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1970’s, early 1980’s: “probability is useless”

to describe uncertainty of e. g. 250 variables you need at least

(2250 − 1) probabilities
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Jǐrina Vejnarová Multidimensional Possibilistic Models



Background
Basic concepts

Compositional models
Graphical models

Knowledge representation

Two main issues to be solved simultaneously:

multidimensionality,

uncertainty.

Probabilistic graphical Markov models — “marriage between
probability and graph theory” (Michael Jordan)

Bayesian networks,

decomposable models,

chain graph models,

...
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Jǐrina Vejnarová Multidimensional Possibilistic Models



Background
Basic concepts

Compositional models
Graphical models

Knowledge representation

Two main problems to be solved simultaneously:

multidimensionality,

uncertainty — ambiguity and IMPRECISION.

Imprecise graphical models:

credal networks,

evidential networks,

directed possibilistic graphs,

...
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Π : P(X) −→ [0, 1]

(i) Π(∅) = 0;

(ii) for any family {Aj , j ∈ J} of elements of P(X)

Π(
⋃
j∈J

Aj) = max
j∈J

Π(Aj).

Π is normal iff Π(X) = 1.
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Conditioning

Conditional possibility distribution πX |
T
Y is defined as any solution

of the equation

πXY (x , y) = T
(
πY (y), πX |

T
Y (x |

T
y)
)

for any (x , y) ∈ X× Y,

nevertheless

πX |
T
Y (x |

T
y)

(ΠY ,T )
= πXY (x , y)4TπY (y),

which means that

T
(
πY (y), πX |

T
Y (x |

T
y)
)

= T (πY (y), πXY (x , y)4TπY (y)) .
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Jǐrina Vejnarová Multidimensional Possibilistic Models



Background
Basic concepts

Compositional models
Graphical models

Conditioning
Independence

Conditioning

Conditional possibility distribution πX |
T
Y is defined as any solution

of the equation

πXY (x , y) = T
(
πY (y), πX |

T
Y (x |

T
y)
)

for any (x , y) ∈ X× Y, nevertheless

πX |
T
Y (x |

T
y)

(ΠY ,T )
= πXY (x , y)4TπY (y),

and, furthermore,

πX |
T
Y (x |

T
y) v πXY (x , y)4TπY (y).
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Independence

Variables X and Y are possibilistically T -independent (with
respect to π) if for any pair (x , y) ∈ X× Y,

πXY (x , y) = T (πX (x), πY (y)) .

Variables X and Y are possibilistically conditionally T -independent
given Z — IT (X ,Y |Z ) — if, for any z ∈ Z and any pair
(x , y) ∈ X× Y,

πXYZ (x , y , z) = T
(

T
(
πX |

T
Z (x |

T
z), πY |

T
Z (y |

T
z)
)
, πZ (z)

)
.

IT (X ,Y |Z ) satisfies so-called semi-graphoid properties.
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X = 1 0.5 0.3 0.5
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Jǐrina Vejnarová Multidimensional Possibilistic Models



Background
Basic concepts

Compositional models
Graphical models

Marginal problem
Operators of composition
Perfect sequences
Interpretation

Example

Marginal possibility distributions

πXY Y = 0 Y = 1 πX

X = 0 1 1

X = 1 0.5

πY 1 0.7
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Example

Set of extensions

πXY Y = 0 Y = 1 πX

X = 0 1 0.7 1

X = 1 α β 0.5

πY 1 0.7

α = 0.5, β ∈ [0, 0.5]

β = 0.5, α ∈ [0, 0.5]

Jǐrina Vejnarová Multidimensional Possibilistic Models



Background
Basic concepts

Compositional models
Graphical models

Marginal problem
Operators of composition
Perfect sequences
Interpretation

Example

T -product extensions

πXY Y = 0 Y = 1 πX

X = 0 1 0.7 1

X = 1 0.5 T (0.7, 0.5) 0.5

πY 1 0.7
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Marginal problem

We deal with joint possibility distributions π(xN) on

XN = X1 × X2 × . . .× Xn,

and their marginals π(xK ) (K ⊆ N) on its subspaces

XK =×i∈KXi .

Let K be a system of nonempty subsets of N and

S = {πK (xK )}K∈K
set of lowdimensional possibility distributions.

Problem

Does there exist a joint possibility distribution π(xN) on XN such
that

π(xK ) = πK (xK )?
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Operators of composition

Let T be a continuous t-norm and π1(xK1) and π2(xK2) be two
possibility distributions defined on X1 and X2, respectively. Then
we define:

operator of right composition

π1 .T π2 (xK1∪K2) = T (π1 (xK1) , π2 (xK2)4Tπ2 (xK1∩K2)) ,

operator of left composition

π1 /T π2 (xK1∪K2) = T (π1 (xK1)4Tπ1 (xK1∩K2) , π2 (xK2)) .
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π1 π2
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Basic properties

Lemma

Let T be a continuous t-norm and π1(xK1) and π2(xK2) be two
distributions on XK1 and XK2 , respectively. Then

1 π1 .T π2 is a possibility distribution on XK1∪K2 ,

2 (π1 .T π2)(xK1) = π1(xK1),

3 (π1 /T π2)(xK2) = π2(xK2),

4 (π1 .T π2)(xK1∪K2) = (π1 /T π2)(xK1∪K2)

for any continuous t-norm T iff π1 and π2 are projective, i.e.

π1(xK1∩K2) = π2(xK2∩K1).
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Relation to T -independence

Theorem

Let T be a continuous t-norm and π be a possibility distribution of
XK1∪K2 with marginals π1 and π2 of XK1 and XK2 , respectively.
Then

π(xK1∪K2) = (π1 .T π2)(xK1∪K2)

= (π1 /T π2)(xK1∪K2),

if and only if XK1\K2
and XK2\K1

are conditionally independent,
given XK1∩K2 .
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Generating sequences

The operator .T (as well as /T ) is neither commutative nor
associative. Therefore, generally

(π1 .T π2) .T π3 6= π1 .T (π2 .T π3).

Lemma

Let T be a continuous t-norm and π1, π2 and π3 be defined on
XK1 ,XK2 and XK3 , respectively, such that K1 and K3 are disjoint.
Then

(π1 .T π2) .T π3 = π1 .T (π2 .T π3).
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Consider a sequence of possibility distributions
π1(xK1), π2(xK2), . . . , πm(xKm) and the expression

π1 .T π2 .T . . . .T πm.

We always apply the operators from left to right, i.e.

π1 .T π2 .T π3 .T . . . .T πm = (. . . ((π1 .T π2) .T π3) .T . . . .T πm).

It defines a multidimensional distribution of XK1∪...∪Km .Therefore,
for any permutation i1, i2, . . . , im of indices 1, . . . ,m

πi1 .T πi2 . . . . .T πim

defines also a (generally different) multidimensional distribution of
XK1∪...∪Km .
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Consider a sequence of possibility distributions
π1(xK1), π2(xK2), . . . , πm(xKm) and the expression

π1 .T π2 .T . . . .T πm.

Similarly
π1 /T π2 /T . . . /T πm

defines a multidimensional distribution of XK1∪...∪Km .
Nevertheless, they are very different from the computational point
of view. In the first case we need to compute
|Km ∩ (K1 ∪ . . . ∪ Km−1)|-dimensional marginal of

πm(xKm),

while in the second case the same marginal of

π1 /T π2 /T . . . /T πm−1(xK1∪...∪Km−1).
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T -perfect sequences

An ordered sequence of possibility distributions π1, π2, . . . , πm is
said to be T -perfect if

π1 .T π2 = π1 /T π2,

π1 .T π2 .T π3 = π1 /T π2 /T π3,
...

π1 .T · · · .T πm = π1 /T · · · /T πm.

Theorem

The sequence π1, π2, . . . , πm is T -perfect iff all the distributions
π1, π2, . . . , πm are marginal to distribution π1 .T π2 .T . . . . πm.
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Perfect sequence of lowdimensional distributions

~~~~~~~~~~π1

~~~~~~~~~~~~~~~~~~~~ π2

~~~~~~~~~~~~~~~~~~~~ π4

~~~~~~~~~~~~~~~~~~~~ π3 ~~~~~~~~~~ π5
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Perfect sequence of lowdimensional distributions

~~~~~~~~~~ π5
~~~~~~~~~~~~~~~~~~~~ π4

~~~~~~~~~~~~~~~~~~~~ π3
~~~~~~~~~~~~~~~~~~~~ π2

~~~~~~~~~~π1

Perfect sequence
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Not perfect sequence of lowdimensional distributions

~~~~~~~~~~π1

~~~~~~~~~~~~~~~~~~~~ π2

~~~~~~~~~~~~~~~~~~~~
π4

~~~~~~~~~~~~~~~~~~~~ π3 ~~~~~~~~~~
π5
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Not perfect sequence of lowdimensional distributions

π5
~~~~~~~~~~

π4
~~~~~~~~~~π3~~~~~~~~~~π2

~~~~~~~~~~π1

“Perfectized” sequence
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Example

π1(x1, x3) X3 0 1 2
X1 = 0 1 1 1
X1 = 1 .5 .7 .9

π2(x2, x3) X3 0 1 2
X2 = 0 1 1 1
X2 = 1 .5 .4 .3
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Example

X1 X2 X3
π1 .T π2(X1,X2,X3)

G Π L
0 0 0 1 1 1
0 0 1 1 1 1
0 0 2 1 1 1
0 1 0 .5 .5 .5
0 1 1 .4 .4 .4
0 1 2 .3 .3 .3
1 0 0 .5 .5 .5
1 0 1 .7 .7 .7
1 0 2 .9 .9 .9
1 1 0 .5 .25 0
1 1 1 .4 .28 .1
1 1 2 .3 .27 .2
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X3
π1 .T π2(X3|X1 = 1,X2 = 1)

G Π L

0 1 25/28 .8
1 .4 1 .9
2 .3 27/28 1
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Upper envelopes of sets of probability distributions

With any possibility distribution π on X we can associate a class of
probability distributions M(π) on X dominated by it, i.e.,

M(π) = {p : p(x) ≤ π(x) ∀x ∈ X}.

Theorem

Let π1, π2, . . . , πm be a min-perfect sequence of possibility
distributions and M(π1),M(π2), . . . ,M(πm) corresponding sets
of probability distributions. Then

π1 .G π2 .G · · · .G πm

is the upper envelope of the set of all extensions of projective
probability distributions from M(π1),M(π2), . . . ,M(πm).
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Upper envelopes of sets of probability distributions

Theorem

Let π1, π2, . . . , πm be a product-perfect sequence of possibility
distributionsand M(π1),M(π2), . . . ,M(πm) corresponding sets of
probability distributions. Then

π1 .Π π2 .Π · · · .Π πm

is an upper envelope of the probability distributions

p1 . p2 . · · · . pm,

where p1, p2, . . . pm form perfect sequences of probability
distributions from M(π1),M(π2), . . . ,M(πm).
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Possibilistic trees

Possibilistic trees (de Campos and Huete, FSS 1999) are based on
the following simple idea. If IT (X ,Y |Z ), then the joint distribution
π(x , y , z) of X ,Y ,Z can be obtained from its marginals π(x , z)
and π(y , z).

Let us assume variables X1, . . . ,Xn such that IT ({Xj}j<i{Xj}j>i |i),
then the joint possibility distribution of these variables can be
obtained form the marginals π(x1, . . . , xi ) and π(xi , . . . , xn).

Resulting possibilistic tree T consists of two kinds of nodes — leaf
nodes (which store marginal possibility distributions) and internal
nodes (storing conditional independence statements).
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Jǐrina Vejnarová Multidimensional Possibilistic Models



Background
Basic concepts

Compositional models
Graphical models

Possibilistic trees
Dependence trees
Directed possibilistic graphs

Example

PPPPPPPq

�������)

HHH
HHj

�
��	

@
@@R

�
��	

@
@@R

�
��	

@
@@R

�
��	

@
@@R

�
��	

IT ((Xi )i=1,2,3,4, (Xi )i=6,7,8,9,10|X5)

IT (X1, (Xi )i=3,4,5|X2) IT ((Xi )i=5,6,7, (Xi )i=9,10|X8)

IT (X2, (Xi )i=4,5|X3) IT (X5, (Xi )i=7,8|X6)

π(x3, x4, x5)π(x2, x3)

π(x8, x9, x10)π(x1, x2)

IT (X6,X8|X7)π(x5, x6)

π(x6, x7) π(x7, x8)

(π(x1, x2) .T ( π(x2, x3) .T π(x3, x4, x5) ))

.T ((π(x5, x6) .T (π(x6, x7) .T π(x7, x8))) .T π(x8, x9, x10))

Jǐrina Vejnarová Multidimensional Possibilistic Models



Background
Basic concepts

Compositional models
Graphical models

Possibilistic trees
Dependence trees
Directed possibilistic graphs

Example

PPPPPPPq

�������)

HHH
HHj

�
��	

@
@@R

�
��	

@
@@R

�
��	

@
@@R

�
��	

@
@@R

�
��	

IT ((Xi )i=1,2,3,4, (Xi )i=6,7,8,9,10|X5)

IT (X1, (Xi )i=3,4,5|X2) IT ((Xi )i=5,6,7, (Xi )i=9,10|X8)

IT (X2, (Xi )i=4,5|X3) IT (X5, (Xi )i=7,8|X6)

π(x3, x4, x5)π(x2, x3)

π(x8, x9, x10)π(x1, x2)

IT (X6,X8|X7)π(x5, x6)

π(x6, x7) π(x7, x8)

(π(x1, x2) .T ( π(x2, x3) .T π(x3, x4, x5) ))

.T ((π(x5, x6) .T (π(x6, x7) .T π(x7, x8))) .T π(x8, x9, x10))
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IT ((Xi )i=1,2,3,4, (Xi )i=6,7,8,9,10|X5)

IT (X1, (Xi )i=3,4,5|X2) IT ((Xi )i=5,6,7, (Xi )i=9,10|X8)
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π(x8, x9, x10)π(x1, x2)

IT (X6,X8|X7)π(x5, x6)

π(x6, x7) π(x7, x8)

(π(x1, x2) .T (π(x2, x3) .T π(x3, x4, x5)))

.T ((π(x5, x6) .T (π(x6, x7) .T π(x7, x8))) .T π(x8, x9, x10))
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Dependence trees

In dependence trees (de Campos and Huete, FSS 1999) nodes
represent variables (or groups of variables) and edges represent
direct dependence relationship among variables (or groups).

For each dependence tree one can construct a perfect sequence
π1, . . . , πm of distributions of variables XK1 ,XK2 , . . . ,XKm ,
respectively. These distributions are such that each {Xi}i∈Kk

equals some cl(Xj) = {Xj} ∪ pa(Xj) and π1 . . . . . πm equals the
distribution represented by the dependence tree.

Jǐrina Vejnarová Multidimensional Possibilistic Models



Background
Basic concepts

Compositional models
Graphical models

Possibilistic trees
Dependence trees
Directed possibilistic graphs

Dependence trees

In dependence trees (de Campos and Huete, FSS 1999) nodes
represent variables (or groups of variables) and edges represent
direct dependence relationship among variables (or groups).

For each dependence tree one can construct a perfect sequence
π1, . . . , πm of distributions of variables XK1 ,XK2 , . . . ,XKm ,
respectively. These distributions are such that each {Xi}i∈Kk

equals some cl(Xj) = {Xj} ∪ pa(Xj) and π1 . . . . . πm equals the
distribution represented by the dependence tree.
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Directed possibilistic graphs

Directed possibilistic graph (or possibilistic belief network) is a
possibilistic counterpart of Bayesian network:

acyclic directed graph — structural information;

system of conditional probability distributions — quantitative
information.

For each directed possibilistic graph one can construct a perfect
sequence π1, . . . , πm of distributions of variables
XK1 ,XK2 , . . . ,XKm , respectively. These distributions are such that
each {Xi}i∈Kk

equals some cl(Xj) = {Xj} ∪ pa(Xj) and
π1 . . . . . πm equals the distribution represented by the directed
possibilistic graph.
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Directed possibilistic graphs

Having a perfect sequence π1, π2, . . . , πm (πk being the distribution
of XKk

), we first order (in an arbitrary way) all the variables for
which at least one of the distributions πk is defined, i.e.

{X1,X2,X3, . . . ,Xn} = {Xi}i∈K1∪...∪Km .

Then we get a graph of the constructed possibilistic belief network
in the following way:

1 the nodes are all the variables X1,X2,X3, . . . ,Xn;

2 there is an edge (Xi → Xj) if there exists a distribution πk
such that both i , j ∈ Kk , j 6∈ K1 ∪ . . . ∪ Kk−1 and either
i ∈ K1 ∪ . . . ∪ Kk−1 or i < j .
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Example

π1(G ,B), π2(T ), π3(B), π4(D,T ,G ), π5(R,B), π6(W ,R,D)

G ,B,T ,D,R,W
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Conclusions

A non-graphical approach (parameterized by a continuous
t-norm) to multidimensional possibilistic models based on
operators of composition — so-called compositional models
was presented.

There exist nice probabilistic interpretation of compositional
models based on Gödel’s and product t-norms.

Three types of graphical possibilistic models can be expressed
by a perfect sequence of low-dimensional distributions.

There exists a procedure by which any perfect sequence of
low-dimensional distributions can be transformed into a
directed possibilistic graph (or a possibilistic belief network).
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Jǐrina Vejnarová Multidimensional Possibilistic Models



Background
Basic concepts

Compositional models
Graphical models

Possibilistic trees
Dependence trees
Directed possibilistic graphs

Conclusions

A non-graphical approach (parameterized by a continuous
t-norm) to multidimensional possibilistic models based on
operators of composition — so-called compositional models
was presented.

There exist nice probabilistic interpretation of compositional
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