### Multidimensional Possibilistic Models

#### Jiřina Vejnarová

# Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

#### FSTA 2012, Liptovský Ján

□→ < □→</p>

## Outline



<ロ> <同> <同> < 同> < 同>

æ

## Outline

- 1 Background
- 2 Basic concepts
  - Conditioning
  - Independence

< 同 ▶

- ₹ 🖬 🕨

æ

## Outline

- Background
- 2 Basic concepts
  - Conditioning
  - Independence
- 3 Compositional models
  - Marginal problem
  - Operators of composition
  - Perfect sequences
  - Interpretation

## Outline

- Background
- 2 Basic concepts
  - Conditioning
  - Independence
- 3 Compositional models
  - Marginal problem
  - Operators of composition
  - Perfect sequences
  - Interpretation

#### ④ Graphical models

- Possibilistic trees
- Dependence trees
- Directed possibilistic graphs

### Knowledge representation

Two main issues to be solved simultaneously:

- ∢ ⊒ →

э

### Knowledge representation

Two main issues to be solved simultaneously:

- multidimensionality,
- uncertainty.

- **→** → **→** 

- ₹ 🖬 🕨

### Knowledge representation

Two main issues to be solved simultaneously:

- multidimensionality,
- uncertainty.

1970's, early 1980's: "probability is useless"

글 🖌 🖌 글 🕨

Two main issues to be solved simultaneously:

- multidimensionality,
- uncertainty.

1970's, early 1980's: "probability is useless"

to describe uncertainty of e.g. 250 variables you need at least

 $(2^{250}-1)$  probabilities

・ 同 ト ・ ヨ ト ・ ヨ ト

### Knowledge representation

Two main issues to be solved simultaneously:

- multidimensionality,
- uncertainty.

- **→** → **→** 

- ₹ 🖬 🕨

### Knowledge representation

Two main issues to be solved simultaneously:

- multidimensionality,
- uncertainty.

Probabilistic graphical Markov models — "marriage between probability and graph theory" (Michael Jordan)

A 3 b

Two main issues to be solved simultaneously:

- multidimensionality,
- uncertainty.

Probabilistic graphical Markov models — "marriage between probability and graph theory" (Michael Jordan)

• Bayesian networks,

4 3 b

Two main issues to be solved simultaneously:

- multidimensionality,
- uncertainty.

Probabilistic graphical Markov models — "marriage between probability and graph theory" (Michael Jordan)

- Bayesian networks,
- decomposable models,

Two main issues to be solved simultaneously:

- multidimensionality,
- uncertainty.

Probabilistic graphical Markov models — "marriage between probability and graph theory" (Michael Jordan)

- Bayesian networks,
- decomposable models,
- chain graph models,

Two main issues to be solved simultaneously:

- multidimensionality,
- uncertainty.

Probabilistic graphical Markov models — "marriage between probability and graph theory" (Michael Jordan)

- Bayesian networks,
- decomposable models,
- chain graph models,

• ...

### Knowledge representation

Two main problems to be solved simultaneously:

- multidimensionality,
- uncertainty

A 10

글 🖌 🖌 글 🕨

### Knowledge representation

Two main problems to be solved simultaneously:

- multidimensionality,
- uncertainty ambiguity and IMPRECISION.

< ∃ >

- ∢ ≣ ▶

Two main problems to be solved simultaneously:

- multidimensionality,
- uncertainty ambiguity and IMPRECISION.

Imprecise graphical models:

credal networks,

Two main problems to be solved simultaneously:

- multidimensionality,
- uncertainty ambiguity and IMPRECISION.

Imprecise graphical models:

- credal networks,
- evidential networks,

Two main problems to be solved simultaneously:

- multidimensionality,
- uncertainty ambiguity and IMPRECISION.

Imprecise graphical models:

- credal networks,
- evidential networks,
- directed possibilistic graphs,

Two main problems to be solved simultaneously:

- multidimensionality,
- uncertainty ambiguity and IMPRECISION.

Imprecise graphical models:

- credal networks,
- evidential networks,
- directed possibilistic graphs,
- ...

Conditioning Independence

#### Possibility measure

#### *Possibility measure* on **X** (|**X** $| < \infty$ )

$$\Pi:\mathcal{P}(\mathbf{X})\longrightarrow [0,1]$$

(i) 
$$\Pi(\emptyset) = 0;$$
  
(ii) for any family  $\{A_j, j \in J\}$  of elements of  $\mathcal{P}(\mathbf{X})$   
 $\Pi(\bigcup A_j) = \max \Pi(A_j)$ 

$$\Pi(\bigcup_{j\in J}A_j)=\max_{j\in J}\Pi(A_j).$$

æ

(日) (同) (三) (三)

Conditioning Independence

### Possibility measure

#### *Possibility measure* on **X** (|**X** $| < \infty$ )

$$\Pi:\mathcal{P}(\mathbf{X})\longrightarrow [0,1]$$

(i) 
$$\Pi(\emptyset) = 0;$$
  
(ii) for any family  $\{A_j, j \in J\}$  of elements of  $\mathcal{P}(\mathbf{X})$   
 $\Pi(\bigcup_{j \in J} A_j) = \max_{j \in J} \Pi(A_j).$ 

 $\Pi$  is *normal* iff  $\Pi(\mathbf{X}) = 1$ .

- 4 同 6 4 日 6 4 日 6

э

Conditioning Independence

### Possibility distribution

#### Possibility distribution of $\Pi$

$$\pi: \mathbf{X} \longrightarrow [0,1],$$

such that for any  $A \in \mathcal{P}(\mathbf{X})$ 

$$\Pi(A) = \max_{x \in A} \pi(x).$$

- 4 同 6 4 日 6 4 日 6

э

Conditioning Independence

### Possibility distribution

#### Possibility distribution of $\Pi$

$$\pi: \mathbf{X} \longrightarrow [0,1],$$

such that for any  $A \in \mathcal{P}(\mathbf{X})$ 

$$\Pi(A) = \max_{x \in A} \pi(x).$$

Let  $\pi(x, y)$  be a possibility distribution on  $\mathbf{X} \times \mathbf{Y}$ . Its *marginal possibility distribution* on  $\mathbf{X}$  is defined by

$$\pi_X(x) = \max_{y \in \mathbf{Y}} \pi(x, y)$$

for any  $x \in \mathbf{X}$ .

< ∃ >

Conditioning Independence

## Conditioning

Conditional possibility distribution  $\pi_{X|_T Y}$  is defined as any solution of the equation

$$\pi_{XY}(x,y) = T\left(\pi_Y(y), \pi_{X|_T} Y(x|_T y)\right)$$

for any  $(x, y) \in \mathbf{X} \times \mathbf{Y}$ ,

- 4 同 6 4 日 6 4 日 6

Conditioning Independence

## Conditioning

Conditional possibility distribution  $\pi_{X|_T Y}$  is defined as any solution of the equation

$$\pi_{XY}(x,y) = T\left(\pi_Y(y), \pi_{X|_T} Y(x|_T y)\right)$$

for any  $(x, y) \in \mathbf{X} imes \mathbf{Y}$ , nevertheless

$$\pi_{X|_{T}Y}(x|_{T}y) \stackrel{(\Pi_{Y},T)}{=} \pi_{XY}(x,y) \triangle_{T}\pi_{Y}(y),$$

< 47 ▶

(\* ) \* ) \* ) \* )

Conditioning Independence

### Conditioning

Conditional possibility distribution  $\pi_{X|_T Y}$  is defined as any solution of the equation

$$\pi_{XY}(x,y) = T\left(\pi_Y(y), \pi_{X|_T} Y(x|_T y)\right)$$

for any  $(x, y) \in \mathbf{X} \times \mathbf{Y}$ , nevertheless

$$\pi_{X|_{T}Y}(x|_{T}y) \stackrel{(\Pi_{Y},T)}{=} \pi_{XY}(x,y) \triangle_{T}\pi_{Y}(y),$$

which means that

$$T\left(\pi_{Y}(y), \pi_{X|_{T}} Y(x|_{T} y)\right) = T\left(\pi_{Y}(y), \pi_{XY}(x, y) \triangle_{T} \pi_{Y}(y)\right).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Conditioning Independence

### Conditioning

Conditional possibility distribution  $\pi_{X|_T Y}$  is defined as any solution of the equation

$$\pi_{XY}(x,y) = T\left(\pi_Y(y), \pi_{X|_T} Y(x|_T y)\right)$$

for any  $(x, y) \in \mathbf{X} \times \mathbf{Y}$ , nevertheless

$$\pi_{X|_{T}Y}(x|_{T}y) \stackrel{(\Pi_{Y},T)}{=} \pi_{XY}(x,y) \triangle_{T}\pi_{Y}(y),$$

< 47 ▶

(\* ) \* ) \* ) \* )

Conditioning Independence

## Conditioning

Conditional possibility distribution  $\pi_{X|_T Y}$  is defined as any solution of the equation

$$\pi_{XY}(x,y) = T\left(\pi_Y(y), \pi_{X|_T} Y(x|_T y)\right)$$

for any  $(x, y) \in \mathbf{X} \times \mathbf{Y}$ , nevertheless

$$\pi_{X|_{T}} Y(x|_{T} y) \stackrel{(\Pi_{Y},T)}{=} \pi_{XY}(x,y) \triangle_{T} \pi_{Y}(y),$$

and, furthermore,

$$\pi_{X|_{T}Y}(x|_{T}y) \sqsubseteq \pi_{XY}(x,y) \triangle_{T}\pi_{Y}(y).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Conditioning Independence

#### Independence

Variables X and Y are *possibilistically T-independent* (with respect to  $\pi$ ) if for any pair  $(x, y) \in \mathbf{X} \times \mathbf{Y}$ ,

$$\pi_{XY}(x,y) = T(\pi_X(x),\pi_Y(y)).$$

Conditioning Independence

#### Independence

Variables X and Y are *possibilistically* T-independent (with respect to  $\pi$ ) if for any pair  $(x, y) \in \mathbf{X} \times \mathbf{Y}$ ,

$$\pi_{XY}(x,y) = T(\pi_X(x),\pi_Y(y)).$$

Variables X and Y are *possibilistically conditionally T*-independent given  $Z - I_T(X, Y|Z)$  — if, for any  $z \in \mathbb{Z}$  and any pair  $(x, y) \in \mathbb{X} \times \mathbb{Y}$ ,

$$\pi_{XYZ}(x, y, z) = T\left(T\left(\pi_{X|_{\tau}Z}(x|_{\tau}Z), \pi_{Y|_{\tau}Z}(y|_{\tau}Z)\right), \pi_{Z}(z)\right).$$

(人間) ト く ヨ ト く ヨ ト

Conditioning Independence

#### Independence

Variables X and Y are *possibilistically* T-independent (with respect to  $\pi$ ) if for any pair  $(x, y) \in \mathbf{X} \times \mathbf{Y}$ ,

$$\pi_{XY}(x,y) = T(\pi_X(x),\pi_Y(y)).$$

Variables X and Y are *possibilistically conditionally T*-independent given  $Z - I_T(X, Y|Z)$  — if, for any  $z \in \mathbb{Z}$  and any pair  $(x, y) \in \mathbb{X} \times \mathbb{Y}$ ,

$$\pi_{XYZ}(x, y, z) = T\left(T\left(\pi_{X|_{\tau}Z}(x|_{\tau}Z), \pi_{Y|_{\tau}Z}(y|_{\tau}Z)\right), \pi_{Z}(z)\right).$$

 $I_T(X, Y|Z)$  satisfies so-called *semi-graphoid properties*.

- 4 同 6 4 日 6 4 日 6

Marginal problem Operators of composition Perfect sequences Interpretation

## Example

#### Joint possibility distribution

| πχγ   | Y = 0 | Y = 1 |  |
|-------|-------|-------|--|
| X = 0 | 1     | 0.7   |  |
| X = 1 | 0.5   | 0.3   |  |
|       |       |       |  |

<ロ> <同> <同> < 同> < 同>

æ

Marginal problem Operators of composition Perfect sequences Interpretation

### Example

#### Joint possibility distribution

| πχγ       | Y = 0 | Y = 1 | $\pi_X$ |
|-----------|-------|-------|---------|
| X = 0     | 1     | 0.7   | 1       |
| X = 1     | 0.5   | 0.3   | 0.5     |
| $\pi_{Y}$ | 1     | 0.7   |         |

<ロ> <同> <同> < 同> < 同>

æ

Marginal problem Operators of composition Perfect sequences Interpretation

### Example

#### Marginal possibility distributions

| πχγ       | Y = 0 | Y = 1 | $\pi_X$ |
|-----------|-------|-------|---------|
| X = 0     |       |       | 1       |
| X = 1     |       |       | 0.5     |
| $\pi_{Y}$ | 1     | 0.7   |         |

<ロ> <同> <同> < 同> < 同>

э
Marginal problem Operators of composition Perfect sequences Interpretation

# Example

#### Marginal possibility distributions

| $\pi_{XY}$   | Y = 0 | Y = 1 | $\pi_X$ |
|--------------|-------|-------|---------|
| <i>X</i> = 0 | 1     |       | 1       |
| X = 1        |       |       | 0.5     |
| $\pi_{Y}$    | 1     | 0.7   |         |

<ロ> <同> <同> < 回> < 回>

Marginal problem Operators of composition Perfect sequences Interpretation

# Example

#### Marginal possibility distributions

| πχγ       | Y = 0 | Y = 1 | $\pi_X$ |
|-----------|-------|-------|---------|
| X = 0     | 1     | 0.7   | 1       |
| X = 1     |       |       | 0.5     |
| $\pi_{Y}$ | 1     | 0.7   |         |

<ロ> <同> <同> < 回> < 回>

Marginal problem Operators of composition Perfect sequences Interpretation

# Example

#### Marginal possibility distributions

| πχγ       | Y = 0    | Y = 1   | $\pi_X$ |
|-----------|----------|---------|---------|
| X = 0     | 1        | 0.7     | 1       |
| X = 1     | $\alpha$ | $\beta$ | 0.5     |
| $\pi_{Y}$ | 1        | 0.7     |         |

<ロ> <同> <同> < 回> < 回>

Marginal problem Operators of composition Perfect sequences Interpretation

# Example

#### Set of extensions

| πχγ       | Y = 0    | Y = 1   | $\pi_X$ |
|-----------|----------|---------|---------|
| X = 0     | 1        | 0.7     | 1       |
| X = 1     | $\alpha$ | $\beta$ | 0.5     |
| $\pi_{Y}$ | 1        | 0.7     |         |

 $lpha, eta \leq 0.5, \max(lpha, eta) = 0.5$ 

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Marginal problem Operators of composition Perfect sequences Interpretation

# Example

#### Set of extensions

| πχγ       | Y = 0    | Y = 1   | $\pi_X$ |
|-----------|----------|---------|---------|
| X = 0     | 1        | 0.7     | 1       |
| X = 1     | $\alpha$ | $\beta$ | 0.5     |
| $\pi_{Y}$ | 1        | 0.7     |         |

$$\alpha = 0.5, \beta \in [0, 0.5]$$
$$\beta = 0.5, \alpha \in [0, 0.5]$$

<ロ> <同> <同> < 回> < 回>

æ

Marginal problem Operators of composition Perfect sequences Interpretation

# Example

#### T-product extensions

| $\pi_{XY}$   | Y = 0 | Y = 1       | $\pi_X$ |
|--------------|-------|-------------|---------|
| <i>X</i> = 0 | 1     | 0.7         | 1       |
| X = 1        | 0.5   | T(0.7, 0.5) | 0.5     |
| $\pi_Y$      | 1     | 0.7         |         |

Jiřina Vejnarová Multidimensional Possibilistic Models

<ロ> <同> <同> < 回> < 回>

æ

Marginal problem Operators of composition Perfect sequences Interpretation

# Marginal problem

We deal with joint possibility distributions  $\pi(x_N)$  on

$$\mathbf{X}_{N} = \mathbf{X}_{1} imes \mathbf{X}_{2} imes \ldots imes \mathbf{X}_{n}$$

and their marginals  $\pi(x_{\mathcal{K}})$  ( $\mathcal{K} \subseteq \mathcal{N}$ ) on its subspaces

 $\mathbf{X}_{K} = X_{i \in K} \mathbf{X}_{i}.$ 

・ 同 ト ・ ヨ ト ・ ヨ ト

Marginal problem Operators of composition Perfect sequences Interpretation

# Marginal problem

We deal with joint possibility distributions  $\pi(x_N)$  on

$$\mathbf{X}_N = \mathbf{X}_1 \times \mathbf{X}_2 \times \ldots \times \mathbf{X}_n$$

and their marginals  $\pi(x_{\mathcal{K}})$  ( $\mathcal{K} \subseteq \mathcal{N}$ ) on its subspaces

$$\mathbf{X}_K = X_{i \in K} \mathbf{X}_i.$$

Let  $\mathcal K$  be a system of nonempty subsets of N and  $\mathcal S=\{\pi_{\mathcal K}(x_{\mathcal K})\}_{\mathcal K\in\mathcal K}$ 

set of lowdimensional possibility distributions.

- ∢ ≣ ▶

Marginal problem Operators of composition Perfect sequences Interpretation

# Marginal problem

We deal with joint possibility distributions  $\pi(x_N)$  on

$$\mathbf{X}_N = \mathbf{X}_1 \times \mathbf{X}_2 \times \ldots \times \mathbf{X}_n$$

and their marginals  $\pi(x_{\mathcal{K}})$  ( $\mathcal{K} \subseteq \mathcal{N}$ ) on its subspaces

$$\mathbf{X}_K = X_{i \in K} \mathbf{X}_i.$$

Let  $\mathcal{K}$  be a system of nonempty subsets of N and  $\mathcal{S} = \{\pi_{\mathcal{K}}(x_{\mathcal{K}})\}_{\mathcal{K} \in \mathcal{K}}$ 

set of lowdimensional possibility distributions.

#### Problem

Does there exist a joint possibility distribution  $\pi(x_N)$  on  $\mathbf{X}_N$  such that

$$\pi(x_{\mathcal{K}})=\pi_{\mathcal{K}}(x_{\mathcal{K}})?$$

Marginal problem Operators of composition Perfect sequences Interpretation

### Operators of composition

Let T be a continuous *t*-norm and  $\pi_1(x_{K_1})$  and  $\pi_2(x_{K_2})$  be two possibility distributions defined on  $X_1$  and  $X_2$ , respectively. Then we define:

Marginal problem Operators of composition Perfect sequences Interpretation

## Operators of composition

Let T be a continuous *t*-norm and  $\pi_1(x_{K_1})$  and  $\pi_2(x_{K_2})$  be two possibility distributions defined on  $X_1$  and  $X_2$ , respectively. Then we define:

operator of right composition

$$\pi_{1} \triangleright_{T} \pi_{2} (x_{K_{1} \cup K_{2}}) = T (\pi_{1} (x_{K_{1}}), \pi_{2} (x_{K_{2}}) \triangle_{T} \pi_{2} (x_{K_{1} \cap K_{2}})),$$

(人間) ト く ヨ ト く ヨ ト

Marginal problem Operators of composition Perfect sequences Interpretation

# Operators of composition

Let T be a continuous *t*-norm and  $\pi_1(x_{K_1})$  and  $\pi_2(x_{K_2})$  be two possibility distributions defined on  $X_1$  and  $X_2$ , respectively. Then we define:

operator of right composition

$$\pi_{1} \triangleright_{T} \pi_{2} (x_{K_{1} \cup K_{2}}) = T (\pi_{1} (x_{K_{1}}), \pi_{2} (x_{K_{2}}) \triangle_{T} \pi_{2} (x_{K_{1} \cap K_{2}})),$$

operator of left composition

$$\pi_1 \triangleleft_T \pi_2 \left( x_{K_1 \cup K_2} \right) = T \left( \pi_1 \left( x_{K_1} \right) \bigtriangleup_T \pi_1 \left( x_{K_1 \cap K_2} \right), \pi_2 \left( x_{K_2} \right) \right).$$

< 47 ▶

- - E + - E +

Marginal problem Operators of composition Perfect sequences Interpretation

# Operator of right composition



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Marginal problem Operators of composition Perfect sequences Interpretation

# Operator of right composition



 $\pi_1 \triangleright_T \pi_2$ 



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Marginal problem Operators of composition Perfect sequences Interpretation

# Operator of left composition



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Marginal problem Operators of composition Perfect sequences Interpretation

# Operator of left composition



 $\pi_1 \triangleleft_T \pi_2$ 



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Marginal problem Operators of composition Perfect sequences Interpretation

## Basic properties

#### Lemma

Let T be a continuous t-norm and  $\pi_1(x_{K_1})$  and  $\pi_2(x_{K_2})$  be two distributions on  $\mathbf{X}_{K_1}$  and  $\mathbf{X}_{K_2}$ , respectively. Then

•  $\pi_1 \triangleright_T \pi_2$  is a possibility distribution on  $\mathbf{X}_{K_1 \cup K_2}$ ,

$$(\pi_1 \triangleright_T \pi_2)(x_{K_1}) = \pi_1(x_{K_1}),$$

$$(\pi_1 \triangleleft_T \pi_2)(x_{K_2}) = \pi_2(x_{K_2}),$$

 $(\pi_1 \triangleright_T \pi_2)(x_{K_1 \cup K_2}) = (\pi_1 \triangleleft_T \pi_2)(x_{K_1 \cup K_2})$ 

for any continuous t-norm T iff  $\pi_1$  and  $\pi_2$  are projective, i.e.

$$\pi_1(x_{K_1\cap K_2}) = \pi_2(x_{K_2\cap K_1}).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Marginal problem Operators of composition Perfect sequences Interpretation

# Operator of right composition



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Marginal problem Operators of composition Perfect sequences Interpretation

# Operator of right composition



 $\pi_1 \triangleright_T \pi_2$ 



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Marginal problem Operators of composition Perfect sequences Interpretation

# Operator of right composition



 $\pi_1 \triangleright_T \pi_2$ 



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Marginal problem Operators of composition Perfect sequences Interpretation

# Operator of left composition



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Marginal problem Operators of composition Perfect sequences Interpretation

# Operator of left composition



 $\pi_1 \triangleleft_T \pi_2$ 



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Marginal problem Operators of composition Perfect sequences Interpretation

# Operator of left composition



 $\pi_1 \triangleleft_T \pi_2$ 



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Marginal problem Operators of composition Perfect sequences Interpretation

#### Relation to *T*-independence

#### Theorem

Let T be a continuous t-norm and  $\pi$  be a possibility distribution of  $X_{K_1 \cup K_2}$  with marginals  $\pi_1$  and  $\pi_2$  of  $X_{K_1}$  and  $X_{K_2}$ , respectively. Then

$$\pi(x_{K_1\cup K_2}) = (\pi_1 \triangleright_T \pi_2)(x_{K_1\cup K_2})$$
$$= (\pi_1 \triangleleft_T \pi_2)(x_{K_1\cup K_2}),$$

if and only if  $X_{K_1 \setminus K_2}$  and  $X_{K_2 \setminus K_1}$  are conditionally independent, given  $X_{K_1 \cap K_2}$ .

(日) (同) (三) (三)

Marginal problem Operators of composition **Perfect sequences** Interpretation

### Generating sequences

The operator  $\triangleright_T$  (as well as  $\triangleleft_T$ ) is neither commutative nor associative. Therefore, generally

$$(\pi_1 \triangleright_T \pi_2) \triangleright_T \pi_3 \neq \pi_1 \triangleright_T (\pi_2 \triangleright_T \pi_3).$$

Image: A = A

3.5

Marginal problem Operators of composition **Perfect sequences** Interpretation

### Generating sequences

The operator  $\triangleright_T$  (as well as  $\triangleleft_T$ ) is neither commutative nor associative. Therefore, generally

$$(\pi_1 \triangleright_T \pi_2) \triangleright_T \pi_3 \neq \pi_1 \triangleright_T (\pi_2 \triangleright_T \pi_3).$$

#### Lemma

Let T be a continuous t-norm and  $\pi_1, \pi_2$  and  $\pi_3$  be defined on  $\mathbf{X}_{K_1}, \mathbf{X}_{K_2}$  and  $\mathbf{X}_{K_3}$ , respectively, such that  $K_1$  and  $K_3$  are disjoint. Then

$$(\pi_1 \triangleright_{\mathcal{T}} \pi_2) \triangleright_{\mathcal{T}} \pi_3 = \pi_1 \triangleright_{\mathcal{T}} (\pi_2 \triangleright_{\mathcal{T}} \pi_3).$$

Marginal problem Operators of composition Perfect sequences Interpretation

### Generating sequences

Consider a sequence of possibility distributions  $\pi_1(x_{K_1}), \pi_2(x_{K_2}), \ldots, \pi_m(x_{K_m})$  and the expression

 $\pi_1 \triangleright_T \pi_2 \triangleright_T \ldots \triangleright_T \pi_m.$ 

Marginal problem Operators of composition **Perfect sequences** Interpretation

#### Generating sequences

Consider a sequence of possibility distributions  $\pi_1(x_{\kappa_1}), \pi_2(x_{\kappa_2}), \ldots, \pi_m(x_{\kappa_m})$  and the expression

 $\pi_1 \triangleright_T \pi_2 \triangleright_T \ldots \triangleright_T \pi_m.$ 

We always apply the operators from left to right, i.e.

 $\pi_1 \triangleright_T \pi_2 \triangleright_T \pi_3 \triangleright_T \ldots \triangleright_T \pi_m = (\ldots ((\pi_1 \triangleright_T \pi_2) \triangleright_T \pi_3) \triangleright_T \ldots \triangleright_T \pi_m).$ 

Marginal problem Operators of composition **Perfect sequences** Interpretation

#### Generating sequences

Consider a sequence of possibility distributions  $\pi_1(x_{\kappa_1}), \pi_2(x_{\kappa_2}), \dots, \pi_m(x_{\kappa_m})$  and the expression

 $\pi_1 \triangleright_T \pi_2 \triangleright_T \ldots \triangleright_T \pi_m.$ 

We always apply the operators from left to right, i.e.

 $\pi_1 \triangleright_T \pi_2 \triangleright_T \pi_3 \triangleright_T \ldots \triangleright_T \pi_m = (\ldots ((\pi_1 \triangleright_T \pi_2) \triangleright_T \pi_3) \triangleright_T \ldots \triangleright_T \pi_m).$ 

It defines a multidimensional distribution of  $X_{K_1 \cup ... \cup K_m}$ .

Marginal problem Operators of composition **Perfect sequences** Interpretation

#### Generating sequences

Consider a sequence of possibility distributions  $\pi_1(x_{K_1}), \pi_2(x_{K_2}), \ldots, \pi_m(x_{K_m})$  and the expression

 $\pi_1 \triangleright_T \pi_2 \triangleright_T \ldots \triangleright_T \pi_m.$ 

We always apply the operators from left to right, i.e.

 $\pi_1 \triangleright_T \pi_2 \triangleright_T \pi_3 \triangleright_T \ldots \triangleright_T \pi_m = (\ldots ((\pi_1 \triangleright_T \pi_2) \triangleright_T \pi_3) \triangleright_T \ldots \triangleright_T \pi_m).$ 

It defines a multidimensional distribution of  $X_{K_1 \cup \ldots \cup K_m}$ . Therefore, for any permutation  $i_1, i_2, \ldots, i_m$  of indices  $1, \ldots, m$ 

 $\pi_{i_1} \triangleright_T \pi_{i_2} \triangleright \ldots \triangleright_T \pi_{i_m}$ 

defines also a (generally different) multidimensional distribution of  $X_{K_1 \cup \ldots \cup K_m}$ .

・ロト ・回ト ・ヨト ・ヨト

3

Marginal problem Operators of composition Perfect sequences Interpretation

### Generating sequences

Consider a sequence of possibility distributions  $\pi_1(x_{K_1}), \pi_2(x_{K_2}), \ldots, \pi_m(x_{K_m})$  and the expression

 $\pi_1 \triangleright_T \pi_2 \triangleright_T \ldots \triangleright_T \pi_m.$ 

Marginal problem Operators of composition **Perfect sequences** Interpretation

### Generating sequences

Consider a sequence of possibility distributions  $\pi_1(x_{K_1}), \pi_2(x_{K_2}), \ldots, \pi_m(x_{K_m})$  and the expression

 $\pi_1 \triangleright_T \pi_2 \triangleright_T \ldots \triangleright_T \pi_m.$ 

Similarly

 $\pi_1 \triangleleft_T \pi_2 \triangleleft_T \ldots \triangleleft_T \pi_m$ 

defines a multidimensional distribution of  $X_{K_1 \cup ... \cup K_m}$ .

(人間) ト く ヨ ト く ヨ ト

Marginal problem Operators of composition **Perfect sequences** Interpretation

### Generating sequences

Consider a sequence of possibility distributions  $\pi_1(x_{K_1}), \pi_2(x_{K_2}), \ldots, \pi_m(x_{K_m})$  and the expression

 $\pi_1 \triangleright_T \pi_2 \triangleright_T \ldots \triangleright_T \pi_m.$ 

Similarly

 $\pi_1 \triangleleft_T \pi_2 \triangleleft_T \ldots \triangleleft_T \pi_m$ 

defines a multidimensional distribution of  $X_{K_1 \cup \ldots \cup K_m}$ . Nevertheless, they are very different from the computational point of view. In the first case we need to compute  $|K_m \cap (K_1 \cup \ldots \cup K_{m-1})|$ -dimensional marginal of

 $\pi_m(x_{K_m}),$ 

while in the second case the same marginal of

$$\pi_1 \triangleleft_T \pi_2 \triangleleft_T \ldots \triangleleft_T \pi_{m-1}(x_{K_1 \cup \ldots \cup K_{m-1}}).$$

Marginal problem Operators of composition **Perfect sequences** Interpretation

#### *T*-perfect sequences

An ordered sequence of possibility distributions  $\pi_1, \pi_2, \ldots, \pi_m$  is said to be *T*-perfect if

$$\pi_1 \triangleright_T \pi_2 = \pi_1 \triangleleft_T \pi_2,$$
  

$$\pi_1 \triangleright_T \pi_2 \triangleright_T \pi_3 = \pi_1 \triangleleft_T \pi_2 \triangleleft_T \pi_3,$$
  

$$\vdots$$
  

$$\pi_1 \triangleright_T \cdots \triangleright_T \pi_m = \pi_1 \triangleleft_T \cdots \triangleleft_T \pi_m.$$

Marginal problem Operators of composition **Perfect sequences** Interpretation

#### *T*-perfect sequences

An ordered sequence of possibility distributions  $\pi_1, \pi_2, \ldots, \pi_m$  is said to be *T*-perfect if

$$\pi_1 \triangleright_T \pi_2 = \pi_1 \triangleleft_T \pi_2,$$
  

$$\pi_1 \triangleright_T \pi_2 \triangleright_T \pi_3 = \pi_1 \triangleleft_T \pi_2 \triangleleft_T \pi_3,$$
  

$$\vdots$$
  

$$\pi_1 \triangleright_T \cdots \triangleright_T \pi_m = \pi_1 \triangleleft_T \cdots \triangleleft_T \pi_m.$$

#### Theorem

The sequence  $\pi_1, \pi_2, \ldots, \pi_m$  is *T*-perfect iff all the distributions  $\pi_1, \pi_2, \ldots, \pi_m$  are marginal to distribution  $\pi_1 \triangleright_T \pi_2 \triangleright_T \ldots \triangleright \pi_m$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Marginal problem Operators of composition Perfect sequences Interpretation

### Perfect sequence of lowdimensional distributions


Marginal problem Operators of composition Perfect sequences Interpretation

#### Perfect sequence of lowdimensional distributions









< □ > < 同 > < 回 >

э

Marginal problem Operators of composition **Perfect sequences** Interpretation

#### Perfect sequence of lowdimensional distributions



Jiřina Vejnarová Multidimensional Possibilistic Models

<ロト < 同ト < 三ト

э

Marginal problem Operators of composition Perfect sequences Interpretation

#### Perfect sequence of lowdimensional distributions





イロト イポト イヨト イヨト

э

Marginal problem Operators of composition Perfect sequences Interpretation

#### Perfect sequence of lowdimensional distributions



#### Perfect sequence

< □ > < 同 > < 回 >

∃ >

Marginal problem Operators of composition **Perfect sequences** Interpretation

# Not perfect sequence of lowdimensional distributions



Jiřina Vejnarová Multidimensional Possibilistic Models

Marginal problem Operators of composition **Perfect sequences** Interpretation

# Not perfect sequence of lowdimensional distributions



< 4 ₽ > < Ξ

3.5

Marginal problem Operators of composition Perfect sequences Interpretation

# Not perfect sequence of lowdimensional distributions



Jiřina Vejnarová Multidimensional Possibilistic Models

< 4 → < 三

ъ

Marginal problem Operators of composition Perfect sequences Interpretation

# Not perfect sequence of lowdimensional distributions





Image: A = A

3.5

Marginal problem Operators of composition Perfect sequences Interpretation

# Not perfect sequence of lowdimensional distributions



Image: A image: A

3.5

Marginal problem Operators of composition **Perfect sequences** Interpretation

#### Not perfect sequence of lowdimensional distributions



"Perfectized" sequence

▲ 同 ▶ → 三 ▶

**B** b

| Background           | Marginal problem         |
|----------------------|--------------------------|
| Basic concepts       | Operators of composition |
| Compositional models | Perfect sequences        |
| Graphical models     | Interpretation           |

# Example

æ

Ξ.

⊡ ► < E

Background Marginal problem Basic concepts Operators of composition Compositional models Perfect sequences Graphical models Interpretation

# Example

| $X_1$ | $X_2$ | $X_3$ | $\pi_1 \triangleright_{\overline{1}}$ | $\pi_{2}(X_{1}, X_{2})$ | , X <sub>3</sub> ) |
|-------|-------|-------|---------------------------------------|-------------------------|--------------------|
| -     | -     | Ū     | G                                     | Π                       | L                  |
| 0     | 0     | 0     | 1                                     | 1                       | 1                  |
| 0     | 0     | 1     | 1                                     | 1                       | 1                  |
| 0     | 0     | 2     | 1                                     | 1                       | 1                  |
| 0     | 1     | 0     | .5                                    | .5                      | .5                 |
| 0     | 1     | 1     | .4                                    | .4                      | .4                 |
| 0     | 1     | 2     | .3                                    | .3                      | .3                 |
| 1     | 0     | 0     | .5                                    | .5                      | .5                 |
| 1     | 0     | 1     | .7                                    | .7                      | .7                 |
| 1     | 0     | 2     | .9                                    | .9                      | .9                 |
| 1     | 1     | 0     | .5                                    | .25                     | 0                  |
| 1     | 1     | 1     | .4                                    | .28                     | .1                 |
| 1     | 1     | 2     | .3                                    | .27                     | .2                 |

Jiřina Vejnarová Multidimensional Possibilistic Models

・ロト ・四ト ・ヨト ・ヨト

æ

 Background
 Marginal problem

 Basic concepts
 Operators of composition

 Compositional models
 Perfect sequences

 Graphical models
 Interpretation

# Example

| X <sub>3</sub> | $\pi_1 \triangleright_T \pi_2(X_3   X_1 = 1, X_2 = 1)$ |       |    |  |  |
|----------------|--------------------------------------------------------|-------|----|--|--|
|                | G                                                      | Π     | L  |  |  |
| 0              | 1                                                      | 25/28 | .8 |  |  |
| 1              | .4                                                     | 1     | .9 |  |  |
| 2              | .3                                                     | 27/28 | 1  |  |  |

<ロ> <同> <同> < 同> < 同>

æ

Background Margina Basic concepts Operato Compositional models Perfect Graphical models Interpre

Marginal problem Operators of composition Perfect sequences Interpretation

# Upper envelopes of sets of probability distributions

With any possibility distribution  $\pi$  on **X** we can associate a class of probability distributions  $\mathcal{M}(\pi)$  on **X** dominated by it, i.e.,

$$\mathcal{M}(\pi) = \{ p : p(x) \leq \pi(x) \ \forall x \in \mathbf{X} \}.$$

< ∃ >

Marginal problem Operators of composition Perfect sequences Interpretation

Upper envelopes of sets of probability distributions

With any possibility distribution  $\pi$  on **X** we can associate a class of probability distributions  $\mathcal{M}(\pi)$  on **X** dominated by it, i.e.,

$$\mathcal{M}(\pi) = \{ p : p(x) \le \pi(x) \ \forall x \in \mathbf{X} \}.$$

#### Theorem

Let  $\pi_1, \pi_2, \ldots, \pi_m$  be a min-perfect sequence of possibility distributions and  $\mathcal{M}(\pi_1), \mathcal{M}(\pi_2), \ldots, \mathcal{M}(\pi_m)$  corresponding sets of probability distributions. Then

 $\pi_1 \triangleright_G \pi_2 \triangleright_G \cdots \triangleright_G \pi_m$ 

is the upper envelope of the set of all extensions of projective probability distributions from  $\mathcal{M}(\pi_1), \mathcal{M}(\pi_2), \ldots, \mathcal{M}(\pi_m)$ .

Marginal problem Operators of composition Perfect sequences Interpretation

Upper envelopes of sets of probability distributions

#### Theorem

Let  $\pi_1, \pi_2, \ldots, \pi_m$  be a product-perfect sequence of possibility distributions and  $\mathcal{M}(\pi_1), \mathcal{M}(\pi_2), \ldots, \mathcal{M}(\pi_m)$  corresponding sets of probability distributions. Then

 $\pi_1 \triangleright_{\Pi} \pi_2 \triangleright_{\Pi} \cdots \triangleright_{\Pi} \pi_m$ 

is an upper envelope of the probability distributions

 $p_1 \triangleright p_2 \triangleright \cdots \triangleright p_m$ ,

where  $p_1, p_2, \ldots p_m$  form perfect sequences of probability distributions from  $\mathcal{M}(\pi_1), \mathcal{M}(\pi_2), \ldots, \mathcal{M}(\pi_m)$ .

・ロト ・同ト ・ヨト ・ヨト

Possibilistic trees Dependence trees Directed possibilistic graphs

#### Possibilistic trees

*Possibilistic trees* (de Campos and Huete, FSS 1999) are based on the following simple idea. If  $I_T(X, Y|Z)$ , then the joint distribution  $\pi(x, y, z)$  of X, Y, Z can be obtained from its marginals  $\pi(x, z)$  and  $\pi(y, z)$ .

(人間) ト く ヨ ト く ヨ ト

Possibilistic trees Dependence trees Directed possibilistic graphs

#### Possibilistic trees

*Possibilistic trees* (de Campos and Huete, FSS 1999) are based on the following simple idea. If  $I_T(X, Y|Z)$ , then the joint distribution  $\pi(x, y, z)$  of X, Y, Z can be obtained from its marginals  $\pi(x, z)$  and  $\pi(y, z)$ .

Let us assume variables  $X_1, \ldots, X_n$  such that  $I_T(\{X_j\}_{j < i} \{X_j\}_{j > i} | i)$ , then the joint possibility distribution of these variables can be obtained form the marginals  $\pi(x_1, \ldots, x_i)$  and  $\pi(x_i, \ldots, x_n)$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Possibilistic trees Dependence trees Directed possibilistic graphs

# Possibilistic trees

*Possibilistic trees* (de Campos and Huete, FSS 1999) are based on the following simple idea. If  $I_T(X, Y|Z)$ , then the joint distribution  $\pi(x, y, z)$  of X, Y, Z can be obtained from its marginals  $\pi(x, z)$  and  $\pi(y, z)$ .

Let us assume variables  $X_1, \ldots, X_n$  such that  $I_T(\{X_j\}_{j < i} \{X_j\}_{j > i} | i)$ , then the joint possibility distribution of these variables can be obtained form the marginals  $\pi(x_1, \ldots, x_i)$  and  $\pi(x_i, \ldots, x_n)$ .

Resulting possibilistic tree  $\mathcal{T}$  consists of two kinds of nodes — *leaf* nodes (which store marginal possibility distributions) and *internal* nodes (storing conditional independence statements).

・ロト ・得ト ・ヨト ・ヨト

Possibilistic trees Dependence trees Directed possibilistic graphs

# Example



-

Possibilistic trees Dependence trees Directed possibilistic graphs

# Example



Possibilistic trees Dependence trees Directed possibilistic graphs

# Example



 $\pi(x_1,x_2) \triangleright_{\mathcal{T}} (\pi(x_2,x_3) \triangleright_{\mathcal{T}} \pi(x_3,x_4,x_5))$ 

74 b

Possibilistic trees Dependence trees Directed possibilistic graphs



Possibilistic trees Dependence trees Directed possibilistic graphs

#### Example — continued

# $(\pi(x_1, x_2) \triangleright_T (\pi(x_2, x_3) \triangleright_T \pi(x_3, x_4, x_5))) \\ \triangleright_T ((\pi(x_5, x_6) \triangleright_T (\pi(x_6, x_7) \triangleright_T \pi(x_7, x_8))) \triangleright_T \pi(x_8, x_9, x_{10}))$

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Possibilistic trees Dependence trees Directed possibilistic graphs

# Example — continued

$$(\pi(x_1, x_2) \triangleright_{\mathcal{T}} (\pi(x_2, x_3) \triangleright_{\mathcal{T}} \pi(x_3, x_4, x_5))) \\ \triangleright_{\mathcal{T}} ((\pi(x_5, x_6) \triangleright_{\mathcal{T}} (\pi(x_6, x_7) \triangleright_{\mathcal{T}} \pi(x_7, x_8))) \triangleright_{\mathcal{T}} \pi(x_8, x_9, x_{10}))$$

$$\pi(x_1, x_2) \triangleright_{\mathcal{T}} (\pi(x_2, x_3) \triangleright_{\mathcal{T}} \pi(x_3, x_4, x_5))$$
  
$$\triangleright_{\mathcal{T}} (\pi(x_5, x_6) \triangleright_{\mathcal{T}} (\pi(x_6, x_7) \triangleright_{\mathcal{T}} \pi(x_7, x_8))) \triangleright_{\mathcal{T}} \pi(x_8, x_9, x_{10})$$

イロン イロン イヨン イヨン

æ

Possibilistic trees Dependence trees Directed possibilistic graphs

# Example — continued

$$\pi(x_{1}, x_{2}) \triangleright_{T} (\pi(x_{2}, x_{3}) \triangleright_{T} \pi(x_{3}, x_{4}, x_{5}))) \\ \triangleright_{T}((\pi(x_{5}, x_{6}) \triangleright_{T} (\pi(x_{6}, x_{7}) \triangleright_{T} \pi(x_{7}, x_{8}))) \triangleright_{T} \pi(x_{8}, x_{9}, x_{10})) \\ \pi(x_{1}, x_{2}) \triangleright_{T} (\pi(x_{2}, x_{3}) \triangleright_{T} \pi(x_{3}, x_{4}, x_{5})) \\ \triangleright_{T}(\pi(x_{5}, x_{6}) \triangleright_{T} (\pi(x_{6}, x_{7}) \triangleright_{T} \pi(x_{7}, x_{8}))) \triangleright_{T} \pi(x_{8}, x_{9}, x_{10}) \\ \pi(x_{1}, x_{2}) \triangleright_{T} \pi(x_{2}, x_{3}) \triangleright_{T} \pi(x_{3}, x_{4}, x_{5}) \\ \triangleright_{T} \pi(x_{5}, x_{6}) \triangleright_{T} (\pi(x_{6}, x_{7}) \triangleright_{T} \pi(x_{7}, x_{8})) \triangleright_{T} \pi(x_{8}, x_{9}, x_{10}) \\ \end{array}$$

イロト イポト イヨト イヨト

э

Possibilistic trees Dependence trees Directed possibilistic graphs

# Example — continued

$$\pi(x_{1}, x_{2}) \triangleright_{T} (\pi(x_{2}, x_{3}) \triangleright_{T} \pi(x_{3}, x_{4}, x_{5}))) \\ \triangleright_{T}((\pi(x_{5}, x_{6}) \triangleright_{T} (\pi(x_{6}, x_{7}) \triangleright_{T} \pi(x_{7}, x_{8}))) \triangleright_{T} \pi(x_{8}, x_{9}, x_{10})) \\ \pi(x_{1}, x_{2}) \triangleright_{T} (\pi(x_{2}, x_{3}) \triangleright_{T} \pi(x_{3}, x_{4}, x_{5})) \\ \triangleright_{T}(\pi(x_{5}, x_{6}) \triangleright_{T} (\pi(x_{6}, x_{7}) \triangleright_{T} \pi(x_{7}, x_{8}))) \triangleright_{T} \pi(x_{8}, x_{9}, x_{10}) \\ \pi(x_{1}, x_{2}) \triangleright_{T} \pi(x_{2}, x_{3}) \triangleright_{T} \pi(x_{3}, x_{4}, x_{5}) \\ \triangleright_{T} \pi(x_{5}, x_{6}) \triangleright_{T} (\pi(x_{6}, x_{7}) \triangleright_{T} \pi(x_{7}, x_{8})) \triangleright_{T} \pi(x_{8}, x_{9}, x_{10}) \\ \pi(x_{1}, x_{2}) \triangleright_{T} \pi(x_{2}, x_{3}) \triangleright_{T} \pi(x_{3}, x_{4}, x_{5}) \\ \rho_{T} \pi(x_{5}, x_{6}) \triangleright_{T} (\pi(x_{2}, x_{3}) \triangleright_{T} \pi(x_{3}, x_{4}, x_{5})) \\ \pi(x_{1}, x_{2}) \triangleright_{T} \pi(x_{2}, x_{3}) \triangleright_{T} \pi(x_{3}, x_{4}, x_{5})$$

 $\triangleright_{\mathcal{T}}\pi(x_5, x_6) \triangleright_{\mathcal{T}} \pi(x_6, x_7) \triangleright_{\mathcal{T}} \pi(x_7, x_8) \triangleright_{\mathcal{T}} \pi(x_8, x_9, x_{10})$ 

æ

Possibilistic trees Dependence trees Directed possibilistic graphs

#### Dependence trees

In *dependence trees* (de Campos and Huete, FSS 1999) nodes represent variables (or groups of variables) and edges represent direct dependence relationship among variables (or groups).

- ∢ ≣ ▶

< 67 ▶

Possibilistic trees Dependence trees Directed possibilistic graphs

#### Dependence trees

In *dependence trees* (de Campos and Huete, FSS 1999) nodes represent variables (or groups of variables) and edges represent direct dependence relationship among variables (or groups).

For each dependence tree one can construct a perfect sequence  $\pi_1, \ldots, \pi_m$  of distributions of variables  $X_{K_1}, X_{K_2}, \ldots, X_{K_m}$ , respectively. These distributions are such that each  $\{X_i\}_{i \in K_k}$  equals some  $cl(X_j) = \{X_j\} \cup pa(X_j)$  and  $\pi_1 \triangleright \ldots \triangleright \pi_m$  equals the distribution represented by the dependence tree.

- 同 ト - ヨ ト - - ヨ ト

Possibilistic trees Dependence trees Directed possibilistic graphs

# Directed possibilistic graphs

*Directed possibilistic graph* (or *possibilistic belief network*) is a possibilistic counterpart of Bayesian network:

< A ▶

(\* ) \* ) \* ) \* )

Possibilistic trees Dependence trees Directed possibilistic graphs

# Directed possibilistic graphs

*Directed possibilistic graph* (or *possibilistic belief network*) is a possibilistic counterpart of Bayesian network:

• *acyclic directed graph* — structural information;

(人間) ト く ヨ ト く ヨ ト

Possibilistic trees Dependence trees Directed possibilistic graphs

# Directed possibilistic graphs

*Directed possibilistic graph* (or *possibilistic belief network*) is a possibilistic counterpart of Bayesian network:

- *acyclic directed graph* structural information;
- system of conditional probability distributions quantitative information.

Possibilistic trees Dependence trees Directed possibilistic graphs

# Directed possibilistic graphs

*Directed possibilistic graph* (or *possibilistic belief network*) is a possibilistic counterpart of Bayesian network:

- *acyclic directed graph* structural information;
- *system of conditional probability distributions* quantitative information.

For each directed possibilistic graph one can construct a perfect sequence  $\pi_1, \ldots, \pi_m$  of distributions of variables  $X_{K_1}, X_{K_2}, \ldots, X_{K_m}$ , respectively. These distributions are such that each  $\{X_i\}_{i \in K_k}$  equals some  $cl(X_j) = \{X_j\} \cup pa(X_j)$  and  $\pi_1 \triangleright \ldots \triangleright \pi_m$  equals the distribution represented by the directed possibilistic graph.

・ロト ・得ト ・ヨト ・ヨト
Possibilistic trees Dependence trees Directed possibilistic graphs

# Directed possibilistic graphs

Having a perfect sequence  $\pi_1, \pi_2, \ldots, \pi_m$  ( $\pi_k$  being the distribution of  $X_{\kappa_k}$ ), we first order (in an arbitrary way) all the variables for which at least one of the distributions  $\pi_k$  is defined, i.e.

$$\{X_1, X_2, X_3, \ldots, X_n\} = \{X_i\}_{i \in K_1 \cup \ldots \cup K_m}.$$

- ∢ ≣ ▶

Possibilistic trees Dependence trees Directed possibilistic graphs

# Directed possibilistic graphs

Having a perfect sequence  $\pi_1, \pi_2, \ldots, \pi_m$  ( $\pi_k$  being the distribution of  $X_{\kappa_k}$ ), we first order (in an arbitrary way) all the variables for which at least one of the distributions  $\pi_k$  is defined, i.e.

$$\{X_1, X_2, X_3, \ldots, X_n\} = \{X_i\}_{i \in K_1 \cup \ldots \cup K_m}.$$

Then we get a graph of the constructed possibilistic belief network in the following way:

Possibilistic trees Dependence trees Directed possibilistic graphs

# Directed possibilistic graphs

Having a perfect sequence  $\pi_1, \pi_2, \ldots, \pi_m$  ( $\pi_k$  being the distribution of  $X_{\kappa_k}$ ), we first order (in an arbitrary way) all the variables for which at least one of the distributions  $\pi_k$  is defined, i.e.

$$\{X_1, X_2, X_3, \ldots, X_n\} = \{X_i\}_{i \in K_1 \cup \ldots \cup K_m}.$$

Then we get a graph of the constructed possibilistic belief network in the following way:

**1** the nodes are all the variables  $X_1, X_2, X_3, \ldots, X_n$ ;

Possibilistic trees Dependence trees Directed possibilistic graphs

# Directed possibilistic graphs

Having a perfect sequence  $\pi_1, \pi_2, \ldots, \pi_m$  ( $\pi_k$  being the distribution of  $X_{\kappa_k}$ ), we first order (in an arbitrary way) all the variables for which at least one of the distributions  $\pi_k$  is defined, i.e.

$$\{X_1, X_2, X_3, \ldots, X_n\} = \{X_i\}_{i \in K_1 \cup \ldots \cup K_m}.$$

Then we get a graph of the constructed possibilistic belief network in the following way:

- the nodes are all the variables  $X_1, X_2, X_3, \ldots, X_n$ ;
- ② there is an edge  $(X_i \to X_j)$  if there exists a distribution  $\pi_k$ such that both  $i, j \in K_k, j \notin K_1 \cup ... \cup K_{k-1}$  and either  $i \in K_1 \cup ... \cup K_{k-1}$  or i < j.

イロト イポト イヨト イヨト

Possibilistic trees Dependence trees Directed possibilistic graphs

# Example

# $\pi_1(G,B),\pi_2(T),\pi_3(B),\pi_4(D,T,G),\pi_5(R,B),\pi_6(W,R,D)$

Jiřina Vejnarová Multidimensional Possibilistic Models

3

Possibilistic trees Dependence trees Directed possibilistic graphs

### Example

# $\pi_1(G,B),\pi_2(T),\pi_3(B),\pi_4(D,T,G),\pi_5(R,B),\pi_6(W,R,D)$

#### G, B, T, D, R, W

Jiřina Vejnarová Multidimensional Possibilistic Models

3

Possibilistic trees Dependence trees Directed possibilistic graphs

### Example

# $\pi_1(G,B), \pi_2(T), \pi_3(B), \pi_4(D,T,G), \pi_5(R,B), \pi_6(W,R,D)$

#### G, B, T, D, R, W



Possibilistic trees Dependence trees Directed possibilistic graphs

### Example

# $\pi_1(G,B), \pi_2(T), \pi_3(B), \pi_4(D,T,G), \pi_5(R,B), \pi_6(W,R,D)$

#### G, B, T, D, R, W



Possibilistic trees Dependence trees Directed possibilistic graphs

### Example

# $\pi_1(G,B), \pi_2(T), \pi_3(B), \pi_4(D,T,G), \pi_5(R,B), \pi_6(W,R,D)$

#### G, B, T, D, R, W



Possibilistic trees Dependence trees Directed possibilistic graphs

### Example

# $\pi_1(G,B), \pi_2(T), \pi_3(B), \pi_4(D,T,G), \pi_5(R,B), \pi_6(W,R,D)$

#### G, B, T, D, R, W



Possibilistic trees Dependence trees Directed possibilistic graphs

### Example

# $\pi_1(G,B), \pi_2(T), \pi_3(B), \pi_4(D,T,G), \pi_5(R,B), \pi_6(W,R,D)$

#### G, B, T, D, R, W



Possibilistic trees Dependence trees Directed possibilistic graphs

### Example

# $\pi_1(G,B), \pi_2(T), \pi_3(B), \pi_4(D,T,G), \pi_5(R,B), \pi_6(W,R,D)$

#### B, G, T, D, R, W



Possibilistic trees Dependence trees Directed possibilistic graphs

# Conclusions

 A non-graphical approach (parameterized by a continuous t-norm) to multidimensional possibilistic models based on operators of composition — so-called compositional models was presented.

▲□ ► < □ ► </p>

Possibilistic trees Dependence trees Directed possibilistic graphs

# Conclusions

- A non-graphical approach (parameterized by a continuous t-norm) to multidimensional possibilistic models based on operators of composition — so-called compositional models was presented.
- There exist nice probabilistic interpretation of compositional models based on Gödel's and product *t*-norms.

▲ 同 ▶ → 三 ▶

Possibilistic trees Dependence trees Directed possibilistic graphs

# Conclusions

- A non-graphical approach (parameterized by a continuous t-norm) to multidimensional possibilistic models based on operators of composition — so-called compositional models was presented.
- There exist nice probabilistic interpretation of compositional models based on Gödel's and product *t*-norms.
- Three types of graphical possibilistic models can be expressed by a perfect sequence of low-dimensional distributions.

▲ 同 ▶ → 三 ▶

Possibilistic trees Dependence trees Directed possibilistic graphs

# Conclusions

- A non-graphical approach (parameterized by a continuous t-norm) to multidimensional possibilistic models based on operators of composition — so-called compositional models was presented.
- There exist nice probabilistic interpretation of compositional models based on Gödel's and product *t*-norms.
- Three types of graphical possibilistic models can be expressed by a perfect sequence of low-dimensional distributions.
- There exists a procedure by which any perfect sequence of low-dimensional distributions can be transformed into a directed possibilistic graph (or a possibilistic belief network).

Possibilistic trees Dependence trees Directed possibilistic graphs

# THANK YOU FOR YOUR ATTENTION.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >