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Archimedean copulas

Theorem (Moynihan 1978)
A function C : [0,1]2 → [0,1] is an Archimedean copula if and only if
there is a convex strictly decreasing function f : [0,1]→ [0,∞],
f (1) = 0, so that

C(x , y) = f (−1)(f (x) + f (y)),

where the pseudo-inverse f (−1) : [0,∞]→ [0,1] is given by
f (−1)(u) = f−1 (min(u, f (0))) .

We denote by F2 the class of all additive generators f of binary
copulas.
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n-ary Archimedean copulas

Theorem (McNeil and Nešlehová 2009)
Let f : [0,1]→ [0,∞] be a continuous strictly decreasing function
such that f (1) = 0 (i.e., an additive generator of a continuous
Archimedean t-norm). Then the function C : [0,1]n → [0,1] given by

C(x1, . . . , xn) = f (−1)

(
n∑

i=1

f (xi )

)
.

is an n-ary copula if and only if the function g : [−∞,0]→ [0,1] given
by g(u) = f (−1)(−u) is (n − 2)-times differentiable with non-negative
derivatives g′, . . . ,g(n−2) on ]−∞,0[, and g(n−2) is convex.

We denote by Fn the class of all additive generators f generating
n-ary copulas, and by F∞ all universal additive generators.
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Examples of universal generators

• fΠ(x) = − log x generates the product copula Π

• f (x) = 1
x − 1 is a generator of Ali-Mikhail-Haq copula

C(x1, . . . , xn) =
1∑n

i=1
1
xi
− (n − 1)
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Mainstreams in construction

• Solutions of some problem. For example Frank, Plackett, Clayton
and Gumbel copulas.

• Ad hoc. For example Yager copulas (subfamily of Yager t-norms)
• Aggregation functions preserving the classes of additive

generators (of binary copula) or of their pseudo-inverses.
• Construction of additive generator of copulas

(binary,n-ary,universal) from some a-priori given function.
• ... from some a-priori given generator.
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Constructions from a given generator <1>

Proposition (Klement,Mesiar and Pap 2005)
Let ϕ : [0,1]→ [0,1] be a concave automorphism (strictly increasing,
not necessarily a bijection; Sempi and Durante 2005). Then for any
f ∈ F2 also

f ◦ ϕ ∈ F2.

Example
Consider fΠ(x) = − log x and

ϕ(x) = a + (1− a)x , a ∈]0,1[.

Then fΠ ◦ ϕ(x) = − log(a + (1− a)x), x ∈ [0,1], and the
corresponding copula is given by
C(x , y) = max

(
0, (a+(1−a)x)(a+(1−a)y)−a

1−a

)
.
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Constructions from a given generator <1>

Proposition (Klement,Mesiar and Pap 2005)
Let ϕ : [0,1]→ [0,1] be a concave automorphism (strictly increasing,
not necessarily a bijection; Sempi and Durante 2005). Then for any
f ∈ F2 also

f ◦ ϕ ∈ F2

Proposition (Bacigál, Juráňová and Mesiar 2010)
Let ϕ : [0,1]→ [0,1] be an automorphism of [0,1] such that its
inverse ϕ−1 : [0,1]→ [0,1] is absolutely monotone on ]0,1[ (i.e.,
(ϕ−1)(k)(x) ≥ 0 for any k ∈ N and x ∈]0,1[). Then for any f ∈ F∞
also

f ◦ ϕ ∈ F∞
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Constructions from a given generator <2>
Proposition (Bacigál, Juráňová and Mesiar 2010)
Let η : [0,∞]→ [0,∞] be a convex automorphism of [0,∞]. Then for
any f ∈ F2 also

η ◦ f ∈ F2

Example

• η(u) = uλ with f (x) = − log(x) leads to Gumbel family.
• η(u) = λu − 1, λ ∈]1,∞[, and η(u) = λ−u − 1, λ ∈]0,1] gives

what was proposed in Junker and May (2005).

Proposition
Let n ∈ {2,3, . . .}. Let η : [0,∞]→ [0,∞] be an automorphism such
that its inverse η−1 : [0,∞]→ [0,∞] has (n − 2) derivatives (all
derivatives) on ]0,∞[, (η−1)(k)(x) ≥ 0 for all x ∈]0,∞[ and
k ∈ {1, . . . ,n − 2} (k ∈ N) so that (η−1)(n−2) is a convex function.
Then for any f ∈ Fn (any f ∈ F∞) also

η ◦ f ∈ Fn (η ◦ f ∈ F∞)
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Constructions from a given generator <3>

Proposition (Jágr, Komorníková and Mesiar 2010)
Let f ∈ Fn, n ∈ {2,3, . . .} ∪ {+∞}. Then (fλ)λ∈]0,1] ⊂ Fn, where
fλ : [0,1]→ [0,∞] is given by

fλ(x) = f (λx)− f (λ)

The parametric family (fλ)λ∈]0,1] is non-trivial (i.e., its members
generates different copulas for different parameters) if and only if f
does not belong to the Clayton family of additive generators.
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Constructions from a given generator <4>

Theorem (McNeil & Nešlehová 2009)
For every f ∈ Fn, the function F : ]−∞,∞[→ [0,1] given by

F (x) =

{
0 if x ≤ 0,

1−
∑n−2

k=0
xk g(k)(−x)

k! − xn−1g(n−1)
− (−x)

(n−1)! otherwise

is a distribution function of a positive random variable X (called also
positive distance function), where g(n−1)

− is the left-derivative of order
n − 1.

Due to (Williamson 1956), if F is a positive distance function, then, for
a fixed n ∈ N, the inverse transformation is given by

g(x) =

∫ ∞
−x

(
1 +

x
t

)n−1
dF (t),

where x ∈]−∞,0], g(−∞) = 0.
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Constructions from a given generator <4>

Due to the two transformations, one can construct new additive
generators of (n-dimensional) copulas as follows:

• take, for an arbitrary m ∈ {2,3, . . .}, an additive generator f ∈ Fm

• introduce a positive distance function F
• possibly modify F into a new positive distance function F̃ (e.g.

F̃ (x) = F (x − a) for a fixed constant a ∈]0,∞[)
• apply the Williamson transform to F̃ , considering a fixed

n ∈ {2,3, . . .}, obtaining a function g̃ : [−∞,0]→ [0,1]

• f̃ linked to g̃ is an additive generator from Fn
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Constructions from a given generator <4>

Example
Consider fW ∈ F2 with g(x) = max(0, x + 1). Then a positive distance
function is given by

F (x) = 1− g(−x)− xg′−(−x) =

{
0 x ≤ 1
1 x > 1

,

which is the Dirac distribution function focused in point x0 = 1. For an
arbitrary n ∈ {2,3, . . .}, the Williamson transform defines

g̃(x) =

∫ ∞
−x

(
1 +

x
t

)n−1
dF (t) = (1 + x)n−1, x ∈]−∞,0].

The related additive generator f̃ (x) = 1− x
1

n−1 belongs to Fn.
Observe that f̃ generates a non-strict Clayton copula with parameter
λ = 1

n−1 (the weakest n-dimensional Archimedean copula).
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Constructions from a given generator <4>
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Constructions from a given function [1]

Theorem
Let h : [a,b]→ [−∞,∞] be a strictly decreasing convex continuous
function. Then for any non-trivial bounded [c,d ] ⊆ [a,b] (if
h(b) = −∞ then [c,d ] ⊂ [a,b[) the function fc,d : [0,1]→ [0,∞] given
by

fc,d (x) = h(c + x(d − c))− h(d)

is an additive generator from F2.
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Constructions from a given function [1]
Example
Consider h(x) = e−x . Then for any c,d ∈]−∞,∞[, c < d,

fc,d (x) = e−(c+x(d−c)) − e−d = e−c
(

e−x(d−c) − e−(d−c)
)
,

which generates the same binary copula as fλ(x) = e−λx − e−λ with
λ = d − c > 0. 17 / 25
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Constructions from a given function [1]
Example
Consider h(x) = 1

arctan x . Then for any [c,d ] ⊂ [0,∞[,

fc,d (x) =
1

arctan(c + x(d − c))
− 1

arctan d

is an additive generator from F2.
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Constructions from a given function [1]
Example
Consider h(x) = − log x. Then for any 0 ≤ c < d <∞,

fc,d (x) = − log(c + x(d − c))− log d = −log(a + (1− a)x),

where a = c
d ∈ [0,1[, is an additive generator from F2.
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Constructions from a given function [1]
Theorem
Let h : [a,b]→ [−∞,∞] satisfy the same constraints. Then:

• If for n ∈ {3,4 . . .}, the inverse function h−1 has (n − 2)
derivatives on ]h(b),h(a)[ so that (h−1)(k)(x) · (−1)k ≥ 0 for all
k ∈ {1, . . . ,n − 2} and x ∈]h(b),h(a)[, and (h−1)(n−2)(−1)k is
convex, then for any bounded interval [c,d ] ⊂ [a,b] (if
h(b) = −∞ then d < b), the function fc,d is an additive generator
from Fn.

• If the inverse function h−1 is totally monotone on ]h(b),h(a)[,
then fc,d belongs to F∞.

Example
Define h(x) = −x0.4. Obviously (h−1)(4)(u) = − 15

16 (−u)−1.5 is not
convex, thus for 0 ≤ c < d <∞, function
fc,d (x) = d0.4 − (c + (d − c)x)0.4 generates a 3-dimensional copula
but not a 4-dimensional copula.
Observe that f0,d (x) = d0.4(1− x0.4) generates the Clayton copula
with parameter −0.4.
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Constructions from a given function [2]
Theorem
Let h : [a,b]→ [−∞,∞] satisfy the same constraints. Let
ϕ : [α, β]→ [a,b] be a concave increasing bijection. Then also the
function h ◦ ϕ : [α, β]→ [−∞,∞] satisfies the constraints, i.e., for any
bounded interval [γ, δ] ⊆ [α, β] the function

fγ,δ(x) = h
(
ϕ(γ + (δ − γ)x)

)
− h
(
ϕ(δ)

)
is an additive generator from F2.

Example
Let again h(x) = −x0.4 and introduce ϕ(x) =

√
x (concave increasing

bijection).
- due to <1>, fc,d ◦ ϕ|[0,1](x) = d0.4 − (c + (d − c)

√
x)0.4,

- due to [1], h ◦ ϕ(x) = −x0.2, we have

fγ,δ(x) = δ0.2 − (γ + (δ − γ)x)0.2

Note that both fc,d ◦ ϕ|[0,1] and fγ,δ are additive generators from F2.
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Construction by gluing two generators

Theorem
Let f1, f2 ∈ F2 and k ∈]0,1[ be given. Define a function
f : [0,1]→ [0,∞], denoted also by f = f1 ∗k f2, by

f (x) =

{
f1(x)
f1(k) if x ∈ [0, k ],
f2(x)
f2(k) otherwise

whenever
f ′1−(k)

f1(k)
≤

f ′2−(k)

f2(k)

f (x) =

{
f2(x)
f2(k) if x ∈ [0, k ],
f1(x)
f1(k) otherwise.

otherwise

Then f ∈ F2.
Note that due to the Williamson transform, this approach can be
extended for any dimension n.
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Construction by gluing two generators
Example
Consider fW (x) = 1− x, fΠ(x) = − log x. For any fixed k ∈]0,1[,
f ′W (k)
fW (k) = −1

1−k ≥
1

k log k =
f ′Π(k)
fΠ(k) . Therefore, fk = fW ∗k fΠ is given by

fk (x) =

{
logk (x) if x ∈ [0, k ],
1−x
1−k otherwise.

The corresponding Archimedean copula Ck ∈ C2 is given by

C(x) =



xy if (x , y) ∈ [0, k ]2,

x + y − 1 if x + y ≥ k + 1,

x · k
1−y
1−k if x ≤ k < y ,

y · k
1−x
1−k if y ≤ k < x ,

k
2−x−y

1−k otherwise.

The family (Ck )k∈]0,1[ is continuous and strictly increasing in
parameter k, with limit members C0 = W and C1 = Π.
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Conclusions

• We have reviewed some construction methods known in the
literature for additive generators of copulas (2-dimensional,
n-dimensional, for any dimension), including a method based on
the Williamson transform.

• While these methods are based on an a priori knowledge of
some additive generators, we have introduced a rather general
construction method based on a given special real function h,
and yielding 2-parameter families of additive generators.

• Moreover, we have introduced a parametric family of methods
gluing two additive generators from F2 into a new additive
generator from F2.
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