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Groupe Consultatif Actuarial Europeen
(European Actuarial Consultative Group)

Core Syllabus for Actuarial Training in Europe
basic probability theory

random variables and related concepts

correlation and regression analysis

simulation methods

Actuaries strive
to understand stochastic outcomes of financial security systems

to estimate of joint life mortality and multidecrement models
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Copula
a copula is a function that links univariate marginals to their full
multivariate distribution

copulas are useful for examining the dependence structure of
multivariate random variables

Advantages of copula models
their relative mathematical simlicity

posibility to built a variety of dependence structures based on
existing parametric or non-parametric models of the marginal
distributions
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The range of copulas applications

civil engineering- reliability of analysis of highway bridges

climate and weather related research

analysis of extremas in financial assets and returns

failure of paired organs in health science

human mortality in insurance (actuarial science)

mortalities of spouses
mortalities of parents and children
twins (identical or nonidentical)
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Actuarial science
two lives are subject to failure

a joint life insurance
annuity (pension) insurance

Risk factors
common disaster (fatal accidents involving both spouses)

common lifestyle

broken-heart syndrome
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Basic properties of copulas

p uniform (on the unit interval) random variables u1, u2, . . . , up

we do not assume that u1, u2, . . . , up are independent; yet they
may be related

this relationship is described through their joint distribution
function

C(u1, u2, . . . , up) = P(U1 ≤ u1, U2 ≤ u2, . . . ,Up ≤ up)

C(F1(x1), F2(x2), . . . ,Fp(xp)) = F(x1, x2, . . . , xp)
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The copula construction does not constrain the choice of
marginal distribution

Example 1
Suppose we are considering modeling male and female lifetimes for a
joint-life annuity product.
Then, with p = 2, we might choose the Gompertz disribution to
represent mortality at the older ages, yet with different parameters to
reflect gender differencies in mortality.

Example 2
We consider a bivariate outcome associated with the loss and the
expense associated with administering a property and casualty claim.
We could elect to use

a lognormal distribution for expenses,

a longer tail distribution (such as Pareto) for losses associated
with the claim.
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A copula function

Definition

A copula function is defined as a binary function C : [0, 1]2 → [0, 1],
which satisfies the following three properties:

1 C(u, 0) = C(0, u) = 0 for any u ∈ [0, 1],
2 C(u, 1) = C(1, u) = u for any u ∈ [0, 1],
3 for all 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1

C([u1, v1]× [u2, v2]) =
C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) ≥ 0

u = F1(x1), v = F2(x2) are univariate distribution functions

C(u, v) = H
(
F−1

1 (u),F−1
2 (v)

)
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Shemyakin, Youn, 2011

Gaussian copula may be represented as

CG(u, v; ρ) = Φ2
ρ

(
Φ−1(u),Φ−1(v)

)
CG(u, v; ρ) =

Φ−1(u)∫
−∞

Φ−1(v)∫
−∞

1

2π
√

1− ρ2
exp
(
−x2

1 − ρx1x2 + x2
2

2 · (1− ρ2)

)
dx1dx2

Φ(x) is the standard normal distribution function.
Φ2
ρ(x1, x2) is the bivariate normal distribution function with

correlation ρ between the marginals.
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Shemyakin, Youn, 2011

Student t-copula may be represented as

Ct(u, v; ρ, ν) = t2
ρ,ν

(
t−1
ν (u), t−1

ν (v)
)

Ct(u, v; ρ, ν) =

t−1
ν (u)∫
−∞

t−1
ν (v)∫
−∞

1

2π
√

1− ρ2
· 1(

1 +
x2

1−ρx1x2+x2
2

ν·(1−ρ2)

)dx2dx1

tν(x) is t-distribution function with ν degrees of freedom.
t2
ρ,ν(x1, x2) is the bivariate t-distribution function with correlation ρ

between the marginals.
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It is also possible to use marginal survival function instead
of marginal distribution functions

If the arguments of the copula function are univariate survival
functions

S1(x1) = P(X1 > x1) S2(x2) = P(X2 > x2)

The coplula function is a legitimate joint (bivariate) survival function
with marginals S1, S2

C(S1, S2) = S(x1, x2) = S(X1 > x1,X2 > x2)
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Bivariate Pareto Model, E. Frees et al., 1997

Exponential distribution
Consider a claims random variable X that, given a risk classification
parameter γ, can be modeled as an exponential distribution

P (X ≤ x|γ) = 1− exp(−γx).

If γ has a Gamma distribution, then the marginal distribution of X is
Pareto.

F(x) = P(X ≤ x) = 1−
(

1 +
x
λ

)−α

Jana Špirková, Vladimír Hiadlovský



the joint distribution

F(x1, x2) = 1− P(X1 > x1)− P(X2 > x2) + P (X1 > x1,X2 > x2)

= 1−
(

1 +
x1

λ

)−α
−
(

1 +
x2

λ

)−α
+

[
1 +

x1 + x2

λ

]−α
= F1(x1) + F2(x2)−1 +

[
(1− F1(x1))−

1
α + (1− F2(x2))−

1
α − 1

]−α
This yields the copula function

C(u1, u2) = u1 + u2 − 1 +
[
(1− u1)−

1
α + (1− u2)−

1
α − 1

]−α
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A family of copulas

The two main methods for specifying a family of copulas are:
the Archimedean approach,

the compounding approach.

The Archimedean copula

Suppose that Φ : [0,∞]→ [0, 1] is a strictly decreasing convex
function such that Φ(0) = 1.
Then an Archimedean copula may be generated as

C(u, v;α) = Φ
(
Φ−1(u) + Φ−1(v)

)
; u, v ∈]0, 1],

α is the parameter of association.
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Frank’s copula
generated by

Φ−1(u) = −log
[

exp(−αu)− 1
exp(−α)− 1

]
with association α 6= 0, is given by

CF(u, v;α) = − 1
α

[
1 +

(exp(−αu)− 1) · (exp(−αv)− 1)

exp(−α)− 1

]
.
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Clayton’s copula
generated by

Φ−1(u) =
1− uα

αuα

with association α > 0, is given by

CC(u, v;α) =
(
u−α + v−α − 1

)−1
α

Stable (Gumbel-Hougaard) copula
generated by

Φ−1(u) = (−logu)α

with association α ≥ 1, can be represented as

CGH(u, v;α) = exp
{
− [(−logu)α + (−logv)α]1/α

}
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Joint survival analysis

Assume
for lives Lj let Xj be “lifelenth” random variables ( age at death),

associated pairs of lives L1 and L2 are observed during a certain
limited period of time T ,

an observation begins at entry age a1, a2;

a1, a2 represent effect of “left trancation”,

a1 + T , a2 + T represent “right censoring”.
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In a sample y = (y1, y2, . . . , yn) each i− th observation yi of an
associated pair of lives (Li1,Li2) may be represented as a vector

yi = (ai1, ai2, ti1, ti2, ci1, ci2),

tij is the termination time for life Lij

cij is the censoring indicator

cij =

{
0 tij = T (censoring)
1 tij < T ( no censoring)
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One of the important tasks is to estimate the future lifelenth
probabilities for given entry ages:

the joint first-life survival function

pFL(t; a1, a2) =

= P (min {X1 − a1, X2 − a2} > t|min {X1 − a1, X2 − a2} > 0)

the joint last-survivor function

pLS(t; a1, a2) =

= P (max {X1 − a1, X2 − a2} > t|min {X1 − a1, X2 − a2} > 0)
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Survival functions

S1(t1) = P(X1 > t1) S2(t2) = P(X2 > t2)

The copula function is a legitimate joint (bivariate) survival function
with marginals S1, S2

C(S1, S2) = S(t1, t2) = S(X1 > t1,X2 > t2)
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A very natural approach to the estimation of pFL(t; a1, a2) and
pLS(t; a1, a2) is to first estimate the bivariate survival function S(t1, t2)
and then use the formulas

pFL(t; a1, a2) =
S(a1 + t, a2 + t)

S(a1, a2)

pLS(t; a1, a2) =
S(a1, a2 + t) + S(a1 + t, a2)− S(a1 + t, a2 + t)

S(a1, a2)
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The choice of two-parameter Weibull distribution

for survival function

S(tj) = P(Xj > tj) = exp
{
−
(

t
βj

)γj
}

; t ≥ 0

Gumbel-Hougaard copula for the model of association

CGH(u, v;α) = exp
{
− [(−log u)α + (−log v)α]1/α

}
S(t1, t2) = CGH(S(t1;β1, γ1), S(t2;β2, γ2);α)

S(t1, t2) = exp

{
−
[(

t
β1

)αγ1

+

(
t
β2

)αγ2
]1/α

}
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