Some new construction methods of additive generators of copulas Fuzzy Sets Theory and Applications 2014

Tomáš Bacigál, Radko Mesiar, Vadoud Najjari

Department of Mathematics and Descriptive Geometry Faculty of Civil Engineering Slovak University of Technology in Bratislava

28.1.2014

Multivariate Archimedean copulas

Overview of known construction methods

New construction methods

Archimedean copulas

Theorem (Moynihan 1978)

A function $C: [0, 1]^2 \rightarrow [0, 1]$ is an Archimedean copula if and only if there is a convex strictly decreasing function $f: [0, 1] \rightarrow [0, \infty]$, f(1) = 0, so that

$$C(x, y) = f^{(-1)}(f(x) + f(y)),$$

where the pseudo-inverse $f^{(-1)}$: $[0, \infty] \to [0, 1]$ is given by $f^{(-1)}(u) = f^{-1}(\min(u, f(0)))$.

We denote by \mathcal{F}_2 the class of all additive generators *f* of binary copulas.

n-ary Archimedean copulas

Theorem (McNeil and Nešlehová 2009)

Let $f: [0,1] \rightarrow [0,\infty]$ be a continuous strictly decreasing function such that f(1) = 0 (i.e., an additive generator of a continuous Archimedean t-norm). Then the function $C: [0,1]^n \rightarrow [0,1]$ given by

$$C(x_1,\ldots,x_n)=f^{(-1)}\left(\sum_{i=1}^n f(x_i)\right).$$

is an n-ary copula if and only if the function $g: [-\infty, 0] \rightarrow [0, 1]$ given by $g(u) = f^{(-1)}(-u)$ is (n-2)-times differentiable with non-negative derivatives $g', \ldots, g^{(n-2)}$ on $] - \infty, 0[$, and $g^{(n-2)}$ is convex.

We denote by \mathcal{F}_n the class of all additive generators *f* generating *n*-ary copulas, and by \mathcal{F}_{∞} all *universal* additive generators.

n-ary Archimedean copulas Theorem (McNeil and Nešlehová 2009)

Let $f: [0,1] \rightarrow [0,\infty]$ be a continuous strictly decreasing function such that f(1) = 0 (i.e., an additive generator of a continuous Archimedean t-norm). Then the function $C: [0,1]^n \rightarrow [0,1]$ given by

$$C(x_1,\ldots,x_n)=f^{(-1)}\left(\sum_{i=1}^n f(x_i)\right).$$

is an n-ary copula if and only if the function $g: [-\infty, 0] \rightarrow [0, 1]$ given by $g(u) = f^{(-1)}(-u)$ is (n-2)-times differentiable with non-negative derivatives $g', \ldots, g^{(n-2)}$ on $] - \infty, 0[$, and $g^{(n-2)}$ is convex.

Examples of universal generators

- $f_{\Pi}(x) = -\log x$ generates the product copula Π
- $f(x) = \frac{1}{x} 1$ is a generator of Ali-Mikhail-Haq copula

$$C(x_1,...,x_n) = \frac{1}{\sum_{i=1}^n \frac{1}{x_i} - (n-1)}$$

Mainstreams in construction

- Solutions of some problem. For example Frank, Plackett, Clayton and Gumbel copulas.
- Ad hoc. For example Yager copulas (subfamily of Yager t-norms)
- Aggregation functions preserving the classes of additive generators (of binary copula) or of their pseudo-inverses.
- Construction of additive generator of copulas (binary,*n*-ary,universal) from some a-priori given function.
 - ... from some a-priori given generator.

Proposition (Klement, Mesiar and Pap 2005)

Let φ : $[0, 1] \rightarrow [0, 1]$ be a concave automorphism (strictly increasing, not necessarily a bijection; Sempi and Durante 2005). Then for any $f \in \mathcal{F}_2$ also

 $f \circ \varphi \in \mathcal{F}_2.$

Example

Consider $f_{\Pi}(x) = -\log x$ and

$$\varphi(x) = a + (1 - a)x, \ a \in]0, 1[.$$

Then $f_{\Pi} \circ \varphi(x) = -\log(a + (1 - a)x), x \in [0, 1]$, and the corresponding copula is given by $C(x, y) = \max\left(0, \frac{(a+(1-a)x)(a+(1-a)y)-a}{1-a}\right).$

Proposition (Klement, Mesiar and Pap 2005)

Let φ : $[0, 1] \rightarrow [0, 1]$ be a concave automorphism (strictly increasing, not necessarily a bijection; Sempi and Durante 2005). Then for any $f \in \mathcal{F}_2$ also

 $f \circ \varphi \in \mathcal{F}_2.$

Example

Consider $f_{\Pi}(x) = -\log x$ and

$$\varphi(x) = a + (1 - a)x, \ a \in]0, 1[.$$

Then $f_{\Pi} \circ \varphi(x) = -\log(a + (1 - a)x), x \in [0, 1]$, and the corresponding copula is given by $C(x, y) = \max\left(0, \frac{(a + (1 - a)x)(a + (1 - a)y) - a}{1 - a}\right).$

Proposition (Klement, Mesiar and Pap 2005)

Let φ : $[0, 1] \rightarrow [0, 1]$ be a concave automorphism (strictly increasing, not necessarily a bijection; Sempi and Durante 2005). Then for any $f \in \mathcal{F}_2$ also

 $f \circ \varphi \in \mathcal{F}_2$

Proposition (Bacigál, Juráňová and Mesiar 2010)

Let φ : $[0,1] \to [0,1]$ be an automorphism of [0,1] such that its inverse φ^{-1} : $[0,1] \to [0,1]$ is absolutely monotone on]0,1[(i.e., $(\varphi^{-1})^{(k)}(x) \ge 0$ for any $k \in N$ and $x \in]0,1[$). Then for any $f \in \mathcal{F}_{\infty}$ also

$$f \circ \varphi \in \mathcal{F}_{\infty}$$

Constructions from a given generator <2> Proposition (Bacigál, Juráňová and Mesiar 2010) Let $\eta: [0, \infty] \rightarrow [0, \infty]$ be a convex automorphism of $[0, \infty]$. Then for any $f \in \mathcal{F}_2$ also

 $\eta \circ f \in \mathcal{F}_2$

Example

- $\eta(u) = u^{\lambda}$ with $f(x) = -\log(x)$ leads to Gumbel family.
- η(u) = λ^u − 1, λ ∈]1,∞[, and η(u) = λ^{-u} − 1, λ ∈]0, 1] gives what was proposed in Junker and May (2005).

Proposition

Let $n \in \{2, 3, ...\}$. Let $\eta : [0, \infty] \to [0, \infty]$ be an automorphism such that its inverse $\eta^{-1} : [0, \infty] \to [0, \infty]$ has (n - 2) derivatives (all derivatives) on $]0, \infty[$, $(\eta^{-1})^{(k)}(x) \ge 0$ for all $x \in]0, \infty[$ and $k \in \{1, ..., n - 2\}$ ($k \in N$) so that $(\eta^{-1})^{(n-2)}$ is a convex function. Then for any $f \in \mathcal{F}_n$ (any $f \in \mathcal{F}_\infty$) also

$$\eta\circ f\in\mathcal{F}_n\quad(\eta\circ f\in\mathcal{F}_\infty)$$

Constructions from a given generator <2> Proposition (Bacigál, Juráňová and Mesiar 2010) Let $\eta: [0, \infty] \rightarrow [0, \infty]$ be a convex automorphism of $[0, \infty]$. Then for any $f \in \mathcal{F}_2$ also

 $\eta \circ f \in \mathcal{F}_2$

Example

- $\eta(u) = u^{\lambda}$ with $f(x) = -\log(x)$ leads to Gumbel family.
- η(u) = λ^u − 1, λ ∈]1,∞[, and η(u) = λ^{-u} − 1, λ ∈]0, 1] gives what was proposed in Junker and May (2005).

Proposition

Let $n \in \{2, 3, ...\}$. Let $\eta : [0, \infty] \to [0, \infty]$ be an automorphism such that its inverse $\eta^{-1} : [0, \infty] \to [0, \infty]$ has (n - 2) derivatives (all derivatives) on $]0, \infty[$, $(\eta^{-1})^{(k)}(x) \ge 0$ for all $x \in]0, \infty[$ and $k \in \{1, ..., n - 2\}$ ($k \in N$) so that $(\eta^{-1})^{(n-2)}$ is a convex function. Then for any $f \in \mathcal{F}_n$ (any $f \in \mathcal{F}_\infty$) also

$$\eta \circ f \in \mathcal{F}_n \quad (\eta \circ f \in \mathcal{F}_\infty)$$

Proposition (Jágr, Komorníková and Mesiar 2010) Let $f \in \mathcal{F}_n$, $n \in \{2, 3, ...\} \cup \{+\infty\}$. Then $(f_{\lambda})_{\lambda \in]0,1]} \subset \mathcal{F}_n$, where $f_{\lambda} : [0, 1] \rightarrow [0, \infty]$ is given by

 $f_{\lambda}(\mathbf{x}) = f(\lambda \mathbf{x}) - f(\lambda)$

The parametric family $(f_{\lambda})_{\lambda \in]0,1]}$ is non-trivial (i.e., its members generates different copulas for different parameters) if and only if *f* does not belong to the Clayton family of additive generators.

Theorem (McNeil & Nešlehová 2009) For every $f \in \mathcal{F}_n$, the function $F:] - \infty, \infty[\rightarrow [0, 1]$ given by

$$F(x) = \begin{cases} 0 & \text{if } x \le 0, \\ 1 - \sum_{k=0}^{n-2} \frac{x^k g^{(k)}(-x)}{k!} - \frac{x^{n-1} g^{(n-1)}_-(-x)}{(n-1)!} & \text{otherwise} \end{cases}$$

is a distribution function of a positive random variable X (called also positive distance function), where $g_{-}^{(n-1)}$ is the left-derivative of order n-1.

Due to (Williamson 1956), if *F* is a positive distance function, then, for a fixed $n \in N$, the inverse transformation is given by

$$g(x) = \int_{-x}^{\infty} \left(1 + \frac{x}{t}\right)^{n-1} dF(t),$$

where $x \in]-\infty, 0]$, $g(-\infty) = 0$.

Theorem (McNeil & Nešlehová 2009) For every $f \in \mathcal{F}_n$, the function $F:] - \infty, \infty[\rightarrow [0, 1]$ given by

$$F(x) = \begin{cases} 0 & \text{if } x \le 0, \\ 1 - \sum_{k=0}^{n-2} \frac{x^k g^{(k)}(-x)}{k!} - \frac{x^{n-1} g^{(n-1)}_-(-x)}{(n-1)!} & \text{otherwise} \end{cases}$$

is a distribution function of a positive random variable X (called also positive distance function), where $g_{-}^{(n-1)}$ is the left-derivative of order n-1.

Due to (Williamson 1956), if *F* is a positive distance function, then, for a fixed $n \in N$, the inverse transformation is given by

$$g(x) = \int_{-x}^{\infty} \left(1 + \frac{x}{t}\right)^{n-1} dF(t),$$

where $x \in]-\infty, 0]$, $g(-\infty) = 0$.

Due to the two transformations, one can construct new additive generators of (*n*-dimensional) copulas as follows:

- take, for an arbitrary $m \in \{2, 3, \ldots\}$, an additive generator $f \in \mathcal{F}_m$
- introduce a positive distance function F
- possibly modify *F* into a new positive distance function *F* (e.g. *F*(*x*) = *F*(*x* − *a*) for a fixed constant *a* ∈]0,∞[)
- apply the Williamson transform to \tilde{F} , considering a fixed $n \in \{2, 3, ...\}$, obtaining a function $\tilde{g} \colon [-\infty, 0] \to [0, 1]$
- \tilde{f} linked to \tilde{g} is an additive generator from \mathcal{F}_n

Example

Consider $f_W \in \mathcal{F}_2$ with $g(x) = \max(0, x + 1)$. Then a positive distance function is given by

$$F(x) = 1 - g(-x) - xg'_{-}(-x) = egin{cases} 0 & x \leq 1 \ 1 & x > 1 \ \end{pmatrix},$$

which is the Dirac distribution function focused in point $x_0 = 1$. For an arbitrary $n \in \{2, 3, ...\}$, the Williamson transform defines

$$\tilde{g}(x) = \int_{-x}^{\infty} \left(1 + \frac{x}{t}\right)^{n-1} dF(t) = (1+x)^{n-1}, \quad x \in]-\infty, 0].$$

The related additive generator $\tilde{f}(x) = 1 - x^{\frac{1}{n-1}}$ belongs to \mathcal{F}_n . Observe that \tilde{f} generates a non-strict Clayton copula with parameter $\lambda = \frac{1}{n-1}$ (the weakest n-dimensional Archimedean copula).

Theorem

Let $h: [a, b] \to [-\infty, \infty]$ be a strictly decreasing convex continuous function. Then for any non-trivial bounded $[c, d] \subseteq [a, b]$ (if $h(b) = -\infty$ then $[c, d] \subset [a, b]$) the function $f_{c,d}: [0, 1] \to [0, \infty]$ given by

$$f_{c,d}(x) = h(c + x(d - c)) - h(d)$$

is an additive generator from \mathcal{F}_2 .

Constructions from a given function [1] Example Consider $h(x) = e^{-x}$. Then for any $c, d \in] -\infty, \infty[, c < d]$, $f_{c,d}(x) = e^{-(c+x(d-c))} - e^{-d} = e^{-c} \left(e^{-x(d-c)} - e^{-(d-c)} \right),$ $h(x) = e^{-1}$ $f_{-\frac{3}{2},-\frac{1}{2}}$ 0

which generates the same binary copula as $f_{\lambda}(x) = e^{-\lambda x} - e^{-\lambda}$ with $\lambda = d - c > 0$.

Consider
$$h(x) = \frac{1}{\arctan x}$$
. Then for any $[c, d] \subset [0, \infty[$,

$$f_{c,d}(x) = \frac{1}{\arctan(c + x(d - c))} - \frac{1}{\arctan d}$$

is an additive generator from \mathcal{F}_2 .

Example Consider $h(x) = -\log x$. Then for any $0 \le c < d < \infty$,

$$f_{c,d}(x)=-\log(c+x(d-c))-\log d=-\log(a+(1-a)x),$$

where $a = \frac{c}{d} \in [0, 1[$, is an additive generator from \mathcal{F}_2 .

Theorem

Let $h: [a, b] \to [-\infty, \infty]$ satisfy the same constraints. Then:

- If for $n \in \{3, 4...\}$, the inverse function h^{-1} has (n-2) derivatives on]h(b), h(a)[so that $(h^{-1})^{(k)}(x) \cdot (-1)^k \ge 0$ for all $k \in \{1, ..., n-2\}$ and $x \in]h(b)$, h(a)[, and $(h^{-1})^{(n-2)}(-1)^k$ is convex, then for any bounded interval $[c, d] \subset [a, b]$ (if $h(b) = -\infty$ then d < b), the function $f_{c,d}$ is an additive generator from \mathcal{F}_n .
- If the inverse function h⁻¹ is totally monotone on]h(b), h(a)[, then f_{c,d} belongs to F_∞.

Example

Define $h(x) = -x^{0.4}$. Obviously $(h^{-1})^{(4)}(u) = -\frac{15}{16}(-u)^{-1.5}$ is not convex, thus for $0 \le c < d < \infty$, function $f_{c,d}(x) = d^{0.4} - (c + (d - c)x)^{0.4}$ generates a 3-dimensional copula but not a 4-dimensional copula. Observe that $f_{0,d}(x) = d^{0.4}(1 - x^{0.4})$ generates the Clayton copula with parameter -0.4.

Theorem

Let $h: [a, b] \to [-\infty, \infty]$ satisfy the same constraints. Then:

- If for $n \in \{3, 4...\}$, the inverse function h^{-1} has (n 2)derivatives on]h(b), h(a)[so that $(h^{-1})^{(k)}(x) \cdot (-1)^k \ge 0$ for all $k \in \{1, ..., n - 2\}$ and $x \in]h(b)$, h(a)[, and $(h^{-1})^{(n-2)}(-1)^k$ is convex, then for any bounded interval $[c, d] \subset [a, b]$ (if $h(b) = -\infty$ then d < b), the function $f_{c,d}$ is an additive generator from \mathcal{F}_n .
- If the inverse function h⁻¹ is totally monotone on]h(b), h(a)[, then f_{c,d} belongs to F_∞.

Example

Define $h(x) = -x^{0.4}$. Obviously $(h^{-1})^{(4)}(u) = -\frac{15}{16}(-u)^{-1.5}$ is not convex, thus for $0 \le c < d < \infty$, function $f_{c,d}(x) = d^{0.4} - (c + (d - c)x)^{0.4}$ generates a 3-dimensional copula but not a 4-dimensional copula. Observe that $f_{0,d}(x) = d^{0.4}(1 - x^{0.4})$ generates the Clayton copula with parameter -0.4.

Theorem Let $h: [a, b] \to [-\infty, \infty]$ satisfy the same constraints. Let $\varphi: [\alpha, \beta] \to [a, b]$ be a concave increasing bijection. Then also the function $h \circ \varphi: [\alpha, \beta] \to [-\infty, \infty]$ satisfies the constraints, i.e., for any bounded interval $[\gamma, \delta] \subseteq [\alpha, \beta]$ the function

$$f_{\gamma,\delta}(\mathbf{x}) = h(\varphi(\gamma + (\delta - \gamma)\mathbf{x})) - h(\varphi(\delta))$$

is an additive generator from \mathcal{F}_2 .

Example

Let again $h(x) = -x^{0.4}$ and introduce $\varphi(x) = \sqrt{x}$ (concave increasing bijection).

- due to <1>, $f_{c,d} \circ \varphi_{|[0,1]}(x) = d^{0.4} (c + (d c)\sqrt{x})^{0.4}$,
- due to [1], $h \circ \varphi(x) = -x^{0.2}$, we have

$$f_{\gamma,\delta}(x) = \delta^{0.2} - (\gamma + (\delta - \gamma)x)^{0.2}$$

Note that both $f_{c,d} \circ \varphi_{|[0,1]}$ and $f_{\gamma,\delta}$ are additive generators from \mathcal{F}_2 .

Theorem Let $h: [a, b] \to [-\infty, \infty]$ satisfy the same constraints. Let $\varphi: [\alpha, \beta] \to [a, b]$ be a concave increasing bijection. Then also the function $h \circ \varphi: [\alpha, \beta] \to [-\infty, \infty]$ satisfies the constraints, i.e., for any bounded interval $[\gamma, \delta] \subseteq [\alpha, \beta]$ the function

$$f_{\gamma,\delta}(\mathbf{x}) = h(\varphi(\gamma + (\delta - \gamma)\mathbf{x})) - h(\varphi(\delta))$$

is an additive generator from \mathcal{F}_2 .

Example

Let again $h(x) = -x^{0.4}$ and introduce $\varphi(x) = \sqrt{x}$ (concave increasing bijection).

- due to <1>, $f_{c,d} \circ \varphi_{|[0,1]}(x) = d^{0.4} (c + (d c)\sqrt{x})^{0.4}$,
- due to [1], $h \circ \varphi(x) = -x^{0.2}$, we have

$$f_{\gamma,\delta}(\mathbf{x}) = \delta^{0.2} - (\gamma + (\delta - \gamma)\mathbf{x})^{0.2}$$

Note that both $f_{c,d} \circ \varphi_{|[0,1]}$ and $f_{\gamma,\delta}$ are additive generators from \mathcal{F}_2 .

Construction by gluing two generators

Theorem

Let $f_1, f_2 \in \mathcal{F}_2$ and $k \in]0, 1[$ be given. Define a function $f: [0, 1] \rightarrow [0, \infty]$, denoted also by $f = f_1 *_k f_2$, by

$f(x) = \begin{cases} \frac{f_{1}(x)}{f_{1}(k)} \\ \frac{f_{2}(x)}{f_{2}(k)} \end{cases}$	if $x \in [0, k]$, otherwise	whenever $rac{f_{1-}'(k)}{f_1(k)} \leq rac{f_{2-}'(k)}{f_2(k)}$
$f(x) = \begin{cases} \frac{f_{2}(x)}{f_{2}(k)} \\ \frac{f_{1}(x)}{f_{1}(k)} \end{cases}$	if $x \in [0, k]$, otherwise.	otherwise

Then $f \in \mathcal{F}_2$.

Note that due to the Williamson transform, this approach can be extended for any dimension *n*.

Construction by gluing two generators Example Consider $f_W(x) = 1 - x$, $f_{\Pi}(x) = -\log x$. For any fixed $k \in]0, 1[$,

 $\frac{f'_W(k)}{f_W(k)} = \frac{-1}{1-k} \ge \frac{1}{k \log k} = \frac{f'_{\Pi}(k)}{f_{\Pi}(k)}.$ Therefore, $f_k = f_W *_k f_{\Pi}$ is given by

$$f_k(x) = \begin{cases} \log_k(x) & \text{if } x \in [0, k], \\ \frac{1-x}{1-k} & \text{otherwise.} \end{cases}$$

The corresponding Archimedean copula $C_k \in C_2$ is given by

$$C(x) = \begin{cases} xy & \text{if } (x,y) \in [0,k]^2, \\ x+y-1 & \text{if } x+y \ge k+1, \\ x \cdot k^{\frac{1-y}{1-k}} & \text{if } x \le k < y, \\ y \cdot k^{\frac{1-x}{1-k}} & \text{if } y \le k < x, \\ k^{\frac{2-x-y}{1-k}} & \text{otherwise.} \end{cases}$$

The family $(C_k)_{k \in]0,1[}$ is continuous and strictly increasing in parameter k, with limit members $C_0 = W$ and $C_1 = \Pi$.

Construction by gluing two generators Example

Consider
$$f_W(x) = 1 - x$$
, $f_{\Pi}(x) = -\log x$. For any fixed $k \in]0, 1[$, $f'_W(k) = \frac{-1}{1-k} \ge \frac{1}{k\log k} = \frac{f'_{\Pi}(k)}{f_{\Pi}(k)}$. Therefore, $f_k = f_W *_k f_{\Pi}$ is given by

$$f_k(x) = \begin{cases} \log_k(x) & \text{if } x \in [0, k], \\ \frac{1-x}{1-k} & \text{otherwise.} \end{cases}$$

Conclusions

- We have reviewed some construction methods known in the literature for additive generators of copulas (2-dimensional, *n*-dimensional, for any dimension), including a method based on the Williamson transform.
- While these methods are based on an a priori knowledge of some additive generators, we have introduced a rather general construction method based on a given special real function *h*, and yielding 2-parameter families of additive generators.
- Moreover, we have introduced a parametric family of methods gluing two additive generators from *F*₂ into a new additive generator from *F*₂.