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The aim

To define an L-fuzzy valued norm by using the L-fuzzy valued
integral over an L-set with respect to an L-fuzzy valued
measure µ.
To describe the space L1(E ,Σ,µ) of L-fuzzy integrable over a
measurable L-set E ∈ Σ real valued functions.
To show possible applications of the introduced L-fuzzy
valued norm in approximation theory:

approximation error estimation for a given function
approximation error estimation for a class of functions
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L-fuzzy valued integral

We define an L-fuzzy valued integral∫
E

f dµ,

where
E is a measurable L-set, i.e. E ∈ Σ,
f : X → R is a non-negative measurable function with respect
to σ-algebra of crisp sets Φ,
µ is an L-fuzzy valued measure of L-sets.
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L-fuzzy real numbers

For our purposes we use the L-fuzzy real numbers as they were
first defined by B. Hutton.

Definition
An L-fuzzy real number is a function z : R→ L such that

z is non-increasing;∧
x

z(x) = 0L,
∨
x

z(x) = 1L;

z is left semi-continuous, i.e.
∧

t<x
z(t) = z(x).

R(L) - the set of all L-fuzzy real numbers (the L-fuzzy real line).
An L-fuzzy number z is called non-negative if z(0) = 1L.
R+(L) - the set of all non-negative L-fuzzy real numbers.
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L-fuzzy real numbers

Operations with L-fuzzy real numbers such as addition ⊕ and
multiplication by a real positive number are defined as follows:

(z1⊕ z2)(t) =
∨
τ

{z1(τ)∧ z2(t− τ)}, (zr)(t) = z(
t
r ).

The supremum and the infimum of a set of non-negative L-fuzzy
numbers F ⊂ R+(L) are defined by the formulas:

(Inf F )(t) =
∧
{z(t) | z ∈ F}, t ∈ R,

Sup F = Inf {z | z ∈ R(L),z ≥ z ′ for all z ′ ∈ F}.
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The schema of construction of an L-fuzzy valued measure

Φ⊂ 2X , Φ - sigmaalgebra
ν : Φ→ [0,+∞[, ν - finite measure

⇓

By using fuzzy sets A(M,α) we construct the TM-semiring
℘= {A(M,α)|M ∈ Φ and α ∈ L} and define L-fuzzy valued

elementary measure m : ℘→ R+(L)
m(A(M,α)) = z(ν(M),α)

⇓

On the next step we get a TM-tribe Σ of measurable fuzzy sets
and extend elementary measure m to the L-fuzzy valued measure µ

defined on the TM-tribe Σ.
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L-fuzzy valued integral
By analogy with the classical case we define an L-fuzzy valued
integral stepwise, first considering the case of simple non-negative
measurable functions (for short SNMF):∫

E

(
n

∑
i=1

ciχCi ) dµ =
n⊕

i=1
(ci µ(Ci ∧E )),

whenever
ci ∈ R+,Ci ∈ Φ,χCi is the characteristic function, i ∈ {1, ...,n}, and
C1, ...,Cn are pairwise disjoint sets.
Then considering the case for non-negative measurable function f
(for short NMF):∫

E

f dµ = Sup{
∫
E

g dµ | g ≤ f and g is SNMF}.
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L-fuzzy valued integral
For If =

∫
E

f dµ due to properties of the supremum of a set of

L-fuzzy numbers, we have
If is non-increasing,∨
t
If (t) = 1L,

If is left semi-continuous, i.e.
∧

t<t0
If (t) = If (t0).

Definition
We say that a non-negative measurable function f is L-fuzzy
integrable iff ∧

t
If (t) = 0L.

It holds when f is integrable on the set SuppE with respect to ν.
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Properties of an L-fuzzy valued integral

r ∈ R+⇒
∫
E

rfdµ = r
∫
E

fdµ

f1 ≤ f2⇒
∫
E

f1dµ≤
∫
E

f2dµ

E1 ⊂ E2⇒
∫
E1

f dµ≤
∫
E2

f dµ

(Ek)k∈N : Ek ≤ Ek+1 and
∨

k∈N
Ek = E ⇒∫

E
fdµ = Sup{

∫
Ek

fdµ | k ∈ N}

(fn)n∈N : fn ≤ fn+1 and lim
n→∞

fn = f ⇒∫
E

f dµ = Sup{
∫
E

fn dµ | n ∈ N}∫
E

(f1 + f2)dµ =
∫
E

f1dµ⊕
∫
E

f2dµ

E1∧E2 = /0⇒
∫

E1∨E2

fdµ =
∫
E1

fdµ⊕
∫
E2

fdµ
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L-fuzzy valued norm

For a given linear space Y by the analogy with the classical case we
consider the concept of a norm taking values in R+(L) as following:

Definition
An L-fuzzy valued norm on a linear space Y is a function
‖ · ‖ : Y → R+(L) with the following properties:
for all r ∈ R and all y ,y1,y2 ∈ Y it holds

‖y‖= z(0,1L)⇔ y = 0Y ,
‖ry‖= |r |‖y‖,
‖y1 + y2‖ ≤ ‖y1‖⊕‖y2‖.
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Space L1(E ,Σ,µ)

We denote by L1(E ,Σ,µ) the space of all L-fuzzy integrable over
E real valued functions. We consider L1(E ,Σ,µ) as a space
equipped with the L-fuzzy valued norm defined as follows:

‖f ‖µ =
∫
E

|f | dµ,

where µ is an L-fuzzy valued measure and E ∈ Σ.
The function

‖ · ‖µ : L1(E ,Σ,µ)→ R+(L)

satisfies the conditions of an L-fuzzy valued norm.
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Approximation error

Let us suppose that E ∈ Σ and f ∈L1(suppE ,Φ,ν). We consider
a method of approximation described by

A : L1(suppE ,Φ,ν)→U,

where U is a space of functions used for approximation. Usually, it
is finite-dimensional. For example, it could be a space of
polynomials or splines.
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Approximation error

Definition
The error of approximation A of a function f on an L-fuzzy set E
is defined as follows:

e(f ,A,E ) = ‖f −Af ‖µ.

Notice that the error of approximation

e(f ,A,E ) =
∫
E

|f −Af |dµ

is an L-fuzzy real number.
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Numerical example

L = [0,1], X = [0,1], ν is the Lebesgue measure.
We consider the errors of approximation of the function (the
Runge example)

f =
1

1+25x2

by two interpolation methods on two different L-sets.

Vecislavs Ruza, Svetlana Asmuss Department of Mathematics, University of Latvia
On estimation of approximation error on fuzzy sets by means of fuzzy valued integral



Numerical example - Interpolation methods

We consider two methods of interpolation with respect to the
uniform mesh on [0,1]:

approximation A1 by the Lagrange interpolation polynomial
of degree 10,
approximation A2 by the interpolation natural cubic spline
with respect to the same mesh.
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Numerical example - L-sets

Approximations are analyzed on two different L-sets E1 and E2:

E1(x) =

{
1, x ∈ [0,0.2],
1.25(1−x), x ∈ [0.2,1],

E2(x) =

{
1.25x , x ∈ [0,0.8],
1, x ∈ [0.8,1].

Let us note that

µ(E1) = µ(E2) and Supp(E1) = Supp(E2).
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Numerical example

The errors e(f ,Aj ,Ei ) of approximation of the function f on the
L-set Ei by the method Aj , i = 1,2, j = 1,2, are presented in the
following table. Take into account that in the table we use the
notation:

e(f ,Aj ,Ei )(t) = α.
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Numerical example - Approximation error on L-set E1

e(f ,A1,E1) e(f ,A2,E1)

t α

6.3508 ·10−4 0
6.2584 ·10−4 0.1
6.2388 ·10−4 0.2
6.2302 ·10−4 0.3
6.2245 ·10−4 0.4
6.2193 ·10−4 0.5
6.2141 ·10−4 0.6
6.2079 ·10−4 0.7
6.1984 ·10−4 0.8
6.1775 ·10−4 0.9
6.0979 ·10−4 1.0

t α

28.2092 ·10−4 0
28.1501 ·10−4 0.1
28.1325 ·10−4 0.2
28.1258 ·10−4 0.3
28.1216 ·10−4 0.4
28.1087 ·10−4 0.5
28.0879 ·10−4 0.6
28.0013 ·10−4 0.7
27.8377 ·10−4 0.8
27.4130 ·10−4 0.9
25.6889 ·10−4 1.0

Vecislavs Ruza, Svetlana Asmuss Department of Mathematics, University of Latvia
On estimation of approximation error on fuzzy sets by means of fuzzy valued integral



Numerical example - Approximation error on L-set E2

e(f ,A1,E2) e(f ,A2,E2)

t α

6.3508 ·10−4 0
0.9613 ·10−4 0.1
0.3556 ·10−4 0.2
0.2124 ·10−4 0.3
0.1658 ·10−4 0.4
0.1467 ·10−4 0.5
0.1381 ·10−4 0.6
0.1334 ·10−4 0.7
0.1296 ·10−4 0.8
0.1251 ·10−4 0.9
0.1173 ·10−4 1.0

t α

28.2092 ·10−4 0
10.4002 ·10−4 0.1
4.3225 ·10−4 0.2
1.6781 ·10−4 0.3
0.6252 ·10−4 0.4
0.2681 ·10−4 0.5
0.1353 ·10−4 0.6
0.1059 ·10−4 0.7
0.0953 ·10−4 0.8
0.0860 ·10−4 0.9
0.0816 ·10−4 1.0
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Numerical example - crisp case

Let us note that
suppE1 = suppE2 = [0,1]

and
e(f ,A1, [0,1]) = 6.3509 ·10−4,

e(f ,A2, [0,1]) = 28.2092 ·10−4.
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Numerical example

Figure: The graphs of the errors α = e(f ,A1,E2)(t) and
α = e(f ,A2,E2)(t) .
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Conditions on functions

Now we consider functions f that satisfy the following conditions:
there exists (n−1) derivative f (n−1) and it is absolutely
continuous on [0,1],
|f (n)| is integrable on [0,1].
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Conditions on approximation

We do the following assumptions regarding the choice of
approximation method A:

for all p ∈ Pn−1 we have Ap = p, where Pn−1 is a class of all
polynomials with degree not greater then (n−1);
approximation A is linear;

for r(x) =
1∫
0

g(u) h(x ,u) du it holds

(A r)(x) =

1∫
0

g(u) (A h(x ,u))du,

where approximation A is applied only to argument x of
function h.
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Approximation error - Integral representation

f (x)− (Af )(x) =

1∫
0

f (n)(u)Un−1(x ,u) du.

Un−1(x ,u) =
ϕn−1(x ,u)−A ϕn−1(x ,u)

(n−1)!
.

ϕn−1(x ,u) = (x −u)n−1
+ =

{
(x −u)n−1, x ≥ u;
0, u > x . .
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Approximation error for classes of functions

f ∈ KW n
1 f ∈ KW n

∞

1∫
0
|f (n)(u)| du ≤ K sup

u∈[0,1]
|f (n)(u)| ≤ K

Approximation error

e(KW n
r ,A,E ) = Sup{‖f −Af ‖µ | f ∈ KW n

r }.
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Approximation error for classes of functions

e(KW n
1 ,A,E )≤ K

∫
E

sup
u∈[0,1]

|Un−1(x ,u)| dµ.

e(KW n
∞ ,A,E )≤ K

∫
E

(

1∫
0

|Un−1(x ,u)| du) dµ.
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Numerical example

We examine the approximation A by a polygons (i.e. first degree
spline) with respect to the uniform mesh {x0,x1, ...,x10} on [0,1]
over L-set E defined as follows:

E (x) =

{
1−x , x ∈ [0,1],
0, otherwise.
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Numerical example - Class KW 1
∞

Approximation error for class KW 1
∞ is bounded as follows

e(KW 1
∞,A,E )≤ K

∫
E

(

1∫
0

|U0(x ,u)| du) dµ.

Denoting

z∞ =
∫
E

(

1∫
0

|U0(x ,u)| du) dµ

we obtain
e(KW 1

∞,A,E )≤ K z∞.
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Numerical example - Class KW 1
∞

1∫
0

|U0(x ,u)| du = 2h
{x

h

}(
1−
{x

h

})
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Numerical example - Class KW 1
∞

z−1
∞ (α) =

h2

3

([
1−α

h

]
+

{
1−α

h

}2
(3−2

{
1−α

h

}
)

)
.
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Numerical example - Class KW 1
∞ - not uniform mesh

z−1
∞ (α) =

i−1

∑
j=1

h2
j
3 +

h2
i
3 (

1−α−xi−1
h )2(3−2(

1−α−xi−1
h )).
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Thank you for attention!!!
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Appendix

Vecislavs Ruza, Svetlana Asmuss Department of Mathematics, University of Latvia
On estimation of approximation error on fuzzy sets by means of fuzzy valued integral



L-fuzzy valued measure

Definition
Let Σ be a TM-tribe. A function µ : Σ→ R+(L) is called an
L-fuzzy valued measure if it satisfies the following conditions:

µ( /0) = z(0,1L);
µ is TM-valuation, i.e. for all A,B ∈ Σ it holds
µ(A∧B)⊕µ(A∨B) = µ(A)⊕µ(B);
µ is left TM-continuous, i.e.

∨
n∈N

µ(An) = µ(A), where

(An)n∈N ⊂ Σ,
∨

n∈N
An = A ∈ Σ.
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Calculation method for L-fuzzy valued integral
(case when L = [0,1])

The main idea of the method is based on the following reasoning.
The fuzzy set we want to integrate over can be viewed as a
non-negative function.
Let us assume that this function is measurable with respect to
σ-algebra F. It is known that every non-negative measurable
function can be presented as a limit of a non-decreasing
sequence of SNMF.
Obviously, every fuzzy set that is SNMF can be presented as a
union of TM-disjoint fuzzy sets from the class ℘. And integral
over element from the class ℘ can be easily calculated.
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Integration over E = E (M,a) ∈℘

For all E (M,α) ∈℘ it holds∫
E(M,α)

fdµ = z(
∫
M

f dν,α).
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Integration over E - SNMF

If E is SNMF then E (R) = {α1, ...,αn}. We assume that

α1 > α2 > ... > αn

∫
E

f dµ =



1, t ≤
∫

Eα1
fdν

...
αi ,

∫
Eαi

fdν < t ≤
∫

Eαi+1
fdν

...
αn,

∫
Eαn−1

fdν < t ≤
∫

Eαn
fdν

0, otherwise
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Integration over E - NMF

As was already mentioned every NMF can be presented as a limit
of a non-decreasing sequence of SNMF.
E =

∨
n

En where (En)n∈N is non-decreasing sequence.

Denoting I =
∫
E

f dµ and In =
∫
En

f dµ we get

I = Sup{In | n ∈ N}.

From the last equality we can get approximate value of integral by
fixing n. Obviously, integral accuracy in this case will be dependent
on the n value.
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Space Lp(E ,Σ,µ)

We consider Space Lp(E ,Σ,µ) where 1≤ p ≤ ∞ with the norm
‖ · ‖p defined as follows:

‖f ‖p = (

1∫
0

|f |pdx)

1
p

, where 1≤ p < ∞ ,

and
‖f ‖p = sup

x∈[0,1]
|f (x)| , where p = ∞ .
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