Fuzzy logic and the similarity-based interpretation of fuzzy sets

Thomas Vetterlein

Dept. for Knowledge-Based Mathematical Systems, Johannes Kepler University (Linz)

Jan. 2012

Our topic:

Reasoning under vagueness

We intend to formalise reasoning about properties which we express in natural language, without using any measuring devices.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Vagueness

 Properties formulated in natural language do not require special methods if considered on the corresponding level of granularity.

Vagueness

- Properties formulated in natural language do not require special methods if considered on the corresponding level of granularity.
- ► A property is vague relative to a finer level of granularity.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Vagueness

- Properties formulated in natural language do not require special methods if considered on the corresponding level of granularity.
- ► A property is vague relative to a finer level of granularity.

The challenge of vagueness:

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

► Combining a coarse and a fine level of granularity: Finding a reasoning system for reasoning with qualitative information in a quantitative framework.

A simple approach

Our quantitative framework: a set of worlds W.

A simple approach

◆□▶ ◆舂▶ ★逹▶ ★逹▶ ─ 注

Our quantitative framework: a set of worlds W.

The qualitative information: for each vague property, its set of **prototypes** in W.

• We consider implications of the form:

 $\alpha_1,\ldots,\alpha_n\to\beta$

"A situation well described by α_1 and ... and α_n is also well described by β ."

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• We consider implications of the form:

 $\alpha_1,\ldots,\alpha_n\to\beta$

"A situation well described by α_1 and ... and α_n is also well described by β ."

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▶ These statements cannot be further combined with others.

• We consider implications of the form:

 $\alpha_1,\ldots,\alpha_n\to\beta$

"A situation well described by α_1 and ... and α_n is also well described by β ."

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- ▶ These statements cannot be further combined with others.
- $\alpha_1, \ldots, \alpha_n, \beta$ may contain the connectives \wedge or \vee .

• We consider implications of the form:

 $\alpha_1,\ldots,\alpha_n\to\beta$

"A situation well described by α_1 and ... and α_n is also well described by β ."

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- ▶ These statements cannot be further combined with others.
- $\alpha_1, \ldots, \alpha_n, \beta$ may contain the connectives \land or \lor .
- Contradiction is expressible by the constant \perp .

PGL: Positive Gentzenian Logic

Formulas:

Propositions are built up from variables and \bot, \top by means of \land, \lor . Implications are of the form $\alpha_1, \ldots, \alpha_n \to \beta$.

PGL: Positive Gentzenian Logic

Formulas:

Propositions are built up from variables and \bot, \top by means of \land, \lor . Implications are of the form $\alpha_1, \ldots, \alpha_n \to \beta$.

Interpretation:

A model for PGL is a non-empty set W, called a set of worlds. An evaluation v maps each proposition to a subset of W, preserving \land, \lor, \bot, \top .

An implication $\alpha \wedge \beta \rightarrow \gamma \vee \delta$ is satisfied by v if

 $v(\alpha) \cap v(\beta) \subseteq v(\gamma) \cup v(\delta).$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

PGL: Positive Gentzenian Logic

Formulas:

Propositions are built up from variables and \bot, \top by means of \land, \lor . Implications are of the form $\alpha_1, \ldots, \alpha_n \to \beta$.

Interpretation:

A model for PGL is a non-empty set W, called a set of worlds. An evaluation v maps each proposition to a subset of W, preserving \land, \lor, \bot, \top . An implication $\alpha \land \beta \to \gamma \lor \delta$ is satisfied by v if

 $v(\alpha) \cap v(\beta) \subseteq v(\gamma) \cup v(\delta).$

PGL is the Logic of Distributive 0, 1-Lattices.

PGL: a proof system (Font, Verdú)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

A graded approach

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Our quantitative framework: a similarity space (W, s).

A graded approach

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Our quantitative framework: a similarity space (W, s).

The qualitative information: sets of **prototypes** of vague properties.

Approximate reasoning (RUSPINI)

 $\alpha \xrightarrow{d} \beta$

We consider graded implications:

Connectives in approximate reasoning

The statement

$$\alpha \land \beta \xrightarrow{d} \gamma \lor \delta,$$

reads as:

"If α and β fit to some degree $\geq t \in [0, 1]$, then γ or δ fit to the degree $\geq t \odot d$."

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Connectives in approximate reasoning

The statement

$$\alpha \land \beta \xrightarrow{d} \gamma \lor \delta,$$

reads as:

"If
$$\alpha$$
 and β fit to some degree $\geq t \in [0, 1]$,
then γ or δ fit to the degree $\geq t \odot d$."

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

But how should we interpret the "and" and the "or" here?

Logics for approximate reasoning (Godo, Esteva, Rodríguez, Dubois, Prade, ...)

In a (version of) approximate reasoning, we interpret

$$\alpha \land \beta \xrightarrow{d} \gamma \lor \delta$$

w.r.t. to an evaluation v as

"If a world is similar to $v(\alpha) \cap v(\beta)$ to the degree t, then to $v(\gamma) \cup v(\delta)$ to the degree $\geq t \odot d$."

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Approximate reasoning for reasoning under vagueness

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Benefits:

▶ Clear, transparent framework.

Approximate reasoning for reasoning under vagueness

Benefits:

▶ Clear, transparent framework.

Limitations:

► (Complete) axiomatisation in important cases not known.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

▶ Rules too weak for certain applications.

We want to understand $\alpha \wedge \beta \xrightarrow{d} \gamma \vee \delta$ as

"If α and β fit to the degree t, then γ or δ fit to the degree $\geq t \odot d$."

and interpret it as

"If a world is similar to α and β to the degree t, then to γ or δ to the degree $\geq t \odot d$."

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We want to understand $\alpha \wedge \beta \xrightarrow{d} \gamma \vee \delta$ as

"If a situation fits both to α and β to the degree $\geq t$, it fits either γ or δ to the degree $\geq t \odot d$."

and interpret it as

"If a world is similar both to α and to β to the degree t, then either to γ or δ to the degree $\geq t \odot d$."

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We want to understand $\alpha \wedge \beta \xrightarrow{d} \gamma \vee \delta$ as

"If a situation fits both to α and β to the degree $\geq t$, it fits either γ or δ to the degree $\geq t \odot d$."

and interpret it as

"If a world is similar both to α and to β to the degree t, then either to γ or δ to the degree $\geq t \odot d$."

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Then:

▶ implicit connection of truth degrees by min/max.

We want to understand $\alpha \wedge \beta \xrightarrow{d} \gamma \vee \delta$ as

"If a situation fits both to α and β to the degree $\geq t$, it fits either γ or δ to the degree $\geq t \odot d$."

and interpret it as

"If a world is similar both to α and to β to the degree t, then either to γ or δ to the degree $\geq t \odot d$."

Then:

- ▶ implicit connection of truth degrees by min/max.
- ▶ much like FL, where degrees are similarities.

gPGL: Graded Positive Gentzenian Logic

Formulas:

Proposition are built up from variables and \bot, \top

by means of \land, \lor .

Implications are of the form $\alpha_1, \ldots, \alpha_n \xrightarrow{d} \beta$, where $d \in [0, 1]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

gPGL: Graded Positive Gentzenian Logic

Formulas:

Proposition are built up from variables and \perp, \top by means of \land, \lor .

Implications are of the form $\alpha_1, \ldots, \alpha_n \xrightarrow{d} \beta$, where $d \in [0, 1]$.

Interpretation:

A model for PGL is a non-empty set W, called a set of worlds. An evaluation v maps each proposition to a subset of W, preserving \land, \lor, \bot, \top . An implication $\alpha \wedge \beta \xrightarrow{d} \gamma \vee \delta$ is satisfied by v if

$$U_t(v(\alpha)) \cap U_t(v(\beta)) \subseteq U_{d \odot t}(v(\gamma)) \cup U_{d \odot t}(v(\delta))$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

for any $t \in [0, 1]$.

Rules for gPGL

$$\begin{split} & \perp \stackrel{d}{\rightarrow} \alpha \qquad \alpha \stackrel{d}{\rightarrow} \alpha \qquad \alpha \stackrel{d}{\rightarrow} \top \qquad \alpha \stackrel{0}{\rightarrow} \beta \\ & \frac{\Gamma \stackrel{d}{\rightarrow} \alpha}{\Gamma, \beta \stackrel{d}{\rightarrow} \alpha} \qquad \frac{\Gamma, \alpha, \beta \stackrel{d}{\rightarrow} \gamma}{\Gamma, \alpha \land \beta \stackrel{d}{\rightarrow} \gamma} \qquad \frac{\Gamma \stackrel{d}{\rightarrow} \alpha \qquad \Gamma \stackrel{d}{\rightarrow} \beta}{\Gamma \stackrel{d}{\rightarrow} \alpha \land \beta} \\ & \frac{\Gamma, \alpha \stackrel{d}{\rightarrow} \gamma \quad \Gamma, \beta \stackrel{d}{\rightarrow} \gamma}{\Gamma, \alpha \lor \beta \stackrel{d}{\rightarrow} \gamma} \qquad \frac{\Gamma \stackrel{d}{\rightarrow} \alpha}{\Gamma \stackrel{d}{\rightarrow} \alpha \lor \beta} \qquad \frac{\Gamma \stackrel{d}{\rightarrow} \beta}{\Gamma \stackrel{d}{\rightarrow} \alpha \lor \beta} \\ & \frac{\Gamma \stackrel{d}{\rightarrow} \alpha}{\Gamma \stackrel{c}{\rightarrow} \alpha} \text{ where } c < d \qquad \frac{\Gamma_{1} \stackrel{c}{\rightarrow} \alpha \quad \Gamma_{2}, \alpha \stackrel{d}{\rightarrow} \beta}{\Gamma_{1}, \Gamma_{2} \stackrel{c \odot d}{\rightarrow} \beta} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Rules for gPGL

$$\begin{array}{cccc} \bot \stackrel{d}{\rightarrow} \alpha & \alpha \stackrel{d}{\rightarrow} \alpha & \alpha \stackrel{d}{\rightarrow} \top & \alpha \stackrel{0}{\rightarrow} \beta \\ \\ \hline \frac{\Gamma \stackrel{d}{\rightarrow} \alpha}{\Gamma, \beta \stackrel{d}{\rightarrow} \alpha} & \frac{\Gamma, \alpha, \beta \stackrel{d}{\rightarrow} \gamma}{\Gamma, \alpha \wedge \beta \stackrel{d}{\rightarrow} \gamma} & \frac{\Gamma \stackrel{d}{\rightarrow} \alpha & \Gamma \stackrel{d}{\rightarrow} \beta}{\Gamma \stackrel{d}{\rightarrow} \alpha \wedge \beta} \\ \\ \hline \frac{\Gamma, \alpha \stackrel{d}{\rightarrow} \gamma & \Gamma, \beta \stackrel{d}{\rightarrow} \gamma}{\Gamma, \alpha \vee \beta \stackrel{d}{\rightarrow} \gamma} & \frac{\Gamma \stackrel{d}{\rightarrow} \alpha}{\Gamma \stackrel{d}{\rightarrow} \alpha \vee \beta} & \frac{\Gamma \stackrel{d}{\rightarrow} \beta}{\Gamma \stackrel{d}{\rightarrow} \alpha \vee \beta} \\ \\ \hline \frac{\Gamma \stackrel{d}{\rightarrow} \alpha}{\Gamma \stackrel{c}{\rightarrow} \alpha} \text{ where } c < d & \frac{\Gamma_{1} \stackrel{c}{\rightarrow} \alpha & \Gamma_{2}, \alpha \stackrel{d}{\rightarrow} \beta}{\Gamma_{1}, \Gamma_{2} \stackrel{c \odot d}{\rightarrow} \beta} \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The rules are well sufficient for practical applications like expert systems.

Rules for gPGL

$$\begin{array}{cccc} \bot \stackrel{d}{\rightarrow} \alpha & \alpha \stackrel{d}{\rightarrow} \alpha & \alpha \stackrel{d}{\rightarrow} \top & \alpha \stackrel{0}{\rightarrow} \beta \\ \\ \hline \frac{\Gamma \stackrel{d}{\rightarrow} \alpha}{\Gamma, \beta \stackrel{d}{\rightarrow} \alpha} & \frac{\Gamma, \alpha, \beta \stackrel{d}{\rightarrow} \gamma}{\Gamma, \alpha \wedge \beta \stackrel{d}{\rightarrow} \gamma} & \frac{\Gamma \stackrel{d}{\rightarrow} \alpha & \Gamma \stackrel{d}{\rightarrow} \beta}{\Gamma \stackrel{d}{\rightarrow} \alpha \wedge \beta} \\ \\ \hline \frac{\Gamma, \alpha \stackrel{d}{\rightarrow} \gamma & \Gamma, \beta \stackrel{d}{\rightarrow} \gamma}{\Gamma, \alpha \vee \beta \stackrel{d}{\rightarrow} \gamma} & \frac{\Gamma \stackrel{d}{\rightarrow} \alpha}{\Gamma \stackrel{d}{\rightarrow} \alpha \vee \beta} & \frac{\Gamma \stackrel{d}{\rightarrow} \beta}{\Gamma \stackrel{d}{\rightarrow} \alpha \vee \beta} \\ \\ \\ \hline \frac{\Gamma \stackrel{d}{\rightarrow} \alpha}{\Gamma \stackrel{c}{\rightarrow} \alpha} \text{ where } c < d & \frac{\Gamma_{1} \stackrel{c}{\rightarrow} \alpha & \Gamma_{2}, \alpha \stackrel{d}{\rightarrow} \beta}{\Gamma_{1}, \Gamma_{2} \stackrel{c \odot d}{\rightarrow} \beta} \end{array}$$

The rules are well sufficient for practical applications like expert systems.

Completeness does not hold, however.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

The Graded Positive Gentzenian Logic is "between" FL and AR:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Graded Positive Gentzenian Logic is "between" FL and AR:

► gPGL is similar to FL, but (presumably) cannot be endowed with linearly ordered semantics.

The Graded Positive Gentzenian Logic is "between" FL and AR:

- ▶ gPGL is similar to FL, but (presumably) cannot be endowed with linearly ordered semantics.
- ▶ gPGL uses models in analogy to approximate reasoning, but do not allow set-theoretical operations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Graded Positive Gentzenian Logic is "between" FL and AR:

- ► gPGL is similar to FL, but (presumably) cannot be endowed with linearly ordered semantics.
- ▶ gPGL uses models in analogy to approximate reasoning, but do not allow set-theoretical operations.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Furthermore:

► gPGL is well-applicable, even without a complete proof system.

The Graded Positive Gentzenian Logic is "between" FL and AR:

- ► gPGL is similar to FL, but (presumably) cannot be endowed with linearly ordered semantics.
- ▶ gPGL uses models in analogy to approximate reasoning, but do not allow set-theoretical operations.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Furthermore:

- ► gPGL is well-applicable, even without a complete proof system.
- ► Completeness *can* be achieved if restricting to "non-disjunctive" theories.

Alternative style of rules for gPGL

gPGL can be axiomatised in alternative ways.

Alternative style of rules for gPGL

 gPGL can be axiomatised in alternative ways.

The easiest possibility is to replace

$$\alpha_1,\ldots,\alpha_n \stackrel{d}{\to} \beta$$

by

$$(\alpha_1, s_1), \ldots, (\alpha_n, s_n) \to (\beta, t).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Negation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let φ denote vague property. We might want to include $\neg \varphi$ into our language.

Negation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let φ denote vague property. We might want to include $\neg \varphi$ into our language.

By $\neg \varphi$, we mean the negation of φ w.r.t. the coarse level of granularity to which φ refers.

Negation

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Let φ denote vague property. We might want to include $\neg \varphi$ into our language.

By $\neg \varphi$, we mean the negation of φ w.r.t. the coarse level of granularity to which φ refers.

We treat $\neg \varphi$ like φ : $\neg \varphi$ is modelled by the "prototypes" of $\neg \varphi$, that is, by the set of constrasting cases of φ .

Models of negated properties

To interpret \neg , we guess that antitonicity is the minimal assumption.

Models of negated properties

To interpret \neg , we guess that antitonicity is the minimal assumption.

Otherwise, we have (at least) the following possibilities of choosing an interpretation $v(\neg \varphi) \subseteq W$:

- We construct $v(\neg \varphi)$ from $v(\varphi)$.
- We construct $v(\neg \varphi)$ from all $v(\psi)$, where ψ contradicts φ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- We assume only that $v(\neg \varphi)$ is disjoint from $v(\varphi)$.
- We choose $v(\neg \varphi)$ freely.

Logics with negation

◆□▶ ◆舂▶ ★逹▶ ★逹▶ ─ 注

With the first option, we define nPGL and ngPGL.

For nPGL, v(¬φ) is simply the set-theoretical complement of v(φ).
 This leads to CPL.

Logics with negation

With the first option, we define nPGL and ngPGL.

- For nPGL, v(¬φ) is simply the set-theoretical complement of v(φ). This leads to CPL.
- For ngPGL, the ¹/₂-neighborhoods of v(φ) and v(¬φ) form a partition.
 This corresponds to the standard negation in FL.

◆□▶ ◆舂▶ ★逹▶ ★逹▶ ─ 注

Summary

The Positive Gentzenian Logics ...

- ▶ can be based on rules with a clear intuitive meaning.
- ► are neither fuzzy logics nor logics for approximate reasoning, but something "in between".
- ► are well-applicable, even though completeness can be shown only in a restricted sense.