychodil 2002; 2005; 2006.
- Previous research: Šešelja, Tepavčević 1992; 1993; 1994; 1996; 1997; 2009; Budimirović, Šešelja, Tepavčević 2010; 2013.

B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups

▲□ > ▲圖 > ▲ 圖 >

● ▶ ● ●

We use the structure of a **complete lattice**, denoted by $(L, \land, \lor, \leqslant)$ with the smallest element, the bottom, 0, and the greatest element, the top, 1.

We use the structure of a **complete lattice**, denoted by $(L, \land, \lor, \leqslant)$ with the smallest element, the bottom, 0, and the greatest element, the top, 1.

A **language** (a **type**) \mathcal{L} – a set \mathcal{F} of functional symbols, together with a set of natural numbers (arities) associated to these symbols.

We use the structure of a **complete lattice**, denoted by $(L, \land, \lor, \leqslant)$ with the smallest element, the bottom, 0, and the greatest element, the top, 1.

A language (a type) \mathcal{L} – a set \mathcal{F} of functional symbols, together with a set of natural numbers (arities) associated to these symbols. An **algebra** of type $\mathcal{L} - \mathcal{A} = (A, F)$; A is a nonempty set and F is a set of fundamental operations on A.

We use the structure of a **complete lattice**, denoted by $(L, \land, \lor, \leqslant)$ with the smallest element, the bottom, 0, and the greatest element, the top, 1.

A **language** (a **type**) \mathcal{L} – a set \mathcal{F} of functional symbols, together with a set of natural numbers (arities) associated to these symbols. An **algebra** of type $\mathcal{L} - \mathcal{A} = (A, F)$; A is a nonempty set and F is a set of fundamental operations on A.

We use the notions of a subalgebra, term, identity, congruence relation on \mathcal{A} .

Fuzzy structures

▲□→ < □→</p>

문 🕨 🗉 문

Fuzzy structures A fuzzy (lattice valued) set μ on a nonempty set A (or a fuzzy subset of A) is a function $\mu : A \rightarrow L$.

Fuzzy structures A fuzzy (lattice valued) set μ on a nonempty set A (or a fuzzy subset of A) is a function $\mu : A \rightarrow L$. A fuzzy set μ on A is nonempty, if $\mu(x) > 0$ for some $x \in A$.

Fuzzy structures

A fuzzy (lattice valued) set μ on a nonempty set A (or a fuzzy subset of A) is a function $\mu : A \rightarrow L$.

A fuzzy set μ on A is **nonempty**, if $\mu(x) > 0$ for some $x \in A$. If μ and ν are fuzzy subsets of A, then μ is a **fuzzy subset** of ν , which we denote by $\mu \subseteq \nu$, if for every $x \in A$, $\mu(x) \leq \nu(x)$.

Fuzzy structures

A fuzzy (lattice valued) set μ on a nonempty set A (or a fuzzy subset of A) is a function $\mu : A \to L$. A fuzzy set μ on A is **nonempty**, if $\mu(x) > 0$ for some $x \in A$. If μ and ν are fuzzy subsets of A, then μ is a **fuzzy subset** of ν , which we denote by $\mu \subseteq \nu$, if for every $x \in A$, $\mu(x) \leq \nu(x)$. If $\{\mu_i \mid i \in I\}$ is a family of fuzzy sets on the same domain A, then the **fuzzy intersection** $\mu = \bigcap \{\mu_i \mid i \in I\}$ of this family is a fuzzy

set on A, defined by

$$\mu(x) = igwedge_{i \in I} \mu_i(x), \;\; ext{for every} \; x \in A.$$

A (1) > A (1) > A

Fuzzy structures

A fuzzy (lattice valued) set μ on a nonempty set A (or a fuzzy subset of A) is a function $\mu : A \to L$. A fuzzy set μ on A is **nonempty**, if $\mu(x) > 0$ for some $x \in A$. If μ and ν are fuzzy subsets of A, then μ is a **fuzzy subset** of ν , which we denote by $\mu \subseteq \nu$, if for every $x \in A$, $\mu(x) \leq \nu(x)$. If $\{\mu_i \mid i \in I\}$ is a family of fuzzy sets on the same domain A, then the **fuzzy intersection** $\mu = \bigcap \{\mu_i \mid i \in I\}$ of this family is a fuzzy

set on *A*, defined by

$$\mu(x) = \bigwedge_{i \in I} \mu_i(x), \;\; ext{for every } x \in A.$$

For $p \in L$, a **cut set** of a fuzzy set $\mu : A \to L$ is a subset μ_p of A which is the inverse image of the principal filter in L, generated by $p: \mu_p = \{x \in X \mid \mu(x) \ge p\}.$

Fuzzy structures

A fuzzy (lattice valued) set μ on a nonempty set A (or a fuzzy subset of A) is a function $\mu : A \to L$. A fuzzy set μ on A is **nonempty**, if $\mu(x) > 0$ for some $x \in A$. If μ and ν are fuzzy subsets of A, then μ is a fuzzy subset of ν , which we denote by $\mu \subseteq \nu$, if for every $x \in A$, $\mu(x) \leq \nu(x)$. If $\{\mu_i \mid i \in I\}$ is a family of fuzzy sets on the same domain A, then the fuzzy intersection $\mu = \bigcap \{\mu_i \mid i \in I\}$ of this family is a fuzzy set on A, defined by

$$\mu(x) = igwedge_{i \in I} \mu_i(x), \;\; ext{for every } x \in A.$$

For $p \in L$, a **cut set** of a fuzzy set $\mu : A \to L$ is a subset μ_p of A which is the inverse image of the principal filter in L, generated by $p: \mu_p = \{x \in X \mid \mu(x) \ge p\}$. A **fuzzy** (binary) **relation** ρ **on** A is a fuzzy set on A^2 , i.e., it is a mapping $\rho : A^2 \to L$.

Fuzzy relations on fuzzy sets

æ

d⊒ ▶ < ≣

Let $\mu : A \to L$ be a fuzzy set on A and let $\rho : A^2 \to L$ be a fuzzy relation on A. If for all $x, y \in A$, ρ satisfies

 $\rho(x,y) \leqslant \mu(x) \land \mu(y),$

then ρ is a fuzzy relation on μ .

Let $\mu : A \to L$ be a fuzzy set on A and let $\rho : A^2 \to L$ be a fuzzy relation on A. If for all $x, y \in A$, ρ satisfies

$$\rho(x,y) \leqslant \mu(x) \wedge \mu(y),$$

then ρ is a **fuzzy relation on** μ . Let ρ be a fuzzy relation on a fuzzy set μ of A.

 ρ is **reflexive** if $\rho(x, x) = \mu(x)$ for every $x \in A$.

Let $\mu : A \to L$ be a fuzzy set on A and let $\rho : A^2 \to L$ be a fuzzy relation on A. If for all $x, y \in A$, ρ satisfies

$$\rho(x,y) \leqslant \mu(x) \wedge \mu(y),$$

then ρ is a **fuzzy relation on** μ . Let ρ be a fuzzy relation on a fuzzy set μ of A.

 ρ is **reflexive** if $\rho(x, x) = \mu(x)$ for every $x \in A$.

$$\rho$$
 is symmetric if $\rho(x, y) = \rho(y, x)$ for all $x, y \in A$;

Let $\mu : A \to L$ be a fuzzy set on A and let $\rho : A^2 \to L$ be a fuzzy relation on A. If for all $x, y \in A$, ρ satisfies

$$\rho(x,y) \leqslant \mu(x) \wedge \mu(y),$$

then ρ is a **fuzzy relation on** μ . Let ρ be a fuzzy relation on a fuzzy set μ of A.

 ρ is **reflexive** if $\rho(x, x) = \mu(x)$ for every $x \in A$.

 ρ is symmetric if $\rho(x,y) = \rho(y,x)$ for all $x, y \in A$;

 ρ is transitive if $\rho(x, y) \ge \rho(x, z) \land \rho(z, y)$ for all $x, y, z \in A$.

A reflexive, symmetric and transitive relation ρ on μ is a fuzzy equivalence on $\mu.$

周▶ ▲ 臣▶

æ

< ≣ >

A reflexive, symmetric and transitive relation ρ on μ is a **fuzzy** equivalence on μ .

A fuzzy equivalence relation ρ on μ , fulfilling for all $x, y \in A$, $x \neq y$,:

if
$$\rho(x,x) \neq 0$$
, then $\rho(x,x) > \rho(x,y)$,

通 と く ヨ と く

is called a **fuzzy equality** relation on a fuzzy set μ .

If $\mathcal{A} = (A, F)$ is an algebra, then a **fuzzy subalgebra** of \mathcal{A} is any mapping $\mu : A \to L$ which is not constantly equal to 0, and which fulfils the following:

For any operation f from F with arity greater than 0,

 $f:A^n
ightarrow A, n \in \mathbb{N}$, and for all $a_1, \ldots, a_n \in A$, we have that

$$\bigwedge_{i=1}^n \mu(a_i) \leqslant \mu(f(a_1,\ldots,a_n)),$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

and for a nullary operation (constant) $c \in F$, $\mu(c) = 1$.

If $\mathcal{A} = (A, F)$ is an algebra, then a **fuzzy subalgebra** of \mathcal{A} is any mapping $\mu : A \rightarrow L$ which is not constantly equal to 0, and which fulfils the following:

For any operation f from F with arity greater than 0,

 $f: \mathcal{A}^n
ightarrow \mathcal{A}, n \in \mathbb{N}$, and for all $a_1, \ldots, a_n \in \mathcal{A}$, we have that

$$\bigwedge_{i=1}^n \mu(a_i) \leqslant \mu(f(a_1,\ldots,a_n)),$$

and for a nullary operation (constant) $c \in F$, $\mu(c) = 1$.

In particular, if $\mathcal{G} = (G, \cdot, {}^{-1}, e)$ is a group, then $\mu : G \to L$ is known to be a **fuzzy subgroup** of \mathcal{G} if for all $x, y \in G$,

$$\mu(x \cdot y) \geqslant \mu(x) \wedge \mu(y)$$
, $\mu(x^{-1}) \geqslant \mu(x)$, and $\mu(e) = 1$.

▲御★ ▲注★ ▲注★

Let $\mathcal{A} = (A, F)$ be an algebra. A fuzzy relation $\rho : A^2 \to L$ is **compatible** with the operations in *F* if the following holds: for every *n*-ary operation $f \in F$ and for all $a_1, \ldots, a_n, b_1, \ldots, b_n \in A$

$$\bigwedge_{i=1}^{n} \rho(a_i, b_i) \leqslant \rho(f(a_1, \dots, a_n), f(b_1, \dots, b_n)), \text{ and}$$

$$\rho(c, c) = 1 \text{ for every constant (nullary operation) } c \in F.$$

æ

個 と く ヨ と く ヨ と …

Let $\mathcal{A} = (A, F)$ be an algebra. A fuzzy relation $\rho : A^2 \to L$ is **compatible** with the operations in *F* if the following holds: for every *n*-ary operation $f \in F$ and for all $a_1, \ldots, a_n, b_1, \ldots, b_n \in A$

$$\bigwedge_{i=1}^{n} \rho(a_i, b_i) \leqslant \rho(f(a_1, \dots, a_n), f(b_1, \dots, b_n)), \text{ and}$$

$$\rho(c, c) = 1 \text{ for every constant (nullary operation) } c \in F.$$

If ρ is a fuzzy relation on fuzzy subalgebra μ of A, then we say that it is **compatible** on μ if it compatible with the operations in F.

▲□ → ▲ □ → ▲ □ → …

Let $\mathcal{A} = (A, F)$ be an algebra. A fuzzy relation $\rho : A^2 \to L$ is **compatible** with the operations in *F* if the following holds: for every *n*-ary operation $f \in F$ and for all $a_1, \ldots, a_n, b_1, \ldots, b_n \in A$

$$\bigwedge_{i=1}^{n} \rho(a_i, b_i) \leqslant \rho(f(a_1, \dots, a_n), f(b_1, \dots, b_n)), \text{ and}$$

$$\rho(c, c) = 1 \text{ for every constant (nullary operation) } c \in F.$$

If ρ is a fuzzy relation on fuzzy subalgebra μ of A, then we say that it is **compatible** on μ if it compatible with the operations in F. A compatible fuzzy equivalence on μ is a **fuzzy congruence** on this fuzzy subalgebra.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Let $\mathcal{A} = (A, F)$ be an algebra. A fuzzy relation $\rho : A^2 \to L$ is **compatible** with the operations in F if the following holds: for every *n*-ary operation $f \in F$ and for all $a_1, \ldots, a_n, b_1, \ldots, b_n \in A$

$$\bigwedge_{i=1}^{n} \rho(a_i, b_i) \leqslant \rho(f(a_1, \dots, a_n), f(b_1, \dots, b_n)), \text{ and}$$

$$\rho(c, c) = 1 \text{ for every constant (nullary operation) } c \in F.$$

If ρ is a fuzzy relation on fuzzy subalgebra μ of A, then we say that it is **compatible** on μ if it compatible with the operations in F. A compatible fuzzy equivalence on μ is a **fuzzy congruence** on this fuzzy subalgebra.

A fuzzy equality on a fuzzy subalgebra μ is a fuzzy congruence on μ , such that

$$\rho(x,x) \neq 0$$
 implies $\rho(x,x) > \rho(x,y)$.

(ロ) (同) (E) (E) (E)

Fuzzy identity

B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups

・ロ・ ・ 日・ ・ ヨ・

< ≣ >

æ
Fuzzy identity

If $u(x_1, \ldots, x_n)$ and $v(x_1, \ldots, x_n)$ are terms in the language of an algebra \mathcal{A} , where variables appearing in these terms are among x_1, \ldots, x_n , we say that the expression

$$E(u(x_1,\ldots,x_n),v(x_1,\ldots,x_n))$$

is a fuzzy identity.

Fuzzy identity

If $u(x_1, \ldots, x_n)$ and $v(x_1, \ldots, x_n)$ are terms in the language of an algebra \mathcal{A} , where variables appearing in these terms are among x_1, \ldots, x_n , we say that the expression

$$E(u(x_1,\ldots,x_n),v(x_1,\ldots,x_n))$$

is a fuzzy identity.

Then, a fuzzy subalgebra μ of \mathcal{A} satisfies a fuzzy identity E(u, v) with respect to fuzzy equality E^{μ} on μ , if the following condition is fulfilled for all $a_1, \ldots, a_n \in A$ and the term-operations u^A and v^A on \mathcal{A} corresponding to terms u and v respectively:

$$\bigwedge_{i=1}^n \mu(a_i) \leqslant E^{\mu}(u^{\mathcal{A}}(a_1,\ldots,a_n),v^{\mathcal{A}}(a_1,\ldots,a_n)).$$

・回 と く ヨ と ・ ヨ と

The fact that a fuzzy subalgebra μ of an algebra \mathcal{A} fulfils a fuzzy identity E(u, v), does not imply that the crisp identity u = v holds on \mathcal{A} . However, the converse does hold.

The fact that a fuzzy subalgebra μ of an algebra \mathcal{A} fulfils a fuzzy identity E(u, v), does not imply that the crisp identity u = v holds on \mathcal{A} . However, the converse does hold.

Proposition

Let u = v be an identity which holds on an algebra \mathcal{A} . If $\mu : \mathcal{A} \to L$ is a fuzzy subalgebra on \mathcal{A} , and E^{μ} a fuzzy equality on μ , then the fuzzy identity E(u, v) is satisfied on μ with respect to E^{μ} .

E-fuzzy algebra

B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups

▲□→ < □→</p>

< ≣ >

æ

E-fuzzy algebra

Let

$$\bar{\mathcal{A}} = (\mathcal{A}, \mu, E^{\mu})$$

be a structure in which $\mathcal{A} = (A, F)$ is an algebra with a set F of operations, $\mu : A \to L$ is a fuzzy subalgebra of \mathcal{A} , $E^{\mu} : A^2 \to L$ is a fuzzy equality on μ . Then, we say that $\overline{\mathcal{A}}$ is an *E*-fuzzy algebra. If, in addition, \mathcal{F} is a collection of fuzzy identities, and every fuzzy identity from \mathcal{F} is valid on μ with respect to E^{μ} , then we say that $\overline{\mathcal{A}}$ satisfies all fuzzy identities from \mathcal{F} .

E-fuzzy algebra

Let

$$\bar{\mathcal{A}} = (\mathcal{A}, \mu, E^{\mu})$$

be a structure in which $\mathcal{A} = (A, F)$ is an algebra with a set F of operations, $\mu : A \to L$ is a fuzzy subalgebra of \mathcal{A} , $E^{\mu} : A^2 \to L$ is a fuzzy equality on μ . Then, we say that $\overline{\mathcal{A}}$ is an *E*-fuzzy algebra. If, in addition, \mathcal{F} is a collection of fuzzy identities, and every fuzzy identity from \mathcal{F} is valid on μ with respect to E^{μ} , then we say that $\overline{\mathcal{A}}$ satisfies all fuzzy identities from \mathcal{F} .

In particular, here we deal with *E*-fuzzy algebras of the form $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$, where $\mathcal{G} = (G, \cdot, {}^{-1}, e)$ is an algebra with a binary operation (\cdot), unary operation (${}^{-1}$) and a constant (e), $\mu : G \to L$ is a fuzzy subalgebra of \mathcal{G} , and $E^{\mu} : G^2 \to L$ is a fuzzy equality on μ .

▲□→ ▲ 国 → ▲ 国 →

B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

æ

E-fuzzy group

Let

$$\bar{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$$

be an *E*-fuzzy algebra in which $\mathcal{G} = (G, \cdot, -^1, e)$ is an algebra with a binary operation (\cdot), unary operation ($^{-1}$) and a constant (e). Then $\overline{\mathcal{G}}$ is an *E*-fuzzy group if the following fuzzy identities hold:

$$E(x \cdot (y \cdot z), (x \cdot y) \cdot z);$$

$$E(x \cdot e, x), \quad E(e \cdot x, x);$$

$$E(x \cdot x^{-1}, e), \quad E(x^{-1} \cdot x, e);$$

i.e., associativity, and properties of neutral and inverse elements, respectively.

E-fuzzy group

Let

$$ar{\mathcal{G}} = (\mathcal{G}, \mu, \ \mathsf{E}^{\mu})$$

be an *E*-fuzzy algebra in which $\mathcal{G} = (G, \cdot, -^1, e)$ is an algebra with a binary operation (\cdot), unary operation ($^{-1}$) and a constant (e). Then $\overline{\mathcal{G}}$ is an *E*-fuzzy group if the following fuzzy identities hold:

$$E(x \cdot (y \cdot z), (x \cdot y) \cdot z);$$

$$E(x \cdot e, x), \quad E(e \cdot x, x);$$

$$E(x \cdot x^{-1}, e), \quad E(x^{-1} \cdot x, e);$$

i.e., associativity, and properties of neutral and inverse elements, respectively.

Element *e* is said to be the **unit** in $\overline{\mathcal{G}}$, and x^{-1} is the **inverse** of element *x* in $\overline{\mathcal{G}}$. We also say that $\mathcal{G} = (G, \cdot, -^1, e)$ is the **underlying algebra** of *E*-fuzzy group $\overline{\mathcal{G}}$.

According to the definitions, the fact that μ is a fuzzy subalgebra of $\mathcal G$ means that for all $x, y \in G$

æ

- < ≣ > -

- $\mu(x \cdot y) \ge \mu(x) \wedge \mu(y)$,
- $\mu(x^{-1}) \geqslant \mu(x)$,
- $\mu(e) = 1.$

According to the definitions, the fact that μ is a fuzzy subalgebra of ${\cal G}$ means that for all $x,y\in {\cal G}$

•
$$\mu(x \cdot y) \ge \mu(x) \wedge \mu(y)$$
,

•
$$\mu(x^{-1}) \geqslant \mu(x)$$
,

•
$$\mu(e) = 1.$$

In addition, the requirement that $\overline{\mathcal{G}}$ fulfills the listed group-like fuzzy identities, means that for all x, y, z from G,

(i)
$$E^{\mu}(x \cdot (y \cdot z), (x \cdot y) \cdot z) \ge \mu(x) \land \mu(y) \land \mu(z),$$

(ii) $E^{\mu}(x \cdot e, x) \ge \mu(x)$ and $E^{\mu}(e \cdot x, x) \ge \mu(x),$
(iii) $E^{\mu}(x \cdot x^{-1}, e) \ge \mu(x)$ and $E^{\mu}(x^{-1} \cdot x, e) \ge \mu(x)$

Let $\bar{\mathcal{G}}' = (\mathcal{G}', \mu, E^{\mu})$ be a fuzzy algebra described above, fulfilling the following: (i') $E^{\mu}(x \cdot (y \cdot z), (x \cdot y) \cdot z) \ge \mu(x) \land \mu(y) \land \mu(z),$ (ii') $E^{\mu}(x \cdot e', x) \ge \mu(x),$ (iii') $E^{\mu}(x \cdot x', e') \ge \mu(x),$ for all x, y, z from G. Then, $\bar{\mathcal{G}}'$ is an E-fuzzy group.

< 注→ 注

A (1) > A (1) > A

Example

B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups

・ロト ・回ト ・ヨト ・ヨト

æ

Example
$$\bar{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu});$$

・ロン ・四と ・ヨン ・ヨ

Example $\tilde{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu}); \qquad \mathcal{G} = (\{e, a, b, c\}, \cdot, ^{-1}, e)$

B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups

・ロト ・回ト ・ヨト ・ヨト

æ

•	е	а	b	С
е	е	а	b	С
а	а	с	b	а
b	b	b	е	b
с	с	а	b	е

《曰》《聞》《臣》《臣》 三臣

Example $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu}); \qquad \mathcal{G} = (\{e, a, b, c\}, \cdot, ^{-1}, e)$

《曰》《聞》《臣》《臣》 三臣

Example $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu}); \qquad \mathcal{G} = (\{e, a, b, c\}, \cdot, ^{-1}, e)$

《曰》《聞》《臣》《臣》 三臣

 $L = ([0, 1], \leq);$

Example $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu});$ $\mathcal{G} = (\{e, a, b, c\}, \cdot, ^{-1}, e)$

L

•

《曰》《聞》《臣》《臣》 三臣

Example $\bar{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu});$ $\mathcal{G} = (\{e, a, b, c\}, \cdot, ^{-1}, e)$

$$L = ([0,1], \leq);$$
 $\mu = \begin{pmatrix} e & a & b & c \\ 1 & 0.7 & 0.5 & 1 \end{pmatrix}.$

E^{μ}	е	а	b	с
е	1	0.5	0.3	0.7
а	0.5	0.7	0.3	0.5
b	0.3	0.3	0.5	0.3
с	0.7	0.5	0.3	1

《曰》《聞》《臣》《臣》 三臣

Example $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu}); \qquad \mathcal{G} = (\{e, a, b, c\}, \cdot, ^{-1}, e)$

$$L = ([0, 1], \leq); \qquad \mu = \begin{pmatrix} e & a & b & c \\ e & e & a & b & c \\ a & a & c & b & a \\ b & b & b & e & b \\ c & c & a & b & e \end{pmatrix}$$

E^{μ}	е	а	Ь	С
е	1	0.5	0.3	0.7
а	0.5	0.7	0.3	0.5
Ь	0.3	0.3	0.5	0.3
С	0.7	0.5	0.3	1

□ > < E > < E > _ E

 μ is a fuzzy subalgebra of \mathcal{G} and E^{μ} is a fuzzy equality on μ .

Example $\bar{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu});$ $\mathcal{G} = (\{e, a, b, c\}, \cdot, ^{-1}, e)$

E^{μ}	е	а	Ь	С
е	1	0.5	0.3	0.7
а	0.5	0.7	0.3	0.5
b	0.3	0.3	0.5	0.3
С	0.7	0.5	0.3	1

 μ is a fuzzy subalgebra of \mathcal{G} and E^{μ} is a fuzzy equality on μ . $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ is an *E*-fuzzy group.

B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups

Let $\mathcal{G} = (G, \cdot, {}^{-1}, e)$ be a group, $\mu : G \to L$ its fuzzy subgroup, and E^{μ} a fuzzy equality on μ . Then, $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ is an E-fuzzy group.

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Let $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ be an E-fuzzy group, and $x \in G$ such that $\mu(x) \neq 0$. Then $x \cdot e = e \cdot x = x$, where e is a unit in $\overline{\mathcal{G}}$.

イロン イ部ン イヨン イヨン 三日

Let $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ be an *E*-fuzzy group, and $x \in G$ such that $\mu(x) \neq 0$. Then $x \cdot e = e \cdot x = x$, where *e* is a unit in $\overline{\mathcal{G}}$.

We say that $x \in G$ is an **idempotent** element of a fuzzy group $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ if

 $E^{\mu}(x \cdot x, x) \ge \mu(x).$

▲圖▶ ▲屋▶ ▲屋▶

Let $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ be an E-fuzzy group, and $x \in G$ such that $\mu(x) \neq 0$. Then $x \cdot e = e \cdot x = x$, where e is a unit in $\overline{\mathcal{G}}$.

We say that $x \in G$ is an **idempotent** element of a fuzzy group $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ if $E^{\mu}(x \cdot x, x) \ge \mu(x).$

Theorem

An element $x \in G$ such that $\mu(x) > 0$ is idempotent in an E-fuzzy group $\overline{\mathcal{G}}$ if and only if x is idempotent in \mathcal{G} (i.e., if $x^2 = x$).

Let $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ be an E-fuzzy group, and $x \in G$ such that $\mu(x) \neq 0$. Then $x \cdot e = e \cdot x = x$, where e is a unit in $\overline{\mathcal{G}}$.

We say that $x \in G$ is an **idempotent** element of a fuzzy group $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ if $E^{\mu}(x \cdot x, x) \ge \mu(x).$

Theorem

An element $x \in G$ such that $\mu(x) > 0$ is idempotent in an E-fuzzy group $\overline{\mathcal{G}}$ if and only if x is idempotent in \mathcal{G} (i.e., if $x^2 = x$).

Theorem

The unit e of an E-fuzzy group $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ is a unique idempotent element in $\overline{\mathcal{G}}$ among those $x \in G$ for which $\mu(x) > 0$.

イロト イヨト イヨト イヨト

Let $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ be an *E*-fuzzy group and $x \in G$, such that $\mu(x) > 0$. Then $(x^{-1})^{-1} = x$.

< 注→ 注

Let $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ be an *E*-fuzzy group and $x \in G$, such that $\mu(x) > 0$. Then $(x^{-1})^{-1} = x$.

Corollary

If $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ is an *E*-fuzzy group and $x \in G$ such that $\mu(x) > 0$, then $\mu(x) = \mu(x^{-1})$.

Image: A = A = A

→ 注→ 注

Let $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ be an *E*-fuzzy group and $x \in G$, such that $\mu(x) > 0$. Then $(x^{-1})^{-1} = x$.

Corollary

If $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ is an *E*-fuzzy group and $x \in G$ such that $\mu(x) > 0$, then $\mu(x) = \mu(x^{-1})$.

Theorem

Let $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ be an *E*-fuzzy group such that for every $x \in G$, $\mu(x) \neq 0$. Let also t(x) be a term depending on a variable x only. Then the fuzzy identity E(t(x), x) holds on $\overline{\mathcal{G}}$ if and only if the corresponding crisp identity t(x) = x holds on \mathcal{G} .

(1日) (日) (日)

Let $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ be an *E*-fuzzy group and $x \in G$, such that $\mu(x) > 0$. Then $(x^{-1})^{-1} = x$.

Corollary

If $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ is an *E*-fuzzy group and $x \in G$ such that $\mu(x) > 0$, then $\mu(x) = \mu(x^{-1})$.

Theorem

Let $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ be an *E*-fuzzy group such that for every $x \in G$, $\mu(x) \neq 0$. Let also t(x) be a term depending on a variable x only. Then the fuzzy identity E(t(x), x) holds on $\overline{\mathcal{G}}$ if and only if the corresponding crisp identity t(x) = x holds on \mathcal{G} .

Corollary

Let $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ be an *E*-fuzzy group such that for every $x \in G$, $\mu(x) \neq 0$. Then algebra \mathcal{G} satisfies identity $(x \cdot x^{-1}) \cdot x = x$.

Let $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ be an E-fuzzy group, such that for every $x \in G$, $\mu(x) > 0$. Then, the underlying algebra $\mathcal{G} = (G, \cdot, {}^{-1}, e)$ fulfils:

★@> ★ E> ★ E> = E

Let $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ be an E-fuzzy group, such that for every $x \in G$, $\mu(x) > 0$. Then, the underlying algebra $\mathcal{G} = (G, \cdot, {}^{-1}, e)$ fulfils:

 e is a neutral and a unique idempotent element with respect to the binary operation · ,

글 🕨 🛛 글

Let $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ be an E-fuzzy group, such that for every $x \in G$, $\mu(x) > 0$. Then, the underlying algebra $\mathcal{G} = (G, \cdot, {}^{-1}, e)$ fulfils:

 e is a neutral and a unique idempotent element with respect to the binary operation · ,

< 注→ 注

• unary operation $^{-1}$ is an involution, and

Let $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ be an E-fuzzy group, such that for every $x \in G$, $\mu(x) > 0$. Then, the underlying algebra $\mathcal{G} = (G, \cdot, {}^{-1}, e)$ fulfils:

 e is a neutral and a unique idempotent element with respect to the binary operation · ,

▲ 문 ▶ 문

• unary operation $^{-1}$ is an involution, and

• identity
$$(x \cdot x^{-1}) \cdot x = x$$
 holds.
We say that an *E*-fuzzy algebra $\overline{A} = (A, \mu, E^{\mu})$ where the algebra $\mathcal{A} = (A, F)$ has a binary operation \cdot in *F* is **cancellative** with respect to this operation, if for all $x, y, z \in A$

We say that an *E*-fuzzy algebra $\overline{A} = (A, \mu, E^{\mu})$ where the algebra $\mathcal{A} = (A, F)$ has a binary operation \cdot in *F* is **cancellative** with respect to this operation, if for all $x, y, z \in A$

$$\mu(x) \wedge \mu(y) \wedge \mu(z) \wedge E^{\mu}(x \cdot y, x \cdot z) \leqslant E^{\mu}(y, z),$$
 and
 $\mu(x) \wedge \mu(y) \wedge \mu(z) \wedge E^{\mu}(y \cdot x, z \cdot x) \leqslant E^{\mu}(y, z).$

We say that an *E*-fuzzy algebra $\overline{A} = (A, \mu, E^{\mu})$ where the algebra $\mathcal{A} = (A, F)$ has a binary operation \cdot in *F* is **cancellative** with respect to this operation, if for all $x, y, z \in A$

$$\mu(x) \wedge \mu(y) \wedge \mu(z) \wedge E^{\mu}(x \cdot y, x \cdot z) \leqslant E^{\mu}(y, z),$$
 and
 $\mu(x) \wedge \mu(y) \wedge \mu(z) \wedge E^{\mu}(y \cdot x, z \cdot x) \leqslant E^{\mu}(y, z).$

・ 同・ ・ ヨ・

Theorem

An E-fuzzy group is cancellative.

Let $\bar{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ be an E-fuzzy group. Then for all $x, y, x_1, ..., x_n \in G$

B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Let $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ be an E-fuzzy group. Then for all $x, y, x_1, ..., x_n \in G$

•
$$E^{\mu}((xy)^{-1}, y^{-1}x^{-1}) \ge \mu(x) \land \mu(y)$$

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Let $\bar{\mathcal{G}} = (\mathcal{G}, \mu, \ E^{\mu})$ be an E-fuzzy group. Then for all $x, y, x_1, ..., x_n \in G$

n

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

•
$$E^{\mu}((xy)^{-1}, y^{-1}x^{-1}) \ge \mu(x) \land \mu(y)$$

•
$$E^{\mu}((x_1\cdots x_n)^{-1}, x_n^{-1}\cdots x_1^{-1}) \ge \bigwedge_{i=1}^n \mu(x_i).$$

$E^{\mu}(a \cdot x, b)$ and $E^{\mu}(y \cdot a, b)$

be formulas, where $a, b \in G$, $\mu(a) \neq 0$, $\mu(b) \neq 0$ and x, y are unknown variables.

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

$E^{\mu}(a \cdot x, b)$ and $E^{\mu}(y \cdot a, b)$

be formulas, where $a, b \in G$, $\mu(a) \neq 0$, $\mu(b) \neq 0$ and x, y are unknown variables. We say that these formulas are **fuzzy** equations over the fuzzy group $\overline{\mathcal{G}}$.

$E^{\mu}(a \cdot x, b)$ and $E^{\mu}(y \cdot a, b)$

be formulas, where $a, b \in G$, $\mu(a) \neq 0$, $\mu(b) \neq 0$ and x, y are unknown variables. We say that these formulas are **fuzzy** equations over the fuzzy group $\overline{\mathcal{G}}$. Fuzzy equation $E^{\mu}(a \cdot x, b)$ is solvable if there is an $x_0 \in G$, such that

$E^{\mu}(a \cdot x, b)$ and $E^{\mu}(y \cdot a, b)$

be formulas, where $a, b \in G$, $\mu(a) \neq 0$, $\mu(b) \neq 0$ and x, y are unknown variables. We say that these formulas are **fuzzy equations** over the fuzzy group $\overline{\mathcal{G}}$. Fuzzy equation $E^{\mu}(a \cdot x, b)$ is **solvable** if there is an $x_0 \in G$, such that

 $\mu(a) \wedge \mu(b) \wedge \mu(x_0) \leqslant E^{\mu}(a \cdot x_0, b).$

$E^{\mu}(a \cdot x, b)$ and $E^{\mu}(y \cdot a, b)$

be formulas, where $a, b \in G$, $\mu(a) \neq 0$, $\mu(b) \neq 0$ and x, y are unknown variables. We say that these formulas are **fuzzy equations** over the fuzzy group $\overline{\mathcal{G}}$. Fuzzy equation $E^{\mu}(a \cdot x, b)$ is **solvable** if there is an $x_0 \in G$, such that

$$\mu(a) \wedge \mu(b) \wedge \mu(x_0) \leqslant E^{\mu}(a \cdot x_0, b).$$

Analogously, fuzzy equation $E^{\mu}(y \cdot a, b)$ is **solvable** if there is a $z_0 \in G$, such that

$E^{\mu}(a \cdot x, b)$ and $E^{\mu}(y \cdot a, b)$

be formulas, where $a, b \in G$, $\mu(a) \neq 0$, $\mu(b) \neq 0$ and x, y are unknown variables. We say that these formulas are **fuzzy equations** over the fuzzy group $\overline{\mathcal{G}}$. Fuzzy equation $E^{\mu}(a \cdot x, b)$ is **solvable** if there is an $x_0 \in G$, such that

$$\mu(a) \wedge \mu(b) \wedge \mu(x_0) \leqslant E^{\mu}(a \cdot x_0, b).$$

Analogously, fuzzy equation $E^{\mu}(y \cdot a, b)$ is **solvable** if there is a $z_0 \in G$, such that

$$\mu(a) \wedge \mu(b) \wedge \mu(y_0) \leqslant E^{\mu}(y_0 \cdot a, b).$$

$E^{\mu}(a \cdot x, b)$ and $E^{\mu}(y \cdot a, b)$

be formulas, where $a, b \in G$, $\mu(a) \neq 0$, $\mu(b) \neq 0$ and x, y are unknown variables. We say that these formulas are **fuzzy equations** over the fuzzy group $\overline{\mathcal{G}}$. Fuzzy equation $E^{\mu}(a \cdot x, b)$ is **solvable** if there is an $x_0 \in G$, such that

$$\mu(a) \wedge \mu(b) \wedge \mu(x_0) \leqslant E^{\mu}(a \cdot x_0, b).$$

Analogously, fuzzy equation $E^{\mu}(y \cdot a, b)$ is **solvable** if there is a $z_0 \in G$, such that

$$\mu(a) \wedge \mu(b) \wedge \mu(y_0) \leqslant E^{\mu}(y_0 \cdot a, b).$$

Elements x_0 and y_0 are **solutions** of equations $E^{\mu}(a \cdot x, b)$ and $E^{\mu}(y \cdot a, b)$, respectively.

$E^{\mu}(a \cdot x, b)$ and $E^{\mu}(y \cdot a, b)$

be formulas, where $a, b \in G$, $\mu(a) \neq 0$, $\mu(b) \neq 0$ and x, y are unknown variables. We say that these formulas are **fuzzy equations** over the fuzzy group $\overline{\mathcal{G}}$. Fuzzy equation $E^{\mu}(a \cdot x, b)$ is **solvable** if there is an $x_0 \in G$, such that

$$\mu(a) \wedge \mu(b) \wedge \mu(x_0) \leqslant E^{\mu}(a \cdot x_0, b).$$

Analogously, fuzzy equation $E^{\mu}(y \cdot a, b)$ is **solvable** if there is a $z_0 \in G$, such that

$$\mu(a) \wedge \mu(b) \wedge \mu(y_0) \leqslant E^{\mu}(y_0 \cdot a, b).$$

Elements x_0 and y_0 are **solutions** of equations $E^{\mu}(a \cdot x, b)$ and $E^{\mu}(y \cdot a, b)$, respectively. If $\mu(x_0) = 0$ (analogously $\mu(y_0) = 0$), then obviously x_0 (y_0) is a solution of the corresponding equation; we say that it is a **trivial solution**.

< 注▶ < 注▶ -

Let $\overline{\mathcal{G}} = (\mathcal{G}, \mu, E^{\mu})$ be an E-fuzzy group. Then, fuzzy equations (i) $E^{\mu}(a \cdot x, b)$ and (ii) $E^{\mu}(y \cdot a, b)$

· < @ > < 글 > < 글 > · · 글

have nontrivial solutions for arbitrary $a, b \in G$, such that $\mu(a) \wedge \mu(b) \neq 0$.

B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups

문 문 문

Let $\nu: G \to L$ be a nonempty fuzzy subset of a fuzzy set $\mu: G \to L$, E^{μ} a fuzzy relation on μ , and $E^{\nu}: G^2 \to L$ a fuzzy relations on G. We say that E^{ν} is a **restriction** of E^{μ} to ν if

Let $\nu : G \to L$ be a nonempty fuzzy subset of a fuzzy set $\mu : G \to L$, E^{μ} a fuzzy relation on μ , and $E^{\nu} : G^2 \to L$ a fuzzy relations on G. We say that E^{ν} is a **restriction** of E^{μ} to ν if

$$E^{\nu}(x,y) = E^{\mu}(x,y) \wedge \nu(x) \wedge \nu(y).$$

Let $\nu: G \to L$ be a nonempty fuzzy subset of a fuzzy set $\mu: G \to L$, E^{μ} a fuzzy relation on μ , and $E^{\nu}: G^2 \to L$ a fuzzy relations on G. We say that E^{ν} is a **restriction** of E^{μ} to ν if

$$E^{\nu}(x,y) = E^{\mu}(x,y) \wedge \nu(x) \wedge \nu(y).$$

Lemma

Let $\nu : G \to L$ be a nonempty fuzzy subset of $\mu : G \to L$, and E^{μ} a fuzzy relation on μ . Then a restriction E^{ν} of E^{μ} to ν is a fuzzy relation on ν .

< 🗇 > < 🖃 >

Proposition

If $E^{\mu}: A^2 \to L$ is a fuzzy equality on $\mu: A \to L$, then the restriction E^{ν} of E^{μ} to a nonempty fuzzy subset ν of μ is a fuzzy equivalence on ν . In addition, if μ and ν are fuzzy subalgebras of an algebra $\mathcal{A} = (A, F)$, and E^{μ} is compatible with operations in F, then also E^{ν} is compatible.

Let $\bar{\mathcal{G}}^{\mu} = (\mathcal{G}, \mu, E^{\mu})$ and $\bar{\mathcal{G}}^{\nu} = (\mathcal{G}, \nu, E^{\nu})$ be fuzzy groups over the same algebra $G = (G, \cdot, {}^{-1}, e)$. We say that $\bar{\mathcal{G}}^{\nu}$ is an *E*-fuzzy **subgroup** of *E*-fuzzy group $\bar{\mathcal{G}}^{\mu}$, if ν is a fuzzy subset of μ and E^{ν} is a restriction of E^{μ} to ν . Let $\bar{\mathcal{G}}^{\mu} = (\mathcal{G}, \mu, E^{\mu})$ and $\bar{\mathcal{G}}^{\nu} = (\mathcal{G}, \nu, E^{\nu})$ be fuzzy groups over the same algebra $G = (G, \cdot, {}^{-1}, e)$. We say that $\bar{\mathcal{G}}^{\nu}$ is an *E*-fuzzy subgroup of *E*-fuzzy group $\bar{\mathcal{G}}^{\mu}$, if ν is a fuzzy subset of μ and E^{ν} is a restriction of E^{μ} to ν .

Theorem

Let $\overline{\mathcal{G}}^{\mu} = (\mathcal{G}, \mu, E^{\mu})$ be an E-fuzzy group and $E^1 : G^2 \to L$ a fuzzy relation on G, such that $E^1 \leq E^{\mu}$. Let E^1 fulfils all properties of a fuzzy equality except reflexivity. In addition, let E^1 satisfies also the following condition:

$$E^1(x,y) = E^{\mu}(x,y) \wedge E^1(x,x) \wedge E^1(y,y).$$

Now, let $\nu : G \to L$ be defined by $\nu(x) := E^1(x, x)$, for every $x \in G$. Then, $\overline{\mathcal{G}}^{\nu} = (\mathcal{G}, \nu, E^1)$ is an E-fuzzy subgroup of E-fuzzy group $\overline{\mathcal{G}}^{\mu}$.

イロト イヨト イヨト イヨト

Let $\bar{\mathcal{G}}^{\mu} = (\mathcal{G}, \mu, E^{\mu})$ be an E-fuzzy group, $\nu : G \to L$ a nonempty fuzzy subset of μ , and E^{ν} a restriction of E^{μ} to ν . Then the structure $\bar{\mathcal{G}}^{\nu} = (\mathcal{G}, \nu, E^{\nu})$ is an E-fuzzy subgroup of $\bar{\mathcal{G}}^{\mu}$ if and only if it is an E-fuzzy algebra.

문 문 문

A (1) > A (1) > A

 $\{\bar{\mathcal{G}}^{\mu_i} = (\mathcal{G}, \ \mu_i, \ E^{\mu_i}) \mid i \in I\}$ be a nonempty family of E-fuzzy subgroups of an E-fuzzy group $\bar{\mathcal{G}}^{\mu} = (\mathcal{G}, \ \mu, \ E^{\mu})$, where $\mathcal{G} = (\mathcal{G}, \ \cdot, ^{-1}, e)$ is a given algebra. Further, for all $x, y \in \mathcal{G}$, such that $x \neq y$, and $\bigwedge_{i \in I} \mu_i(x) > 0$, let

$$E^{\mu}(x,y) \wedge \bigwedge_{i \in I} \mu_i(x) \wedge \bigwedge_{i \in I} \mu_i(y) < \bigwedge_{i \in I} \mu_i(x).$$

Finally, let $\delta = \bigcap_{i \in I} \mu_i$ and let E^{δ} be the restriction of E^{μ} to δ . Then the structure $\overline{\mathcal{G}}^{\delta} = (\mathcal{G}, \ \delta, \ E^{\delta})$, is an *E*-fuzzy subgroup of *E*-fuzzy group $\overline{\mathcal{G}}$.

· < @ > < 글 > < 글 > · · 글

Cut properties

B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups

< ≣⇒

Cut properties

Theorem

Let $\bar{\mathcal{G}}^{\mu} = (\mathcal{G}, \mu, E^{\mu})$ be an E-fuzzy algebra. Then, $\bar{\mathcal{G}}^{\mu}$ is an E-fuzzy group if and only if for every $p \in L$, the cut μ_p is a subalgebra of \mathcal{G} , the cut relation E_p^{μ} is a congruence on μ_p , and the quotient structure μ_p/E_p^{μ} is a group.

A (1) > A (1) > A

Cut properties

Theorem

Let $\bar{\mathcal{G}}^{\mu} = (\mathcal{G}, \mu, E^{\mu})$ be an E-fuzzy algebra. Then, $\bar{\mathcal{G}}^{\mu}$ is an E-fuzzy group if and only if for every $p \in L$, the cut μ_p is a subalgebra of \mathcal{G} , the cut relation E_p^{μ} is a congruence on μ_p , and the quotient structure μ_p/E_p^{μ} is a group.

Theorem

Let $\overline{\mathcal{G}}^{\mu} = (\mathcal{G}, \mu, E^{\mu})$ be an E-fuzzy group, such that $\mu(x) \neq 0$ for every $x \in G$, and let E^{μ} fulfils the following:

for all
$$x, y \in G$$
 such that $x \neq y$, $E^{\mu}(x, y) < \bigwedge_{z \in G} \mu(z)$.

Image: A □ > A

Then, the underlying algebra \mathcal{G} of $\overline{\mathcal{G}}$ is a group.

Example

B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups

・ロト ・回ト ・ヨト ・ヨト

Example
$$\mathcal{G} = (\mathbb{N}_0, \oplus, ^{-1}, 0),$$

・ロン ・四と ・ヨン ・ヨ

$\label{eq:standard} \begin{array}{l} \mbox{Example} \\ \mathcal{G} = (\mathbb{N}_0, \oplus, ^{-1}, 0), \quad \mathbb{N}_0 = \{ \mbox{0}, \mbox{1}, \mbox{2}, \ldots \} \end{array}$

B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

$$\begin{split} & \underset{\mathcal{G}}{\text{Example}} \\ & \mathcal{G} = (\mathbb{N}_0, \oplus, ^{-1}, 0), \quad \mathbb{N}_0 = \{ 0, 1, 2, \ldots \} \\ & \oplus \text{- a binary operation on } \mathbb{N}_0 : \end{split}$$

B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups

▲ 御 ▶ → ミ ▶

- < ≣ >

$$x \oplus y := \begin{cases} \mathbf{0} & \text{if } x = y \\ x + y & \text{if } x \neq y \end{cases},$$

▲ 御 ▶ → ミ ▶

- < ≣ >

Example $\mathcal{G} = (\mathbb{N}_0, \oplus, ^{-1}, 0), \quad \mathbb{N}_0 = \{\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots\}$ \oplus – a binary operation on \mathbb{N}_0 :

$$x \oplus y := \begin{cases} \mathbf{0} & \text{if } x = y \\ x + y & \text{if } x \neq y \end{cases},$$

・ 同・ ・ ヨ・

< 注→ 注

 $^{-1}$ – a unary operation on \mathbb{N}_0 defined by $x^{-1} = x$.

$\begin{array}{l} \mbox{Example} \\ \mathcal{G} = (\mathbb{N}_0, \oplus, ^{-1}, 0), \quad \mathbb{N}_0 = \{ \textbf{0}, \textbf{1}, \textbf{2}, \ldots \} \\ \oplus \mbox{-} a \mbox{ binary operation on } \mathbb{N}_0 : \end{array}$

$$x \oplus y := \left\{ egin{array}{ccc} \mathbf{0} & ext{if} & x = y \ x + y & ext{if} & x
eq y \end{array}
ight.,$$

 $^{-1}$ – a unary operation on \mathbb{N}_0 defined by $x^{-1} = x$.

A neutral element in ${\cal G}$ is 0, but \oplus is not associative, hence ${\cal G}$ is not a group.

Example

$$\begin{split} \mathcal{G} &= (\mathbb{N}_0, \oplus, ^{-1}, 0), \quad \mathbb{N}_0 = \{ \boldsymbol{0}, \boldsymbol{1}, \boldsymbol{2}, \ldots \} \\ \oplus &- \text{a binary operation on } \mathbb{N}_0: \end{split}$$

$$x \oplus y := \left\{ egin{array}{ccc} \mathbf{0} & ext{if} & x = y \ x + y & ext{if} & x
eq y \end{array}
ight.,$$

 $^{-1}$ – a unary operation on \mathbb{N}_0 defined by $x^{-1} = x$.

A neutral element in ${\cal G}$ is 0, but \oplus is not associative, hence ${\cal G}$ is not a group.

$$\mu := \begin{pmatrix} 0 & 1 & 2 & 3 & \dots & n & \dots \\ 1 & p_1 & p_2 & p_3 & \dots & p_n & \dots \end{pmatrix}.$$

・ロン ・四シ ・ヨン ・ヨン 三日

B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups
$$\mu := \begin{pmatrix} 0 & 1 & 2 & 3 & \dots & n & \dots \\ 1 & p_1 & p_2 & p_3 & \dots & p_n & \dots \end{pmatrix}.$$

E^{μ}	0	1	2	3	4	5	
0	1	0	r	0	r	0	• • •
1	0	p_1	0	r	0	r	• • •
2	r	0	<i>p</i> ₂	0	r	0	• • •
3	0	r	0	<i>p</i> 3	0	r	• • •
4	r	0	r	0	p_4	0	• • •
5	0	r	0	r	0	p_5	• • •
÷	÷	÷	÷	÷	÷	÷	

・ロン ・四と ・ヨン ・ヨ

$$\mu := \left(\begin{array}{ccccccc} \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \dots & \mathbf{n} & \dots \\ 1 & p_1 & p_2 & p_3 & \dots & p_n & \dots \end{array} \right).$$

E^{μ}	0	1	2	3	4	5	
0	1	0	r	0	r	0	•••
1	0	p_1	0	r	0	r	• • •
2	r	0	<i>p</i> ₂	0	r	0	• • •
3	0	r	0	<i>p</i> 3	0	r	• • •
4	r	0	r	0	p_4	0	• • •
5	0	r	0	r	0	p_5	• • •
÷	:	÷	÷	÷	÷	÷	

æ

The structure $\overline{\mathcal{G}} = (G, \mu, E^{\mu})$ is an *E*-fuzzy group.

▲□ > ▲圖 > ▲ 圖 >

< ≣⇒

æ

```
\mu_1 – the trivial one-element subalgebra \{\mathbf{0}\}.
```

문 문 문

₽ > < €

 μ_1 – the trivial one-element subalgebra $\{\mathbf{0}\}$. For every $p_n \in L$, $\mu_{p_n} = \{\mathbf{0}, \mathbf{n}\}$.

æ

-≣->

 μ_1 – the trivial one-element subalgebra $\{\mathbf{0}\}$. For every $p_n \in L$, $\mu_{p_n} = \{\mathbf{0}, \mathbf{n}\}$.

\oplus	0	n		$E_{p_n}^{\mu}$	0	n
0	0	n	;	0	1	0
n	n	0		n	0	1

æ

-≣->

 μ_1 – the trivial one-element subalgebra $\{\mathbf{0}\}$. For every $p_n \in L$, $\mu_{p_n} = \{\mathbf{0}, \mathbf{n}\}$.

\oplus	0	n		$E^{\mu}_{p_n}$	0	n
0	0	n	;	0	1	0
n	n	0		n	0	1

For every $p_n \in L$, the quotient structure $\mu_{p_n}/E_{p_n}^{\mu}$ is a two-element group, isomorphic to μ_{p_n} .

通 と く ヨ と く

æ

References

B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups

・ロト ・回ト ・モト ・モト

æ

References

- B. Budimirović, V. Budimirović, A. Tepavčević, *Fuzzy* ε-Subgroups, Information Sciences 180 (2010) 4006-4014.
- B. Šešelja, A. Tepavčević, *Fuzzy Identities*, Proc. of the 2009 IEEE International Conference on Fuzzy Systems 1660–1664.
- B. Budimirović, V. Budimirović, B. Šešelja, A. Tepavčević, *Fuzzy identities with application to fuzzy semigroups*, Information Sciences (2013) (to appear).
- B. Budimirović, V. Budimirović, B. Šešelja, A. Tepavčević, *Fuzzy Equational Classes Are Fuzzy Varieties*, Iranian Journal of Fuzzy Systems 10, no. 4 (2013).

Thank you for your attention!

B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups