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FSTA 2014

Liptovsky Jan, January 27, 2014
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Abstract

Abstract

An E -fuzzy group is a lattice-valued algebraic structure, defined on
a crisp algebra which is not necessarily a group. The crisp equality
is replaced by a particular fuzzy one - denoted by E . Classical
group-like properties are formulated as appropriate fuzzy identities
- special lattice theoretic formulas. We prove basic features of
E -fuzzy groups: properties of the unit and inverses, cancellability,
solvability of equations, subgroup properties and others. We also
prove that for every cut of an E -fuzzy group, which is a classical
subalgebra of the underlying algebra, the quotient structure over
the corresponding cut of the fuzzy equality is a classical group.
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Introduction

Historical background

Some investigations relevant for our approach:

L-fuzzy sets: Goguen 1967.

Fuzzy subgroups of a group, fuzzy groups: Rosenfeld 1971;
Das 1981; Malik, Mordeson, Bhutani, Rosenfeld 1998, 2003,
2005; Demirci 1999 – 2003.

Fuzzy equality, weak fuzzy reflexivity: Yeh, Bang 1971; Höhle
1988; Filep 1998; Demirci 2003.

Fuzzy structures and general algebra: Di Nola, Gerla 1987;
Kuraoka, Suzuki 2002; Bělohlávek, Vychodil 2002; 2005;
2006.

Previous research: Šešelja, Tepavčević 1992; 1993; 1994;
1996; 1997; 2009; Budimirović, Šešelja, Tepavčević 2010;
2013.
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1988; Filep 1998; Demirci 2003.

Fuzzy structures and general algebra: Di Nola, Gerla 1987;
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Preliminaries

Algebras

We use the structure of a complete lattice, denoted by
(L,∧,∨,6) with the smallest element, the bottom, 0, and the
greatest element, the top, 1.
A language (a type) L – a set F of functional symbols, together
with a set of natural numbers (arities) associated to these symbols.
An algebra of type L – A = (A,F ); A is a nonempty set and F is
a set of fundamental operations on A.
We use the notions of a subalgebra, term, identity, congruence
relation on A.
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Preliminaries

Fuzzy structures

A fuzzy (lattice valued) set µ on a nonempty set A (or a fuzzy
subset of A) is a function µ : A→ L.
A fuzzy set µ on A is nonempty, if µ(x) > 0 for some x ∈ A.
If µ and ν are fuzzy subsets of A, then µ is a fuzzy subset of ν,
which we denote by µ ⊆ ν, if for every x ∈ A, µ(x) 6 ν(x).
If {µi | i ∈ I} is a family of fuzzy sets on the same domain A, then
the fuzzy intersection µ =

⋂
{µi | i ∈ I} of this family is a fuzzy

set on A, defined by

µ(x) =
∧
i∈I
µi (x), for every x ∈ A.

For p ∈ L, a cut set of a fuzzy set µ : A→ L is a subset µp of A
which is the inverse image of the principal filter in L, generated by
p: µp = {x ∈ X | µ(x) ≥ p}.
A fuzzy (binary) relation ρ on A is a fuzzy set on A2, i.e., it is a
mapping ρ : A2 → L.
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Preliminaries

Fuzzy relations on fuzzy sets

Let µ : A→ L be a fuzzy set on A and let ρ : A2 → L be a fuzzy
relation on A. If for all x , y ∈ A, ρ satisfies

ρ(x , y) 6 µ(x) ∧ µ(y),

then ρ is a fuzzy relation on µ.
Let ρ be a fuzzy relation on a fuzzy set µ of A.

ρ is reflexive if ρ(x , x) = µ(x) for every x ∈ A.

ρ is symmetric if ρ(x , y) = ρ(y , x) for all x , y ∈ A;

ρ is transitive if ρ(x , y) > ρ(x , z) ∧ ρ(z , y) for all x , y , z ∈ A.
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Preliminaries

Fuzzy relations on fuzzy sets

Let µ : A→ L be a fuzzy set on A and let ρ : A2 → L be a fuzzy
relation on A. If for all x , y ∈ A, ρ satisfies

ρ(x , y) 6 µ(x) ∧ µ(y),

then ρ is a fuzzy relation on µ.

Let ρ be a fuzzy relation on a fuzzy set µ of A.

ρ is reflexive if ρ(x , x) = µ(x) for every x ∈ A.

ρ is symmetric if ρ(x , y) = ρ(y , x) for all x , y ∈ A;

ρ is transitive if ρ(x , y) > ρ(x , z) ∧ ρ(z , y) for all x , y , z ∈ A.
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Preliminaries

A reflexive, symmetric and transitive relation ρ on µ is a fuzzy
equivalence on µ.

A fuzzy equivalence relation ρ on µ, fulfilling for all x , y ∈ A,
x 6= y ,:

if ρ(x , x) 6= 0, then ρ(x , x) > ρ(x , y),

is called a fuzzy equality relation on a fuzzy set µ.
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Preliminaries

If A = (A,F ) is an algebra, then a fuzzy subalgebra of A is any
mapping µ : A→ L which is not constantly equal to 0, and which
fulfils the following:
For any operation f from F with arity greater than 0,
f : An → A, n ∈ N, and for all a1, . . . , an ∈ A, we have that

n∧
i=1

µ(ai ) 6 µ(f (a1, . . . , an)),

and for a nullary operation (constant) c ∈ F , µ(c) = 1.

In particular, if G = (G , · ,−1 , e) is a group, then µ : G → L is
known to be a fuzzy subgroup of G if for all x , y ∈ G ,

µ(x · y) > µ(x) ∧ µ(y) , µ(x−1) > µ(x), and µ(e) = 1.
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Preliminaries

Let A = (A,F ) be an algebra. A fuzzy relation ρ : A2 → L is
compatible with the operations in F if the following holds: for
every n-ary operation f ∈ F and for all a1, . . . , an, b1, . . . , bn ∈ A

n∧
i=1

ρ(ai , bi ) 6 ρ(f (a1, . . . , an), f (b1, . . . , bn)), and

ρ(c , c) = 1 for every constant (nullary operation) c ∈ F .

If ρ is a fuzzy relation on fuzzy subalgebra µ of A, then we say that
it is compatible on µ if it compatible with the operations in F .
A compatible fuzzy equivalence on µ is a fuzzy congruence on
this fuzzy subalgebra.
A fuzzy equality on a fuzzy subalgebra µ is a fuzzy congruence
on µ, such that

ρ(x , x) 6= 0 implies ρ(x , x) > ρ(x , y).
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Fuzzy identity

If u(x1, . . . , xn) and v(x1, . . . , xn) are terms in the language of an
algebra A, where variables appearing in these terms are among
x1, . . . , xn, we say that the expression

E (u(x1, . . . , xn), v(x1, . . . , xn))

is a fuzzy identity.
Then, a fuzzy subalgebra µ of A satisfies a fuzzy identity
E (u, v) with respect to fuzzy equality Eµ on µ, if the following
condition is fulfilled for all a1, . . . , an ∈ A and the term-operations
uA and vA on A corresponding to terms u and v respectively:

n∧
i=1

µ(ai ) 6 Eµ(uA(a1, . . . , an), vA(a1, . . . , an)).
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The fact that a fuzzy subalgebra µ of an algebra A fulfils a fuzzy
identity E (u, v), does not imply that the crisp identity u = v holds
on A. However, the converse does hold.

Proposition

Let u = v be an identity which holds on an algebra A. If µ : A→ L
is a fuzzy subalgebra on A, and Eµ a fuzzy equality on µ, then the
fuzzy identity E (u, v) is satisfied on µ with respect to Eµ.
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E -fuzzy algebra

Let
Ā = (A, µ, Eµ)

be a structure in which A = (A,F ) is an algebra with a set F of
operations, µ : A→ L is a fuzzy subalgebra of A, Eµ : A2 → L is a
fuzzy equality on µ. Then, we say that Ā is an E -fuzzy algebra.
If, in addition, F is a collection of fuzzy identities, and every fuzzy
identity from F is valid on µ with respect to Eµ, then we say that
Ā satisfies all fuzzy identities from F .

In particular, here we deal with E -fuzzy algebras of the form
Ḡ = (G, µ, Eµ), where G = (G , · ,−1 , e) is an algebra with a binary
operation ( · ), unary operation (−1) and a constant (e), µ : G → L
is a fuzzy subalgebra of G, and Eµ : G 2 → L is a fuzzy equality on
µ.
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Ā satisfies all fuzzy identities from F .

In particular, here we deal with E -fuzzy algebras of the form
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E -fuzzy group

Let
Ḡ = (G, µ, Eµ)

be an E -fuzzy algebra in which G = (G , · ,−1 , e) is an algebra with
a binary operation ( · ), unary operation (−1) and a constant (e).
Then Ḡ is an E -fuzzy group if the following fuzzy identities hold:

E (x · (y · z), (x · y) · z);

E (x · e, x), E (e · x , x);

E (x · x−1, e), E (x−1 · x , e);

i.e., associativity, and properties of neutral and inverse elements,
respectively.
Element e is said to be the unit in Ḡ, and x−1 is the inverse of
element x in Ḡ. We also say that G = (G , · ,−1 , e) is the
underlying algebra of E -fuzzy group Ḡ.
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According to the definitions, the fact that µ is a fuzzy subalgebra
of G means that for all x , y ∈ G

µ(x · y) > µ(x) ∧ µ(y),

µ(x−1) > µ(x),

µ(e) = 1.

In addition, the requirement that Ḡ fulfills the listed group-like
fuzzy identities, means that for all x , y , z from G ,

(i) Eµ(x · (y · z), (x · y) · z) > µ(x) ∧ µ(y) ∧ µ(z),

(ii) Eµ(x · e, x) > µ(x) and Eµ(e · x , x) > µ(x),

(iii) Eµ(x · x−1, e) > µ(x) and Eµ(x−1 · x , e) > µ(x).
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Theorem

Let Ḡ′ = (G′, µ, Eµ) be a fuzzy algebra described above, fulfilling
the following:

(i ′) Eµ(x · (y · z), (x · y) · z) > µ(x) ∧ µ(y) ∧ µ(z),

(ii ′) Eµ(x · e ′, x) > µ(x),

(iii ′) Eµ(x · x ′, e ′) > µ(x),

for all x , y , z from G . Then, Ḡ′ is an E-fuzzy group.
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Example

Ḡ = (G, µ, Eµ); G = ({e, a, b, c}, ·,−1 , e)

· e a b c

e e a b c
a a c b a
b b b e b
c c a b e

e a b c
−1 e a b c

L = ([0, 1],6); µ =

(
e a b c
1 0.7 0.5 1

)
.

Eµ e a b c

e 1 0.5 0.3 0.7
a 0.5 0.7 0.3 0.5
b 0.3 0.3 0.5 0.3
c 0.7 0.5 0.3 1

µ is a fuzzy subalgebra of G and Eµ is a fuzzy equality on µ.
Ḡ = (G, µ, Eµ) is an E -fuzzy group.
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Example
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B.&V. Budimirović, B. Šešelja, A. Tepavčević E-Fuzzy Groups



Theorem

Let G = (G , · ,−1 , e) be a group, µ : G → L its fuzzy subgroup,
and Eµ a fuzzy equality on µ. Then, Ḡ = (G, µ, Eµ) is an E-fuzzy
group.
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Theorem

Let Ḡ = (G, µ, Eµ) be an E -fuzzy group, and x ∈ G such that
µ(x) 6= 0. Then x · e = e · x = x, where e is a unit in Ḡ.

We say that x ∈ G is an idempotent element of a fuzzy group
Ḡ = (G, µ, Eµ) if

Eµ(x · x , x) > µ(x).

Theorem

An element x ∈ G such that µ(x) > 0 is idempotent in an E -fuzzy
group Ḡ if and only if x is idempotent in G (i.e., if x2 = x).

Theorem

The unit e of an E -fuzzy group Ḡ = (G, µ, Eµ) is a unique
idempotent element in Ḡ among those x ∈ G for which µ(x) > 0.
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Let Ḡ = (G, µ, Eµ) be an E -fuzzy group, and x ∈ G such that
µ(x) 6= 0. Then x · e = e · x = x, where e is a unit in Ḡ.
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group Ḡ if and only if x is idempotent in G (i.e., if x2 = x).

Theorem

The unit e of an E -fuzzy group Ḡ = (G, µ, Eµ) is a unique
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We say that x ∈ G is an idempotent element of a fuzzy group
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Theorem

Let Ḡ = (G, µ, Eµ) be an E -fuzzy group and x ∈ G , such that
µ(x) > 0. Then (x−1)−1 = x .

Corollary

If Ḡ = (G, µ, Eµ) is an E-fuzzy group and x ∈ G such that
µ(x) > 0, then µ(x) = µ(x−1).

Theorem

Let Ḡ = (G, µ, Eµ) be an E -fuzzy group such that for every
x ∈ G , µ(x) 6= 0. Let also t(x) be a term depending on a variable
x only. Then the fuzzy identity E (t(x), x) holds on Ḡ if and only if
the corresponding crisp identity t(x) = x holds on G.

Corollary

Let Ḡ = (G, µ, Eµ) be an E -fuzzy group such that for every x ∈ G ,
µ(x) 6= 0. Then algebra G satisfies identity (x · x−1) · x = x.
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Let Ḡ = (G, µ, Eµ) be an E -fuzzy group and x ∈ G , such that
µ(x) > 0. Then (x−1)−1 = x .

Corollary
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Corollary

Let Ḡ = (G, µ, Eµ) be an E -fuzzy group, such that for every
x ∈ G , µ(x) > 0. Then, the underlying algebra G = (G , · ,−1 , e)
fulfils:

e is a neutral and a unique idempotent element with respect
to the binary operation · ,
unary operation −1 is an involution, and

identity (x · x−1) · x = x holds.
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Let Ḡ = (G, µ, Eµ) be an E -fuzzy group, such that for every
x ∈ G , µ(x) > 0. Then, the underlying algebra G = (G , · ,−1 , e)
fulfils:

e is a neutral and a unique idempotent element with respect
to the binary operation · ,
unary operation −1 is an involution, and

identity (x · x−1) · x = x holds.
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We say that an E -fuzzy algebra Ā = (A, µ, Eµ) where the algebra
A = (A,F ) has a binary operation · in F is cancellative with
respect to this operation, if for all x , y , z ∈ A

µ(x) ∧ µ(y) ∧ µ(z) ∧ Eµ(x · y , x · z) 6 Eµ(y , z), and

µ(x) ∧ µ(y) ∧ µ(z) ∧ Eµ(y · x , z · x) 6 Eµ(y , z).

Theorem

An E -fuzzy group is cancellative.
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We say that an E -fuzzy algebra Ā = (A, µ, Eµ) where the algebra
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Theorem

Let Ḡ = (G, µ, Eµ) be an E -fuzzy group. Then for all
x , y , x1, ..., xn ∈ G

Eµ((xy)−1, y−1x−1) > µ(x) ∧ µ(y)

Eµ((x1 · · · xn)−1, x−1n · · · x−11 ) >
n∧

i=1
µ(xi ).
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Let Ḡ = (G, µ, Eµ) be an E -fuzzy group. Then for all
x , y , x1, ..., xn ∈ G

Eµ((xy)−1, y−1x−1) > µ(x) ∧ µ(y)

Eµ((x1 · · · xn)−1, x−1n · · · x−11 ) >
n∧

i=1
µ(xi ).
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Let
Eµ(a · x , b) and Eµ(y · a, b)

be formulas, where a, b ∈ G , µ(a) 6= 0, µ(b) 6= 0 and x , y are
unknown variables.

We say that these formulas are fuzzy
equations over the fuzzy group Ḡ. Fuzzy equation Eµ(a · x , b) is
solvable if there is an x0 ∈ G , such that

µ(a) ∧ µ(b) ∧ µ(x0) 6 Eµ(a · x0, b).

Analogously, fuzzy equation Eµ(y · a, b) is solvable if there is a
z0 ∈ G , such that

µ(a) ∧ µ(b) ∧ µ(y0) 6 Eµ(y0 · a, b).

Elements x0 and y0 are solutions of equations
Eµ(a · x , b) and Eµ(y · a, b), respectively. If µ(x0) = 0
(analogously µ(y0) = 0), then obviously x0 (y0) is a solution of the
corresponding equation; we say that it is a trivial solution.
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equations over the fuzzy group Ḡ. Fuzzy equation Eµ(a · x , b) is
solvable if there is an x0 ∈ G , such that

µ(a) ∧ µ(b) ∧ µ(x0) 6 Eµ(a · x0, b).

Analogously, fuzzy equation Eµ(y · a, b) is solvable if there is a
z0 ∈ G , such that

µ(a) ∧ µ(b) ∧ µ(y0) 6 Eµ(y0 · a, b).

Elements x0 and y0 are solutions of equations
Eµ(a · x , b) and Eµ(y · a, b), respectively.

If µ(x0) = 0
(analogously µ(y0) = 0), then obviously x0 (y0) is a solution of the
corresponding equation; we say that it is a trivial solution.
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equations over the fuzzy group Ḡ. Fuzzy equation Eµ(a · x , b) is
solvable if there is an x0 ∈ G , such that

µ(a) ∧ µ(b) ∧ µ(x0) 6 Eµ(a · x0, b).

Analogously, fuzzy equation Eµ(y · a, b) is solvable if there is a
z0 ∈ G , such that

µ(a) ∧ µ(b) ∧ µ(y0) 6 Eµ(y0 · a, b).

Elements x0 and y0 are solutions of equations
Eµ(a · x , b) and Eµ(y · a, b), respectively. If µ(x0) = 0
(analogously µ(y0) = 0), then obviously x0 (y0) is a solution of the
corresponding equation; we say that it is a trivial solution.
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Theorem

Let Ḡ = (G, µ, Eµ) be an E -fuzzy group. Then, fuzzy equations

(i) Eµ(a · x , b) and (ii) Eµ(y · a, b)

have nontrivial solutions for arbitrary a, b ∈ G , such that
µ(a) ∧ µ(b) 6= 0.
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E -fuzzy subgroup

Let ν : G → L be a nonempty fuzzy subset of a fuzzy set
µ : G → L, Eµ a fuzzy relation on µ, and E ν : G 2 → L a fuzzy
relations on G . We say that E ν is a restriction of Eµ to ν if

E ν(x , y) = Eµ(x , y) ∧ ν(x) ∧ ν(y).

Lemma

Let ν : G → L be a nonempty fuzzy subset of µ : G → L, and Eµ a
fuzzy relation on µ. Then a restriction E ν of Eµ to ν is a fuzzy
relation on ν.
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Proposition

If Eµ : A2 → L is a fuzzy equality on µ : A→ L, then the
restriction E ν of Eµ to a nonempty fuzzy subset ν of µ is a fuzzy
equivalence on ν. In addition, if µ and ν are fuzzy subalgebras of
an algebra A = (A,F ), and Eµ is compatible with operations in F ,
then also E ν is compatible.
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Let Ḡµ = (G, µ, Eµ) and Ḡν = (G, ν, E ν) be fuzzy groups over
the same algebra G = (G , · ,−1 , e). We say that Ḡν is an E -fuzzy
subgroup of E -fuzzy group Ḡµ, if ν is a fuzzy subset of µ and E ν

is a restriction of Eµ to ν.

Theorem

Let Ḡµ = (G, µ, Eµ) be an E -fuzzy group and E 1 : G 2 → L a
fuzzy relation on G , such that E 1 6 Eµ. Let E 1 fulfils all
properties of a fuzzy equality except reflexivity. In addition, let E 1

satisfies also the following condition:

E 1(x , y) = Eµ(x , y) ∧ E 1(x , x) ∧ E 1(y , y).

Now, let ν : G → L be defined by ν(x) := E 1(x , x), for every
x ∈ G . Then, Ḡν = (G, ν, E 1) is an E-fuzzy subgroup of E -fuzzy
group Ḡµ.
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Theorem

Let Ḡµ = (G, µ,Eµ) be an E -fuzzy group, ν : G → L a nonempty
fuzzy subset of µ, and E ν a restriction of Eµ to ν. Then the
structure Ḡν = (G, ν,E ν) is an E-fuzzy subgroup of Ḡµ if and only
if it is an E -fuzzy algebra.
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Theorem

{Ḡµi = (G, µi , Eµi ) | i ∈ I} be a nonempty family of E-fuzzy
subgroups of an E -fuzzy group Ḡµ = (G, µ, Eµ), where
G = (G , · ,−1 , e) is a given algebra. Further, for all x , y ∈ G , such
that x 6= y, and

∧
i∈I µi (x) > 0, let

Eµ(x , y) ∧
∧
i∈I
µi (x) ∧

∧
i∈I
µi (y) <

∧
i∈I
µi (x).

Finally, let δ =
⋂

i∈I µi and let E δ be the restriction of Eµ to δ.
Then the structure Ḡδ = (G, δ, E δ), is an E-fuzzy subgroup of
E -fuzzy group Ḡ.
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Cut properties

Theorem

Let Ḡµ = (G, µ, Eµ) be an E -fuzzy algebra. Then, Ḡµ is an
E -fuzzy group if and only if for every p ∈ L, the cut µp is a
subalgebra of G, the cut relation Eµ

p is a congruence on µp, and
the quotient structure µp/Eµ

p is a group.

Theorem

Let Ḡµ = (G, µ, Eµ) be an E -fuzzy group, such that µ(x) 6= 0 for
every x ∈ G , and let Eµ fulfils the following:

for all x , y ∈ G such that x 6= y , Eµ(x , y) <
∧
z∈G

µ(z).

Then, the underlying algebra G of G is a group.
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Example

G = (N0,⊕,−1 , 0), N0 = {0, 1, 2, . . .}
⊕ – a binary operation on N0:

x ⊕ y :=

{
0 if x = y
x + y if x 6= y

,

−1 – a unary operation on N0 defined by x−1 = x .
A neutral element in G is 0, but ⊕ is not associative, hence G is
not a group.
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Example
G = (N0,⊕,−1 , 0), N0 = {0, 1, 2, . . .}

⊕ – a binary operation on N0:

x ⊕ y :=

{
0 if x = y
x + y if x 6= y

,

−1 – a unary operation on N0 defined by x−1 = x .
A neutral element in G is 0, but ⊕ is not associative, hence G is
not a group.
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Example
G = (N0,⊕,−1 , 0), N0 = {0, 1, 2, . . .}
⊕ – a binary operation on N0:

x ⊕ y :=

{
0 if x = y
x + y if x 6= y

,

−1 – a unary operation on N0 defined by x−1 = x .
A neutral element in G is 0, but ⊕ is not associative, hence G is
not a group.

h
h

h
h h h . . . . . .h

h

�
��
D
DD
@
@

T
TT �
���
��

p1 p2 p3 p4 pn

r

1

0

L
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µ :=

(
0 1 2 3 . . . n . . .
1 p1 p2 p3 . . . pn . . .

)
.

Eµ 0 1 2 3 4 5 . . .

0 1 0 r 0 r 0 · · ·
1 0 p1 0 r 0 r · · ·
2 r 0 p2 0 r 0 · · ·
3 0 r 0 p3 0 r · · ·
4 r 0 r 0 p4 0 · · ·
5 0 r 0 r 0 p5 · · ·
...

...
...

...
...

...
...

The structure G = (G , µ,Eµ) is an E -fuzzy group.
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Cut subalgebras:

µ1 – the trivial one-element subalgebra {0}.
For every pn ∈ L, µpn = {0,n}.

⊕ 0 n
0 0 n
n n 0

;

Eµ
pn 0 n
0 1 0
n 0 1

.

For every pn ∈ L, the quotient structure µpn/Eµ
pn is a two-element

group, isomorphic to µpn .
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B. Šešelja, A. Tepavčević, Fuzzy Identities, Proc. of the 2009
IEEE International Conference on Fuzzy Systems 1660–1664.
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References
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Thank you for your attention!
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