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An aggregation function A : [0,1]n → [0,1], n ≥ 2

monotonicity A(x) ≤ A(y) whenever x,y ∈ [0,1]n,x ≤ y
boundary conditions A(0) = 0, A(1) = 1

? Under which constrains is an associative n-ary aggregation
function A : [0,1]n → [0,1] an extension of a binary
associative aggregation function B : [0,1]2 → [0,1]?
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A binary function G : [0,1]2 → [0,1]

associative

G(x ,G(y , z)) = G(G(x , y), z) for all x , y , z ∈ [0,1] (1)

has a neutral element e ∈ [0,1]

G(x ,e) = G(e, x) = x for all x ∈ [0,1] (2)

symmetric
G(x , y) = G(y , x) for all x , y ∈ [0,1] (3)
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An aggregation function G : [0,1]2 → [0,1] is called

a triangular norm (t-norm) if it is associative, symmetric
and it has neutral element e = 1
a triangular conorm (t-conorm) if it is associative,
symmetric and it has neutral element e = 0
a uninorm if it is associative, symmetric and it has neutral
element e ∈ ] 0, 1 [

a copula if it has neutral element e = 1 and it is
2-increasing, i.e.,

G(x ′, y ′)−G(x , y ′)−G(x ′, y) + G(x , y) ≥ 0 (4)

for all x , y , x ′, y ′ ∈ [0,1], x ≤ x ′, y ≤ y ′.
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Definition (Post)

Let n ≥ 2. A function F : [0, 1]n → [0, 1] is said to be
associative whenever for all x1, . . . , xn, . . . , x2n−1 ∈ [0, 1] it holds

F (F (x1, . . . , xn), xn+1, . . . , x2n−1) =

= F (x1, F (x2, . . . , xn+1), xn+2, . . . , x2n−1) =

= · · · = F (x1, . . . , xn−1, F (xn, . . . , x2n−1)) . (5)

Definition

Let n ≥ 2. A function F : [0, 1]n → [0, 1] is said to have neutral
element e ∈ [0, 1] whenever F (x1, . . . , xn) = xi if xj = e for
each j 6= i .
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Definition
Let n ≥ 2. A function F : [0,1]n → [0,1] is called symmetric
whenever for each x ∈ [0,1]n and each permutation
σ : {1, . . . ,n} → {1, . . . ,n} it holds

F (x1, . . . , xn) = F (xσ(1), . . . , xσ(n)).

We say that a function F is an n-ary extension of a binary
function G if it holds

F (x1, . . . , xn) = G(G(. . .G(G(x1, x2), x3) . . . ), xn−1), xn)

for all n-tuples in [0, 1]n.
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Example

(i) Define a mapping F : R3 → R by F (x1, x2, x3) = x1 − x2 + x3.
Then F is a ternary associative function. Observe that there is no
binary associative function whose ternary extension coincides
with F . Moreover, F has no neutral element and it is not
symmetric.

(ii) Let C : [0,1]3 → [0,1] be given by
C(x1, x2, x3) = x1 min{x2, x3}. Then e = 1 is neutral element
of C, but C is not associative. Note that C is a ternary copula
which is not symmetric.
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Theorem (Stupňanová & Kolesárová, AGOP 2011)

Consider n ≥ 2. Let e ∈ [0, 1]. Then the following claims are
equivalent:

(i) A mapping F : [0, 1]n → [0, 1] is an associative function
with neutral element e.

(ii) There is a binary associative function G : [0, 1]2 → [0, 1]
with neutral element e whose n-ary extension is F .

Theorem shows that under the neutral element existence, the
associativity of n-ary functions is classically related to the
associativity of binary functions.
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Definition
Let n ≥ 2. An aggregation function A : [0,1]n → [0,1] which is
associative (in the sense of Post), symmetric, and possesses a
neutral element e ∈ [0,1] is called:

an n-ary t-norm if e = 1;
an n-ary t-conorm if e = 0;
an n-ary uninorm if e ∈ ]0, 1[.

Corollary

Let n > 2. A function A : [0,1]n → [0,1] is an n-ary t-norm
(t-conorm, uninorm) if and only if there is a binary t-norm
(t-conorm, uninorm) B : [0,1]2 → [0,1] such that A is an n-ary
extension of B.
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n-dimensional copula (n-copula)

For n ≥ 2, a function C : [0,1]n → [0,1]

(C1) C(x1, . . . , xn) = xi whenever ∀j 6= i , xj = 1;

(C2) C(x1, . . . , xn) = 0 whenever 0 ∈ {x1, . . . , xn};
(C3) the n-increasing property, i.e.,

∀x,y ∈ [0,1]n, xi ≤ yi , i = 1, . . . , n, it holds

∑
J⊂{1,...,n}

(−1)|J|C
(

uJ
1 , . . . , uJ

n

)
≥ 0, where uJ

i =

{
xi , if i ∈ J,

yi , if i /∈ J.
(6)

Each n-ary copula is an n-ary aggregation function with a
neutral element e = 1.
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There are two distinguished functions which are n-copulas for
each n ≥ 2: the so-called minimum n-copula M and the product
n-copula Π, given by

M(x1, . . . , xn) = min{x1, . . . , xn},

Π(x1, . . . , xn) =
n∏

i=1

xi .

The minimum n-copula M describes the comonotone
dependence of random variables X1, . . . ,Xn and the product
n-copula Π describes their independence.
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For each n-copula C it holds

W ≤ C ≤ M,

where W is the so-called Fréchet-Hoeffding lower bound, given
by

W (x1, . . . , xn) = max

{
0,

n∑
i=1

xi − (n − 1)

}
.

It is a well-known fact that this function is a copula only for
n = 2, and in that case describes the countermonotone
dependence of random variables X1 and X2.
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Indeed, W (x1, x2, x3) = max (0, x1 + x2 + x3 − 2), and
considering x =

(1
2 ,

1
2 ,

1
2

)
and y = (1,1,1) , we see that

W (1,1,1)−W
(

1
2
,1,1

)
−W

(
1,

1
2
,1
)
−W

(
1,1,

1
2

)
+

+W
(

1
2
,
1
2
,1
)

+W
(

1
2
,1,

1
2

)
+W

(
1,

1
2
,
1
2

)
−W

(
1
2
,
1
2
,
1
2

)
= −1

2
� 0,

proving that ternary W is not a copula.

All the three basic 2-copulas (copulas, for short) M, Π and W
are associative.
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An Archimedean copula

Let C : [0,1]2 → [0,1] be an associative copula satisfying
C(x , x) < x for all x ∈]0,1[. Then C is called an Archimedean
copula.

Theorem (Moynihan, 1978)

A function C : [0,1]2 → [0,1] is an Archimedean copula if and
only if there is a continuous strictly decreasing convex function
f : [0,1]→ [0,∞], f (1) = 0, such that

C(x1, x2) = f (−1) (f (x1) + f (x2)) , (7)

where f (−1) is the pseudo-inverse of f .

Recall that the pseudo-inverse f (−1) : [0,∞]→ [0,1] is given by

f (−1)(u) = f−1 (min(f (0),u)) .
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Copulas W and Π are Archimedean, with generators fW and fΠ,
respectively, given by fW (x) = 1− x and fΠ(x) = − log x . If we
define the function f(1) : [0,1]→ [0,∞] by f(1)(x) = 1

x − 1, it is
also a generator and the corresponding Archimedean copula
C(1) : [0,1]2 → [0,1] is given by

C(1)(x1, x2) =
x1 x2

x1 + x2 − x1x2

whenever (x1, x2) 6= (0,0).
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For a general associative copula C we have the next
representation theorem

Theorem

A function C : [0,1]2 → [0,1] is an associative copula if and only
if there is a system ( ]ak ,bk [ )k∈K of pairwise disjoint open
subintervals of [0,1] and a system (Ck )k∈K of Archimedean
copulas such that

C(x1, x2) =


ak + (bk − ak ) Ck

(
x1−ak
bk−ak

, x2−ak
bk−ak

)
, if (x1, x2) ∈ ]ak ,bk [2

for some k ∈ K,

M(x1, x2), else.
(8)

Copula C given by is called an ordinal sum copula, with
notation (〈ak ,bk ,Ck 〉| k ∈ K).
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Example

Let C =
(
〈0, 1

2 ,Π〉
)
. Then

C(x1, x2) =

{
2x1x2, if (x1, x2) ∈ ]0, 1

2 [2,

M(x1, x2), else.
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Based on previous theorems and recent results on ordinal sum
structure of n-copulas proved by Mesiar and Sempi [2010], we
have the next result.

Corollary

Let n ≥ 2. A function C : [0,1]n → [0,1] is an associative
n-copula if and only if there is a system ( ]ak ,bk [ )k∈K of
pairwise disjoint open subintervals of ] 0,1 [, and a system
(Ck )k∈K of associative n-copulas satisfying the diagonal
inequality Ck (x , . . . , x) < x for all x ∈] 0,1 [ and k ∈ K such that

C(x1, . . . , xn) =


ak + (bk − ak ) Ck

(
min{x1,bk}−ak

bk−ak
, . . . , min{xn,bk}−ak

bk−ak

)
,

if min{x1, . . . , xn} ∈ ]ak ,bk [ for some k ∈ K,

M(x1, . . . , xn), else.
(9)
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To complete the representation of associative n-copulas, the
characterization of such copulas satisfying the diagonal
inequality is necessary.

Theorem (Stupňanová, Kolesárová, Kybernetika 47 (2011))

Let n ≥ 2. A function C : [0,1]n → [0,1] is an associative
n-copula satisfying the diagonal inequality C(x , . . . , x) < x for
all x ∈] 0,1 [ if and only if there is a generator f whose
pseudo-inverse f (−1) is an (n − 2)-times differentiable function
with derivatives alternating the sign, such that (−1)n dn−2f (−1)

d xn−2 is
a convex function, and

C(x1, . . . , xn) = f (−1)

(
n∑

i=1

f (xi)

)
. (10)

McNeil, Nešlehová [2009]
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Example
As already mentioned, the product n-copula Π is associative for
any n ≥ 2. Evidently, Π(x , . . . , x) = xn < x whenever x ∈] 0,1 [.
As the generator fΠ of the copula Π is given by fΠ(x) = − log x ,
it holds f (−1)

Π (x) = f−1
Π (x) = e−x , hence for any k ,

dk f−1
Π (x)

d xk = (−1)ke−x .

Derivatives alternate the sign and for any n ≥ 2,

(−1)n dn−2f (−1)
Π (x)

d xn−2 = e−x

is a convex function.
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Example
A similar result can be shown for the generator f(1) introduced
in this section, given by f(1)(x) = 1

x − 1. It holds

f (−1)
(1) (x) = f−1

(1) (x) = (1 + x),−1 which implies that

(−1)n
dn−2f (−1)

(1) (x)

d xn−2 = (n − 2)! (1 + x)−n+1

is convex. The corresponding n-copula C(1) is given by

C(1)(x) =

(
n∑

i=1

1
xi
− (n − 1)

)−1

.
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Example
The weakest associative n-copula is the Clayton copula C(− 1

n−1 )

generated by the generator f(− 1
n−1 ) : [0,1]→ [0,∞],

f(− 1
n−1 ) = 1− x

1
n−1 . The corresponding pseudo-inverse

f (−1)

(− 1
n−1 )

: [0,∞]→ [0,1] is given by

f (−1)

(− 1
n−1 )

(x) =

{
(1− x)n−1, if x ≤ 1,

0, if x > 1.

Then (−1)n
dn−2f (−1)

(− 1
n−1 )

(x)

d xn−2 = (n− 1)! max{1− x ,0} is convex but
not differentiable.
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Example

The function C : [0,1]n → [0,1] given by

C(x1, . . . , xn) =

2n−1
n∏

i=1
min

{
xi ,

1
2

}
, if min{x1, . . . , xn} < 1

2 ,

M(x1, . . . , xn), else,
(11)

is an n-ary extension of the ordinal sum copula
(
〈0, 1

2 ,Π〉
)
. As

n-ary function Π is an associative n-copula for each n ≥ 2, our
function C given by (11) is also an associative n-copula for
each n ≥ 2.
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Problem (Problem 2.1(Mesiar),Open Problems at FSTA 2010)
Is there a representation of n-ary associative copulas (in the
sense of Post) similar to the concerning binary copulas?

Associative n-copulas are just n-ary extensions of appropriate
associative copulas.
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Note that not each n-ary aggregation function A associative in
the sense of Post should possess a neutral element. For
example, for each a ∈ [0,1], the function
A : [0,1]3 → [0,1] given by

A(x , y , z) = med(x ,a, y ,a, z)

is associative (and symmetric), but it has a neutral element only
if a ∈ {0,1}. Hence the complete characterization of n-ary
associative aggregation functions which can be seen as n-ary
extensions of binary associative aggregation functions is still an
open problem.
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