COPULA MODELS IN LIFE INSURANCE

Jana Špirková, Vladimír Hiadlovský
ELEVENTH INTERNATIONAL CONFERENCE ON FUZZY SET THEORY AND APPLICATIONS
2 February 2012

Groupe Consultatif Actuarial Europeen (European Actuarial Consultative Group)

Core Syllabus for Actuarial Training in Europe

- basic probability theory
- random variables and related concepts
- correlation and regression analysis
- simulation methods

Actuaries strive

- to understand stochastic outcomes of financial security systems
- to estimate of joint life mortality and multidecrement models

Copula

- a copula is a function that links univariate marginals to their full multivariate distribution
- copulas are useful for examining the dependence structure of multivariate random variables

Advantages of copula models

- their relative mathematical simlicity
- posibility to built a variety of dependence structures based on existing parametric or non-parametric models of the marginal distributions

The range of copulas applications

- civil engineering- reliability of analysis of highway bridges
- climate and weather related research
- analysis of extremas in financial assets and returns
- failure of paired organs in health science
- human mortality in insurance (actuarial science)
- mortalities of spouses
- mortalities of parents and children
- twins (identical or nonidentical)

Actuarial science

- two lives are subject to failure
- a joint life insurance
- annuity (pension) insurance

Risk factors

- common disaster (fatal accidents involving both spouses)
- common lifestyle
- broken-heart syndrome

Basic properties of copulas

- p uniform (on the unit interval) random variables $u_{1}, u_{2}, \ldots, u_{p}$
- we do not assume that $u_{1}, u_{2}, \ldots, u_{p}$ are independent; yet they may be related
- this relationship is described through their joint distribution function

$$
C\left(u_{1}, u_{2}, \ldots, u_{p}\right)=P\left(U_{1} \leq u_{1}, U_{2} \leq u_{2}, \ldots, U_{p} \leq u_{p}\right)
$$

-

$$
C\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right), \ldots, F_{p}\left(x_{p}\right)\right)=F\left(x_{1}, x_{2}, \ldots, x_{p}\right)
$$

The copula construction does not constrain the choice of marginal distribution

Example 1

Suppose we are considering modeling male and female lifetimes for a joint-life annuity product.
Then, with $p=2$, we might choose the Gompertz disribution to represent mortality at the older ages, yet with different parameters to reflect gender differencies in mortality.

Example 2

We consider a bivariate outcome associated with the loss and the expense associated with administering a property and casualty claim. We could elect to use

- a lognormal distribution for expenses,
- a longer tail distribution (such as Pareto) for losses associated with the claim.

A copula function

Definition

A copula function is defined as a binary function $C:[0,1]^{2} \rightarrow[0,1]$, which satisfies the following three properties:
(1) $C(u, 0)=C(0, u)=0$ for any $u \in[0,1]$,
(2) $C(u, 1)=C(1, u)=u$ for any $u \in[0,1]$,
(3) for all $0 \leq u_{1} \leq u_{2} \leq 1$ and $0 \leq v_{1} \leq v_{2} \leq 1$

$$
\begin{aligned}
& C\left(\left[u_{1}, v_{1}\right] \times\left[u_{2}, v_{2}\right]\right)= \\
& C\left(u_{2}, v_{2}\right)-C\left(u_{1}, v_{2}\right)-C\left(u_{2}, v_{1}\right)+C\left(u_{1}, v_{1}\right) \geq 0
\end{aligned}
$$

$u=F_{1}\left(x_{1}\right), v=F_{2}\left(x_{2}\right)$ are univariate distribution functions

$$
C(u, v)=H\left(F_{1}^{-1}(u), F_{2}^{-1}(v)\right)
$$

Gaussian copula may be represented as

$$
\begin{gathered}
C^{G}(u, v ; \rho)=\Phi_{\rho}^{2}\left(\Phi^{-1}(u), \Phi^{-1}(v)\right) \\
C^{G}(u, v ; \rho)=\int_{-\infty}^{\Phi^{-1}(u) \Phi^{-1}(v)} \int_{-\infty}^{2 \pi \sqrt{1-\rho^{2}}} \exp \left(-\frac{1}{2 \cdot\left(1-\rho^{2}\right)}\right) d x_{1} d x_{2}
\end{gathered}
$$

$\Phi(x)$ is the standard normal distribution function.
$\Phi_{\rho}^{2}\left(x_{1}, x_{2}\right)$ is the bivariate normal distribution function with correlation ρ between the marginals.

Student t-copula may be represented as

$$
\begin{gathered}
C^{t}(u, v ; \rho, \nu)=t_{\rho, \nu}^{2}\left(t_{\nu}^{-1}(u), t_{\nu}^{-1}(v)\right) \\
C^{t}(u, v ; \rho, \nu)=\int_{-\infty}^{t_{\nu}^{-1}(u)} \int_{-\infty}^{t_{\nu}^{-1}(v)} \frac{1}{2 \pi \sqrt{1-\rho^{2}}} \cdot \frac{1}{\left(1+\frac{x_{1}^{2}-\rho x_{1} x_{2}+x_{2}^{2}}{\nu \cdot\left(1-\rho^{2}\right)}\right)} d x_{2} d x_{1}
\end{gathered}
$$

$t_{\nu}(x)$ is t-distribution function with ν degrees of freedom.
$t_{\rho, \nu}^{2}\left(x_{1}, x_{2}\right)$ is the bivariate t-distribution function with correlation ρ between the marginals.

It is also possible to use marginal survival function instead of marginal distribution functions

If the arguments of the copula function are univariate survival functions

$$
S_{1}\left(x_{1}\right)=P\left(X_{1}>x_{1}\right) \quad S_{2}\left(x_{2}\right)=P\left(X_{2}>x_{2}\right)
$$

The coplula function is a legitimate joint (bivariate) survival function with marginals S_{1}, S_{2}

$$
C\left(S_{1}, S_{2}\right)=S\left(x_{1}, x_{2}\right)=S\left(X_{1}>x_{1}, X_{2}>x_{2}\right)
$$

Bivariate Pareto Model, E. Frees et al., 1997

Exponential distribution

Consider a claims random variable X that, given a risk classification parameter γ, can be modeled as an exponential distribution

$$
P(X \leq x \mid \gamma)=1-\exp (-\gamma x)
$$

If γ has a Gamma distribution, then the marginal distribution of X is Pareto.

$$
F(x)=P(X \leq x)=1-\left(1+\frac{x}{\lambda}\right)^{-\alpha}
$$

the joint distribution

$$
\begin{aligned}
& F\left(x_{1}, x_{2}\right)= \\
&=1-P\left(X_{1}>x_{1}\right)-P\left(X_{2}>x_{2}\right)+P\left(X_{1}>x_{1}, X_{2}>x_{2}\right) \\
&= 1-\left(1+\frac{x_{1}}{\lambda}\right)^{-\alpha}-\left(1+\frac{x_{2}}{\lambda}\right)^{-\alpha}+\left[1+\frac{x_{1}+x_{2}}{\lambda}\right]^{-\alpha} \\
&= F_{1}\left(x_{1}\right)+F_{2}\left(x_{2}\right)-1+\left[\left(1-F_{1}\left(x_{1}\right)\right)^{-\frac{1}{\alpha}}+\left(1-F_{2}\left(x_{2}\right)\right)^{-\frac{1}{\alpha}}-1\right]^{-\alpha}
\end{aligned}
$$

This yields the copula function

$$
C\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-1+\left[\left(1-u_{1}\right)^{-\frac{1}{\alpha}}+\left(1-u_{2}\right)^{-\frac{1}{\alpha}}-1\right]^{-\alpha}
$$

A family of copulas

The two main methods for specifying a family of copulas are:

- the Archimedean approach,
- the compounding approach.

The Archimedean copula

Suppose that $\Phi:[0, \infty] \rightarrow[0,1]$ is a strictly decreasing convex function such that $\Phi(0)=1$.
Then an Archimedean copula may be generated as

$$
\left.\left.C(u, v ; \alpha)=\Phi\left(\Phi^{-1}(u)+\Phi^{-1}(v)\right) ; u, v \in\right] 0,1\right]
$$

α is the parameter of association.

Frank's copula

generated by

$$
\Phi^{-1}(u)=-\log \left[\frac{\exp (-\alpha u)-1}{\exp (-\alpha)-1}\right]
$$

with association $\alpha \neq 0$, is given by

$$
C_{F}(u, v ; \alpha)=-\frac{1}{\alpha}\left[1+\frac{(\exp (-\alpha u)-1) \cdot(\exp (-\alpha v)-1)}{\exp (-\alpha)-1}\right] .
$$

Clayton's copula

generated by

$$
\Phi^{-1}(u)=\frac{1-u^{\alpha}}{\alpha u^{\alpha}}
$$

with association $\alpha>0$, is given by

$$
C_{C}(u, v ; \alpha)=\left(u^{-\alpha}+v^{-\alpha}-1\right)^{\frac{-1}{\alpha}}
$$

Stable (Gumbel-Hougaard) copula

generated by

$$
\Phi^{-1}(u)=(-\log u)^{\alpha}
$$

with association $\alpha \geq 1$, can be represented as

$$
C_{G H}(u, v ; \alpha)=\exp \left\{-\left[(-\log u)^{\alpha}+(-\log v)^{\alpha}\right]^{1 / \alpha}\right\}
$$

Joint survival analysis

Assume

- for lives L_{j} let X_{j} be "lifelenth" random variables (age at death),
- associated pairs of lives L_{1} and L_{2} are observed during a certain limited period of time T,
- an observation begins at entry age a_{1}, a_{2};
- a_{1}, a_{2} represent effect of "left trancation",
- $a_{1}+T, a_{2}+T$ represent "right censoring".

In a sample $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ each $i-t h$ observation y_{i} of an associated pair of lives ($L_{i 1}, L_{i 2}$) may be represented as a vector

$$
y_{i}=\left(a_{i 1}, a_{i 2}, t_{i 1}, t_{i 2}, c_{i 1}, c_{i 2}\right)
$$

- $t_{i j}$ is the termination time for life $L_{i j}$
- $c_{i j}$ is the censoring indicator

$$
c_{i j}=\left\{\begin{array}{cc}
0 & t_{i j}=T \text { (censoring) } \\
1 & t_{i j}<T \text { (no censoring) }
\end{array}\right.
$$

One of the important tasks is to estimate the future lifelenth probabilities for given entry ages:

- the joint first-life survival function

$$
\begin{aligned}
& p_{F L}\left(t ; a_{1}, a_{2}\right)= \\
= & P\left(\min \left\{X_{1}-a_{1}, X_{2}-a_{2}\right\}>t \mid \min \left\{X_{1}-a_{1}, X_{2}-a_{2}\right\}>0\right)
\end{aligned}
$$

- the joint last-survivor function

$$
\begin{aligned}
& p_{L S}\left(t ; a_{1}, a_{2}\right)= \\
= & P\left(\max \left\{X_{1}-a_{1}, X_{2}-a_{2}\right\}>t \mid \min \left\{X_{1}-a_{1}, X_{2}-a_{2}\right\}>0\right)
\end{aligned}
$$

$$
S_{1}\left(t_{1}\right)=P\left(X_{1}>t_{1}\right) \quad S_{2}\left(t_{2}\right)=P\left(X_{2}>t_{2}\right)
$$

The copula function is a legitimate joint (bivariate) survival function with marginals S_{1}, S_{2}

$$
C\left(S_{1}, S_{2}\right)=S\left(t_{1}, t_{2}\right)=S\left(X_{1}>t_{1}, X_{2}>t_{2}\right)
$$

A very natural approach to the estimation of $p_{F L}\left(t ; a_{1}, a_{2}\right)$ and $p_{L S}\left(t ; a_{1}, a_{2}\right)$ is to first estimate the bivariate survival function $S\left(t_{1}, t_{2}\right)$ and then use the formulas

$$
\begin{gathered}
p_{F L}\left(t ; a_{1}, a_{2}\right)=\frac{S\left(a_{1}+t, a_{2}+t\right)}{S\left(a_{1}, a_{2}\right)} \\
p_{L S}\left(t ; a_{1}, a_{2}\right)=\frac{S\left(a_{1}, a_{2}+t\right)+S\left(a_{1}+t, a_{2}\right)-S\left(a_{1}+t, a_{2}+t\right)}{S\left(a_{1}, a_{2}\right)}
\end{gathered}
$$

The choice of two-parameter Weibull distribution

for survival function

$$
S\left(t_{j}\right)=P\left(X_{j}>t_{j}\right)=\exp \left\{-\left(\frac{t}{\beta_{j}}\right)^{\gamma_{j}}\right\} ; t \geq 0
$$

Gumbel-Hougaard copula for the model of association

$$
\begin{gathered}
C_{G H}(u, v ; \alpha)=\exp \left\{-\left[(-\log u)^{\alpha}+(-\log v)^{\alpha}\right]^{1 / \alpha}\right\} \\
S\left(t_{1}, t_{2}\right)=C_{G H}\left(S\left(t_{1} ; \beta_{1}, \gamma_{1}\right), S\left(t_{2} ; \beta_{2}, \gamma_{2}\right) ; \alpha\right) \\
S\left(t_{1}, t_{2}\right)=\exp \left\{-\left[\left(\frac{t}{\beta_{1}}\right)^{\alpha \gamma_{1}}+\left(\frac{t}{\beta_{2}}\right)^{\alpha \gamma_{2}}\right]^{1 / \alpha}\right\}
\end{gathered}
$$

