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Extreme value theory is important statistical discipline used in many
sectors. For example: meteorology, hydrology, finance, traffic prediction,
management strategy, biomedical processing, ...

The extreme value theory is built on two basic theorems, which describe
the extreme value distribution. The first extreme value theorem is
Fisher-Tippet, Gnedenko theorem (1928, 1943) and the second extreme
value theorem is Balkema-Haan, Pickands theorem (1974, 1975).

The aim of this work is prove validity of these theorems on a non-additive
probability space.
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First extreme value theorem

Let X1,X2, ... be independent identically distribution (iid) real random
variables with distibution function F : R→ R, such that

F (x) = P (X < x) .

We define the maximum as
M1 = X1,

Mn = max {X1,X2, ...,Xn} , for n ≥ 2.
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First extreme value theorem

Theorem(Fisher-Tippett,1928; Gnedenko,1943)
Let X1,X2, ...Xn be a sequence of iid random variables. If there exist
normalizing constants an > 0 and bn ∈ R and some non-degenerate
distribution function H such that

lim
n→∞

P
(

Mn − bn

an

)
= H(x),

for ∀x ∈ R, then H belongs to the type of one of the following three types
of standard extreme value distributions:

1 Gumbel
2 Fréchet
3 Weibull
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Extreme value distributions

1 Gumbel
H(x) = exp

(
−e−( x−µ

σ )
)
, x ∈ R

2 Fréchet

H(x) =

{
0 pre x ≤ µ
exp
(
−
( x−µ

σ

)−α) pre x > µ,α > 0

3 Weibull

H(x) =

{
exp
(
−
(
−
( x−µ

σ

))−α) pre x < µ,α < 0
1 pre x ≥ µ
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Second extreme value theorem

Let X1,X2, ... are independent identically distribution (iid) real random
variables with distribution function F .
Consider the distribution of X conditionally on exceeding some high
threshold w :

Fw (x) = P (X − w < x |X ≥ w)

=
P (w ≤ X < x + w)

P (X ≥ w)

=
F (x + w)− F (w)

1− F (w)

for 0 < x < ω (F ), where ω (F ) = sup {x ; F (x) < 1}.

A point ω (F ) is called survival function (or tail of the distribution
function F ).
Function Fw is called excess distribution.
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Second extreme value theorem

Definition (Pareto distribution)
Random variable x has generalized Pareto distribution (GPD) if its
distribution function is of the form

Gα,β (x) =

 1−
(
1 + α x

β

)−1/α
if α 6= 0,

1− exp
(
− x
β

)
if α = 0,

where x ∈ 〈0,∞) if α ≥ 0 and x ∈ 〈0,−β/α〉 for α < 0.

Theorem(Balkema,de Haan and Pickands 1974/75)
Function Fw is an excess distribution function if and only if we can find a
positive measurable function β for every α > 0 such that

lim
w→ω(F )

sup
0≤x≤ω(F )−w

|Fw (x)− Gα,β (x)| = 0.
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Non-additive probability space - basic definition and notions

Definition
Let Ω be a nonempty set and S be a σ-algebra of subsets of Ω. A mapping
µ : S → [0, 1] is called a continous probability, if the following conditions
hold:
(i) µ(Ω) = 1, µ(∅) = 0,
(ii) Ai ↗ A⇒ µ(Ai )↗ µ(A),

(iii) Ai ↘ A⇒ µ(Ai )↘ µ(A),

∀Ai ,A ∈ S (i = 1, 2, . . .).

This measure is non-additive probability measure and probability space
(Ω,S, µ) is a non-additive probability space.

Renáta Bartková (UMB) EVT on non-additive prob. space 8 / 22



Non-additive probability space - basic definition and notions

Definition
Let Ω be a nonempty set and S be a σ-algebra of subsets of Ω. A mapping
µ : S → [0, 1] is called a continous probability, if the following conditions
hold:
(i) µ(Ω) = 1, µ(∅) = 0,
(ii) Ai ↗ A⇒ µ(Ai )↗ µ(A),

(iii) Ai ↘ A⇒ µ(Ai )↘ µ(A),

∀Ai ,A ∈ S (i = 1, 2, . . .).

This measure is non-additive probability measure and probability space
(Ω,S, µ) is a non-additive probability space.

Renáta Bartková (UMB) EVT on non-additive prob. space 8 / 22



Non-additive probability space - basic definition and notions
Definition
A mapping ξ : Ω→ R is called a random variable, if it is measurable, i. e.
ξ−1(I ) ∈ S for every interval of real numbers I .

Definition
Let ξ : Ω→ R be a random variable. Then the function Ḟ : R → 〈0, 1〉
defined by

Ḟ (x) = µ(ξ−1((−∞, x))), x ∈ R

is called a non-additive distribution function.

Proposition
Non-additive distribution function is a distribution function, i. e.

Ḟ is non - decreasing,

Ḟ is left continuous in any point x ∈ R,

limn→∞ Ḟ (x) = 1, limn→−∞ Ḟ (x) = 0.
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Non-additive probability space - basic definition and notions

If Ḟ : R→ 〈0, 1〉 is a distribution function, then there exits exactly one
probability measure λḞ : B(R)→ 〈0, 1〉 defined on the σ-algebra of all
Borel subsets of R such that

λḞ (〈a, b)) = Ḟ (b)− Ḟ (a)

for any a, b ∈ R, a ≤ b.

The corresponding integral with respect to λḞ :∫
R

fdλḞ =

∫ ∞
−∞

f (x)dḞ (x).
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Non-additive probability space - basic definition and notions
Definition
Let ξ : Ω→ R be a random variable on (Ω,S, µ), let Ḟ its non-additive
distribution function. We say that ξ is integrable, if there exists∫ ∞

−∞
tdḞ (t) = E (ξ).

We say that ξ is square integrable if there exists∫ ∞
−∞

t2dḞ (t).

In this case we define the dispersion D (ξ) by the formula

D(ξ) =

∫ ∞
−∞

t2dḞ (t)−
(∫ ∞
−∞

tdḞ (t)

)2

=

=

∫ ∞
−∞

(t − E (ξ))2 dḞ (t),
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Non-additive probability space - indepedence

In the classical case two random variables are independent if

P(ξ−1(A) ∩ η−1(B)) = P(ξ−1(A)).P(η−1(B)).

Definition
Let (Ω,S, µ) be non-additive probability space. Let maps ξ, η : Ω→ R be
random variables and functions Ḟ , Ġ be their distribution functions and
λḞ , λĠ be their probability measures.
Let map T : Ω→ R2, T (ω) = (ξ (ω) , η (ω)). We say that ξ, η are
independent, if

λT (C ) = λḞ × λĠ (C ) ,

for any C ∈ B(R2).
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Kolmogorov’s construction

Theorem (Riečan, 2013)
Let (ξn)n be a sequence of independent random variables in
(Ω,S, µ),Tn = (ξ1, ..., ξn), n = 1, 2, ...,

µTn : B(Rn)→ [0, 1],

µTn(A) = µ(T−1
n (A)),

A ∈ B(Rn), n = 1, 2, ...
Then for any n ∈ N, and any A ∈ B(Rn)

µTn+1(A× R) = µTn(A).
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Kolmogorov’s construction

Theorem (Riečan, 2013)
Let (ξn)n be a sequence of independent random variables on (Ω,S, µ),
Πn : RN → Rn, Πn((xi )

∞
i=1) = (x1, ..., xn),

C be the family of all sets of the form Π−1
n (A), for some n ∈ N,A ∈ B(Rn)

σ(C) be the σ-algebra generated by C.

Then there exists a probability measure

P : σ(C)→ [0, 1]

such that
P(Π−1

n (A)) = µTn(A)

for any n ∈ N,A ∈ B(Rn).
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Kolmogorov’s construction

Theorem (Riečan, 2013)
Let (ξn)n be a sequence of independent random variables on the space
(Ω,S, µ). Let

(RN , σ(C),P)

be the probability space constructed in previous theorem. Define

fn : RN → Rn

by the formula
fn((xi )

∞
i=1) = xn,

n = 1, 2, ... Then (fn)n is a sequence of independent random variables in
the space (RN , σ(C),P).
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Kolmogorov’s construction - summary

sequence (ξn)n be independent random variables in our non-additive
space (Ω,S, µ), where µ is a continuous probability

sequence (fn)n be independent random variables in the probability
space (RN , σ(C),P) with a σ-additive probability

the convergence of (ξn)n corresponds to convergence of (fn)n
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Convergence in distribution
Theorem (Riečan, 2013)
Let (ξn)n be a sequence of independent random variables on (Ω,S, µ).
Let (RN , σ(C),P) the corresponding probability space (Ω,S, µ).
Let (fn)n the sequence of random variables on (RN , σ(C),P) stated in
previous theorem. Let gn : Rn → R be a Borel measurable functions
(n = 1, 2, ...). Then

lim
n→∞

µ({ω ∈ Ω; gn(ξ1(ω), ..., ξn(ω)) < x}) = F (x)

if and only if

lim
n→∞

P({u ∈ RN ; gn(f1(u), ..., fn(u)) < x}) = F (x).

The convergence follows by the equality

µ({ω ∈ Ω; gn(ξ1(ω), ..., ξn(ω)) < x}) = P({u ∈ RN ; gn(f1(u), ..., fn(u)) < x}).
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First extreme value theorem on a non-additive probability
space

Let (ξn)n be a sequence of independent identically distributed on a
non-additive probability space (Ω,S, µ) with non-additive distribution
function Ḟ .

We define the maximum as

Ṁ1 = ξ1,

Ṁn = max {ξ1, ξ2, ..., ξn} , for n ≥ 2.
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First extreme value theorem on a non-additive probability
space

Fisher-Tippett, Gnedenko theorem
Let (ξn)n be a sequence of iid random variables on the (Ω,S, µ). If there
exist normalizing constants an > 0 and bn ∈ R and some non-degenerate
distribution function H such that

lim
n→∞

µ

({
ω ∈ Ω;

1
an

(
Ṁn (ω)− bn

)
< x

})
= H (x) ,

for x ∈ R. Then H belongs to the type of one of the following three types
of standard extreme value distributions:
1. Gumbel
2. Fréchet
3. Weibull
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Second extreme value theorem on a non-additive probability
space
Definition
Let threshold w > 0. We define excess distribution Ḟw such that

Ḟw (x) =
Ḟ (x + w)− Ḟ (w)

1− Ḟ (w)
,

for 0 < x < ω
(
Ḟ
)
, where ω

(
Ḟ
)

= sup
{

x ; Ḟ (x) < 1
}
.

Balkema,de Haan and Pickands theorem
Function Ḟw is an excess distribution function if and only if we can find a
positive measurable function β for every α > 0 such that

lim
w→ω(Ḟ)

sup
0≤x≤ω(Ḟ)−w

∣∣∣Ḟw (x)− Gα,β(w)
(x)
∣∣∣ = 0.

Renáta Bartková (UMB) EVT on non-additive prob. space 20 / 22



Bibliography

Coles, S. 2001. An Introduction to Statistical Modeling of Extreme Values.
Springer.

Embrechts, P., Klüppelberg, C., Mikosch, T. 1997 Modelling Extremal
Events: For Insurance and Finance. Springer-Verlag. ISSN 0172-4568, s.
152-180.

Gumbel, E. J. 1958. Statistics of Extremes. New York: Columbia University
Press. ISBN 0-486-43604-7.

Gudder, S. 2010. Quantum measure theory. In Math. Slovaca. 60, No. 5, s.
681-700.

Haan, L., Ferreira, A. 2006. Extreme Value Theory: An Introduction.
Springer.

Riečan, B. 2013. On a non-additive probability theory. In Fuzzy sets and
Systems (to appear).

Renáta Bartková (UMB) EVT on non-additive prob. space 21 / 22



Thank you.
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