On estimation of approximation error on fuzzy sets by means of fuzzy valued integral

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

ELEVENTH INTERNATIONAL CONFERENCE ON FUZZY SET THEORY AND APPLICATIONS Liptovsky Jan, Slovak Republic January 30 - February 3, 2012

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

- To define an L-fuzzy valued norm by using the L-fuzzy valued integral over an L-set with respect to an L-fuzzy valued measure μ.
- To describe the space L₁(E,Σ,μ) of L-fuzzy integrable over a measurable L-set E ∈ Σ real valued functions.
- To show possible applications of the introduced L-fuzzy valued norm in approximation theory:
 - approximation error estimation for a given function
 - approximation error estimation for a class of functions

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

< 同 ▶ < ∃ ▶

L-fuzzy valued integral

We define an L-fuzzy valued integral

$$\int_{E} f d\mu,$$

where

- *E* is a measurable L-set, i.e. $E \in \Sigma$,
- $f: X \to \mathbb{R}$ is a non-negative measurable function with respect to σ -algebra of crisp sets Φ ,
- μ is an L-fuzzy valued measure of L-sets.

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

L-fuzzy real numbers

For our purposes we use the L-fuzzy real numbers as they were first defined by B. Hutton.

Definition

An L-fuzzy real number is a function $z: \mathbb{R} \to L$ such that

z is non-increasing;

$$\bigwedge_{x} z(x) = 0_L, \bigvee_{x} z(x) = 1_L;$$

• z is left semi-continuous, i.e. $\bigwedge_{t \le x} z(t) = z(x)$.

 $\mathbb{R}(L)$ - the set of all L-fuzzy real numbers (*the L-fuzzy real line*). An L-fuzzy number *z* is called *non-negative* if $z(0) = 1_L$. $\mathbb{R}_+(L)$ - the set of all non-negative L-fuzzy real numbers.

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

Operations with L-fuzzy real numbers such as addition \oplus and multiplication by a real positive number are defined as follows:

$$(z_1\oplus z_2)(t)=\bigvee_{\tau}\{z_1(\tau)\wedge z_2(t-\tau)\},\ (zr)(t)=z(\frac{t}{r}).$$

The supremum and the infimum of a set of non-negative L-fuzzy numbers $F \subset \mathbb{R}_+(L)$ are defined by the formulas:

$$(Inf F)(t) = \bigwedge \{z(t) \mid z \in F\}, t \in \mathbb{R},$$

Sup $F = Inf \{z \mid z \in \mathbb{R}(L), z \ge z' \text{ for all } z' \in F\}.$

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

$$\begin{array}{l} \Phi \subset \boldsymbol{2}^{X}, \ \Phi \text{ - sigmaalgebra} \\ \boldsymbol{\nu} : \Phi \rightarrow [0, +\infty[, \ \boldsymbol{\nu} \text{ - finite measure} \\ \Downarrow \end{array}$$

By using fuzzy sets $A(M, \alpha)$ we construct the T_M -semiring $\wp = \{A(M, \alpha) | M \in \Phi \text{ and } \alpha \in L\}$ and define L-fuzzy valued elementary measure $m : \wp \to \mathbb{R}_+(L)$ $m(A(M, \alpha)) = z(v(M), \alpha)$ \Downarrow

On the next step we get a T_M -tribe Σ of measurable fuzzy sets and extend elementary measure m to the L-fuzzy valued measure μ defined on the T_M -tribe Σ .

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

L-fuzzy valued integral

By analogy with the classical case we define an L-fuzzy valued integral stepwise, first considering the case of simple non-negative measurable functions (for short SNMF):

$$\int_E (\sum_{i=1}^n c_i \chi_{C_i}) \ d\mu = \bigoplus_{i=1}^n (c_i \ \mu(C_i \wedge E)),$$

whenever

 $c_i \in \mathbb{R}_+, C_i \in \Phi, \chi_{C_i}$ is the characteristic function, $i \in \{1, ..., n\}$, and $C_1, ..., C_n$ are pairwise disjoint sets.

Then considering the case for non-negative measurable function f (for short NMF):

$$\int_{E} f \ d\mu = Sup\{\int_{E} g \ d\mu \mid g \leq f \text{ and } g \text{ is SNMF}\}.$$

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

L-fuzzy valued integral

For $\mathbb{I}_f = \int_E f \ d\mu$ due to properties of the supremum of a set of L-fuzzy numbers, we have

If is non-increasing,

■
$$\bigvee_{t} \mathbb{I}_{f}(t) = \mathbb{1}_{L}$$
,
■ \mathbb{I}_{f} is left semi-continuous, i.e. $\land \mathbb{I}_{f}(t) = \mathbb{I}_{f}(t_{0})$

If is left semi-continuous, i.e. $\bigwedge_{t < t_0} \mathbb{I}_f(t) = \mathbb{I}_f(t_0)$.

Definition

We say that a non-negative measurable function f is L-fuzzy integrable iff

$$\bigwedge_t \mathbb{I}_f(t) = \mathbf{0}_L.$$

It holds when f is integrable on the set SuppE with respect to v.

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

Properties of an L-fuzzy valued integral

•
$$r \in \mathbb{R}_{+} \Rightarrow \int_{E} rfd\mu = r \int_{E} fd\mu$$

• $f_{1} \leq f_{2} \Rightarrow \int_{E} f_{1}d\mu \leq \int_{E} f_{2}d\mu$
• $E_{1} \subset E_{2} \Rightarrow \int_{E_{1}} f \ d\mu \leq \int_{E_{2}} f \ d\mu$
• $(E_{k})_{k \in \mathbb{N}} : E_{k} \leq E_{k+1} \text{ and } \bigvee_{k \in \mathbb{N}} E_{k} = E \Rightarrow$
 $\int_{E} fd\mu = Sup\{\int_{E_{k}} fd\mu \mid k \in \mathbb{N}\}$
• $(f_{n})_{n \in \mathbb{N}} : f_{n} \leq f_{n+1} \text{ and } \lim_{n \to \infty} f_{n} = f \Rightarrow$
 $\int_{E} f \ d\mu = Sup\{\int_{E} f_{n} \ d\mu \mid n \in \mathbb{N}\}$
• $\int_{E} (f_{1} + f_{2})d\mu = \int_{E} f_{1}d\mu \oplus \int_{E_{2}} f_{2}d\mu$
• $E_{1} \wedge E_{2} = \emptyset \Rightarrow \int_{E_{1}} fd\mu = \int_{E_{1}} fd\mu \oplus \int_{E_{2}} fd\mu$

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

For a given linear space Y by the analogy with the classical case we consider the concept of a norm taking values in $R_+(L)$ as following:

Definition

An L-fuzzy valued norm on a linear space Y is a function $\|\cdot\|: Y \to \mathbb{R}_+(L)$ with the following properties: for all $r \in \mathbb{R}$ and all $y, y_1, y_2 \in Y$ it holds

$$||y|| = z(0,1_L) \Leftrightarrow y = 0_Y,$$

$$||ry|| = |r|||y||,$$

 $||y_1 + y_2|| \le ||y_1|| \oplus ||y_2||.$

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

We denote by $\mathscr{L}_1(E, \Sigma, \mu)$ the space of all L-fuzzy integrable over E real valued functions. We consider $\mathscr{L}_1(E, \Sigma, \mu)$ as a space equipped with the L-fuzzy valued norm defined as follows:

$$\|f\|_{\mu} = \int_{E} |f| \ d\mu,$$

where μ is an L-fuzzy valued measure and $E \in \Sigma$. The function

$$\|\cdot\|_{\mu}:\mathscr{L}_{1}(E,\Sigma,\mu)\to\mathbb{R}_{+}(L)$$

satisfies the conditions of an L-fuzzy valued norm.

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

▲ 同 ▶ < ∃ ▶</p>

Let us suppose that $E \in \Sigma$ and $f \in \mathscr{L}_1(suppE, \Phi, \nu)$. We consider a method of approximation described by

$$\mathscr{A}$$
: $\mathscr{L}_1(supp E, \Phi, \nu) \to \mathscr{U}$,

where \mathscr{U} is a space of functions used for approximation. Usually, it is finite-dimensional. For example, it could be a space of polynomials or splines.

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

Approximation error

Definition

The error of approximation \mathscr{A} of a function f on an L-fuzzy set E is defined as follows:

$$e(f,\mathscr{A},E) = \|f-\mathscr{A}f\|_{\mu}.$$

Notice that the error of approximation

$$e(f,\mathscr{A},E)=\int\limits_{E}|f-\mathscr{A}f|d\mu$$

is an L-fuzzy real number.

Department of Mathematics, University of Latvia

Vecislavs Ruza, Svetlana Asmuss

L = [0,1], X = [0,1], v is the Lebesgue measure. We consider the errors of approximation of the function (the Runge example)

$$f = \frac{1}{1+25x^2}$$

by two interpolation methods on two different L-sets.

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

We consider two methods of interpolation with respect to the uniform mesh on [0,1]:

- approximation A₁ by the Lagrange interpolation polynomial of degree 10,
- approximation \mathscr{A}_2 by the interpolation natural cubic spline with respect to the same mesh.

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

Approximations are analyzed on two different L-sets E_1 and E_2 :

$$E_{1}(x) = \begin{cases} 1, & x \in [0, 0.2], \\ 1.25(1-x), & x \in [0.2, 1], \end{cases}$$
$$E_{2}(x) = \begin{cases} 1.25x, & x \in [0, 0.8], \\ 1, & x \in [0.8, 1]. \end{cases}$$

Let us note that

$$\mu(E_1) = \mu(E_2)$$
 and $Supp(E_1) = Supp(E_2)$.

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

The errors $e(f, \mathscr{A}_j, E_i)$ of approximation of the function f on the L-set E_i by the method \mathscr{A}_j , i = 1, 2, j = 1, 2, are presented in the following table. Take into account that in the table we use the notation:

 $e(f, \mathscr{A}_j, E_i)(t) = \alpha.$

Department of Mathematics, University of Latvia

A (1) > A (2) >

Vecislavs Ruza, Svetlana Asmuss

Numerical example - Approximation error on L-set E_1

$e(f, \mathscr{A}_1, E_1)$		$e(f, \mathscr{A}_2, E_1)$	$e(f, \mathscr{A}_2, E_1)$		
t	α	t o	ι		
$6.3508 \cdot 10^{-4}$	0	$28.2092 \cdot 10^{-4}$ 0			
$6.2584 \cdot 10^{-4}$	0.1	$28.1501 \cdot 10^{-4}$ 0.	1		
$6.2388 \cdot 10^{-4}$	0.2	$28.1325 \cdot 10^{-4}$ 0.	2		
$6.2302 \cdot 10^{-4}$	0.3	$28.1258 \cdot 10^{-4}$ 0.	3		
$6.2245 \cdot 10^{-4}$	0.4	$28.1216 \cdot 10^{-4}$ 0.4	4		
$6.2193 \cdot 10^{-4}$	0.5	$28.1087 \cdot 10^{-4}$ 0.	5		
$6.2141 \cdot 10^{-4}$	0.6	$28.0879 \cdot 10^{-4}$ 0.	6		
$6.2079 \cdot 10^{-4}$	0.7	$28.0013 \cdot 10^{-4}$ 0.	7		
$6.1984 \cdot 10^{-4}$	0.8	$27.8377 \cdot 10^{-4}$ 0.	8		
$6.1775 \cdot 10^{-4}$	0.9	$27.4130 \cdot 10^{-4}$ 0.	9		
$6.0979 \cdot 10^{-4}$	1.0	$25.6889 \cdot 10^{-4}$ 1.	0		

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - 釣ぬ()

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

Numerical example - Approximation error on L-set E_2

$e(f, \mathscr{A}_1, E_2)$		$e(f, \mathscr{A}_2, E_2)$	$e(f, \mathscr{A}_2, E_2)$		
t	α	t	α		
$6.3508 \cdot 10^{-4}$	0	$28.2092 \cdot 10^{-4}$	0		
$0.9613 \cdot 10^{-4}$	0.1	$10.4002 \cdot 10^{-4}$	0.1		
$0.3556 \cdot 10^{-4}$	0.2	$4.3225 \cdot 10^{-4}$	0.2		
$0.2124 \cdot 10^{-4}$	0.3	$1.6781 \cdot 10^{-4}$	0.3		
$0.1658 \cdot 10^{-4}$	0.4	$0.6252 \cdot 10^{-4}$	0.4		
$0.1467 \cdot 10^{-4}$	0.5	$0.2681 \cdot 10^{-4}$	0.5		
$0.1381 \cdot 10^{-4}$	0.6	$0.1353 \cdot 10^{-4}$	0.6		
$0.1334 \cdot 10^{-4}$	0.7	$0.1059 \cdot 10^{-4}$	0.7		
$0.1296 \cdot 10^{-4}$	0.8	$0.0953 \cdot 10^{-4}$	0.8		
$0.1251 \cdot 10^{-4}$	0.9	$0.0860 \cdot 10^{-4}$	0.9		
$0.1173 \cdot 10^{-4}$	1.0	$0.0816 \cdot 10^{-4}$	1.0		

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

Numerical example - crisp case

Let us note that

$$suppE_1 = suppE_2 = [0,1]$$

and

$$e(f, \mathscr{A}_1, [0, 1]) = 6.3509 \cdot 10^{-4},$$

 $e(f, \mathscr{A}_2, [0, 1]) = 28.2092 \cdot 10^{-4}.$

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

Image: A (□)

Numerical example

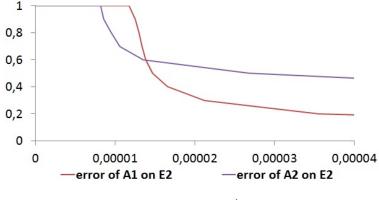


Figure: The graphs of the errors $\alpha = e(f, \mathscr{A}_1, E_2)(t)$ and $\alpha = e(f, \mathscr{A}_2, E_2)(t)$.

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

Now we consider functions f that satisfy the following conditions:

- there exists (n-1) derivative f⁽ⁿ⁻¹⁾ and it is absolutely continuous on [0,1],
- $|f^{(n)}|$ is integrable on [0,1].

Department of Mathematics, University of Latvia

Vecislavs Ruza, Svetlana Asmuss

Conditions on approximation

We do the following assumptions regarding the choice of approximation method \mathscr{A} :

- for all $p \in P_{n-1}$ we have $\mathscr{A}p = p$, where P_{n-1} is a class of all polynomials with degree not greater then (n-1);
- approximation *A* is linear;

• for
$$r(x) = \int_0^1 g(u) h(x, u) du$$
 it holds

$$(\mathscr{A}r)(x) = \int_{0}^{1} g(u) \ (\mathscr{A}h(x,u)) du,$$

where approximation \mathscr{A} is applied only to argument x of function h.

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

Approximation error - Integral representation

$$f(x) - (\mathscr{A}f)(x) = \int_{0}^{1} f^{(n)}(u) U_{n-1}(x, u) \, du.$$
$$U_{n-1}(x, u) = \frac{\varphi_{n-1}(x, u) - \mathscr{A}\varphi_{n-1}(x, u)}{(n-1)!}.$$
$$\varphi_{n-1}(x, u) = (x - u)_{+}^{n-1} = \begin{cases} (x - u)^{n-1}, & x \ge u; \\ 0, & u > x. \end{cases}$$

Department of Mathematics, University of Latvia

.

Vecislavs Ruza, Svetlana Asmuss

Approximation error for classes of functions

$$\begin{array}{c|c} f \in KW_1^n & f \in KW_{\infty}^n \\ \hline \int _0^1 |f^{(n)}(u)| \ du \leq K & \sup_{u \in [0,1]} |f^{(n)}(u)| \leq K \end{array}$$

Approximation error

$$e(KW_r^n, \mathscr{A}, E) = Sup\{\|f - \mathscr{A}f\|_{\mu} \mid f \in KW_r^n\}.$$

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

Approximation error for classes of functions

$$e(KW_1^n, \mathscr{A}, E) \le K \int_E \sup_{u \in [0,1]} |U_{n-1}(x, u)| \ d\mu.$$
$$e(KW_{\infty}^n, \mathscr{A}, E) \le K \int_E (\int_0^1 |U_{n-1}(x, u)| \ du) \ d\mu.$$

Department of Mathematics, University of Latvia

@ ▶ ∢ ≣

Vecislavs Ruza, Svetlana Asmuss

We examine the approximation \mathscr{A} by a polygons (i.e. first degree spline) with respect to the uniform mesh $\{x_0, x_1, ..., x_{10}\}$ on [0, 1] over L-set *E* defined as follows:

$$E(x) = \begin{cases} 1-x, \ x \in [0,1], \\ 0, \ otherwise. \end{cases}$$

Department of Mathematics, University of Latvia

Vecislavs Ruza, Svetlana Asmuss

Approximation error for class KW^1_∞ is bounded as follows

$$e(KW^1_{\infty},\mathscr{A},E) \leq K \int_{E} (\int_{0}^{1} |U_0(x,u)| du) d\mu.$$

Denoting

$$z_{\infty} = \int_{E} \left(\int_{0}^{1} |U_0(x,u)| \ du \right) \ d\mu$$

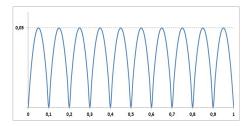
we obtain

$$e(KW^1_{\infty},\mathscr{A},E) \leq K z_{\infty}.$$

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

$$\int_{0}^{1} |U_0(x,u)| \, du = 2h\left\{\frac{x}{h}\right\} \left(1 - \left\{\frac{x}{h}\right\}\right)$$

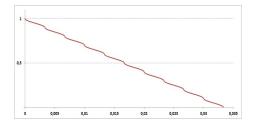


Department of Mathematics, University of Latvia

Vecislavs Ruza, Svetlana Asmuss

Numerical example - Class KW^1_{∞}

$$z_{\infty}^{-1}(\alpha) = \frac{h^2}{3} \left(\left[\frac{1-\alpha}{h} \right] + \left\{ \frac{1-\alpha}{h} \right\}^2 \left(3 - 2 \left\{ \frac{1-\alpha}{h} \right\} \right) \right).$$

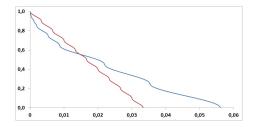


Department of Mathematics, University of Latvia

Vecislavs Ruza, Svetlana Asmuss

Numerical example - Class KW^1_{∞} - not uniform mesh

$$z_{\infty}^{-1}(\alpha) = \sum_{j=1}^{i-1} \frac{h_j^2}{3} + \frac{h_i^2}{3} (\frac{1-\alpha-x_{i-1}}{h})^2 (3-2(\frac{1-\alpha-x_{i-1}}{h})).$$



Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

Thank you for attention!!!

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

Appendix

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

(日本) (日本)

L-fuzzy valued measure

Definition

Let Σ be a T_M -tribe. A function $\mu : \Sigma \to \mathbb{R}_+(L)$ is called an L-fuzzy valued measure if it satisfies the following conditions:

•
$$\mu(\emptyset) = z(0, 1_L);$$

• μ is T_M -valuation, i.e. for all $A, B \in \Sigma$ it holds $\mu(A \land B) \oplus \mu(A \lor B) = \mu(A) \oplus \mu(B);$

• μ is left T_M -continuous, i.e. $\bigvee_{n \in \mathbb{N}} \mu(A_n) = \mu(A)$, where $(A_n)_{n \in \mathbb{N}} \subset \Sigma, \bigvee_{n \in \mathbb{N}} A_n = A \in \Sigma$.

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

Calculation method for L-fuzzy valued integral (case when L = [0, 1])

The main idea of the method is based on the following reasoning.

- The fuzzy set we want to integrate over can be viewed as a non-negative function.
- Let us assume that this function is measurable with respect to σ-algebra F. It is known that every non-negative measurable function can be presented as a limit of a non-decreasing sequence of SNMF.
- Obviously, every fuzzy set that is SNMF can be presented as a union of T_M-disjoint fuzzy sets from the class Ø. And integral over element from the class Ø can be easily calculated.

Vecislavs Ruza, Svetlana Asmuss

A (1) > A (2) > A

Integration over $E = E(M, a) \in \wp$

For all $E(M, \alpha) \in \mathcal{D}$ it holds

$$\int_{E(M,\alpha)} f d\mu = z (\int_{M} f \, d\nu, \alpha).$$

Department of Mathematics, University of Latvia

Vecislavs Ruza, Svetlana Asmuss

Integration over E - SNMF

If *E* is SNMF then $E(\mathbb{R}) = \{\alpha_1, ..., \alpha_n\}$. We assume that

 $\alpha_1 > \alpha_2 > ... > \alpha_n$

$$\int_{E} f d\mu = \begin{cases} 1, t \leq \int_{E^{\alpha_{1}}} f d\nu \\ \dots \\ \alpha_{i}, \int_{E^{\alpha_{i}}} f d\nu < t \leq \int_{E^{\alpha_{i+1}}} f d\nu \\ \dots \\ \alpha_{n}, \int_{E^{\alpha_{n-1}}} f d\nu < t \leq \int_{E^{\alpha_{n}}} f d\nu \\ 0, otherwise \end{cases}$$

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

▲ 同 ▶ ▲ 三 ▶

As was already mentioned every NMF can be presented as a limit of a non-decreasing sequence of SNMF.

$$E = \bigvee_{n} E_{n}$$
 where $(E_{n})_{n \in \mathbb{N}}$ is non-decreasing sequence
Denoting $I = \int_{E} f \ d\mu$ and $I_{n} = \int_{E_{n}} f \ d\mu$ we get

$$I = Sup\{I_n \mid n \in \mathbb{N}\}.$$

From the last equality we can get approximate value of integral by fixing n. Obviously, integral accuracy in this case will be dependent on the n value.

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

Space $\mathscr{L}_p(E,\Sigma,\mu)$

We consider Space $\mathscr{L}_p(E, \Sigma, \mu)$ where $1 \le p \le \infty$ with the norm $\|\cdot\|_p$ defined as follows:

$$||f||_{p} = (\int_{0}^{1} |f|^{p} dx)^{\frac{1}{p}}, \text{ where } 1 \le p < \infty,$$

and

$$\|f\|_{
ho} = \sup_{x\in[0,1]} |f(x)|$$
, where $ho = \infty$.

Vecislavs Ruza, Svetlana Asmuss

Department of Mathematics, University of Latvia

< ロ > < 回 > < 回 > < 回 > < 回 >