A strenthennigs of the Poincaré recurrence theorem on MV-algebras

Beloslav Riečan

Faculty of Natural Sciences Matej Bel University

Beloslav Riečan FSTA 2012

The strong version of the Poincaré recurrence theorem

 (Ω, \mathcal{S}, P) - probability space $T: \Omega \to \Omega$ *P*-measure preserving transformation

$$\forall A \in \mathcal{S} : P(T^{-1}(A) = P(A))$$

Theorem (Poincaré)

For any $A \in S$ almost every point of A returns to A infinitely many times.

an $l\mbox{-}{\rm group}$

an algebraic structure $(G, +, \leq)$,

(G, +) is a commutative group,

 (G, \leq) is a lattice

$$a \le b \Longrightarrow a + c \le b + c$$

Beloslav Riečan FSTA 2012

- 4 同 ト - 4 同 ト

an algebraic structure $(M, 0, u, \neg, \oplus, \odot)$, 0 is the neutral element in Gu is a positive element $M = \{ x \in G; 0 \le x \le u \}$ $\neg: M \to M$ is a unary operation $\neg x = u - x$ \oplus, \odot two binary operations $a \oplus b = (a+b) \wedge u$ $a \odot b = (a + b - u) \lor 0$

Example

$$\begin{split} \mathcal{S} &- \text{ an algebra of subsets of a set } \Omega \\ & \text{Then } \mathcal{S} \text{ is an MV-algebra} \\ \text{If we identify sets } A \text{ with their characteristic functions} \\ l\text{-group } (G,+,\leq) \text{ consists of all measurable functions} \\ &+ \text{ is the sum of functions} \\ &\leq \text{ corresponds to the set inclusion} \\ & 0 = 0_{\Omega}, u = 1_{\Omega}, \\ & \neg \chi_A = \chi_{A^c} = 1_{\Omega} - \chi_A, \\ & \chi_A \oplus \chi_B = \chi_{A \cup B}, \\ & \chi_A \odot \chi_B = \chi_{A \cap B}. \end{split}$$

MV-algebra with a commutative and associative binary operation \star satisfying the following conditions

(i)
$$a \star u = a$$
,
(ii) $a \star (b \oplus c) = (a \star b) \oplus (a \star c)$,
(iii) $a_n \nearrow a \Longrightarrow a_n \star b \nearrow a \star b$.

State on an MV-algebra M is a mapping $m: M \to [0, 1]$ satisfying the following conditions:

(i)
$$m(u) = 1, m(0) = 0,$$

(ii) $a \odot b = 0 \Longrightarrow m(a \oplus b) = m(a) + m(b),$
(iii) $a_n \nearrow a \Longrightarrow m(a_n) \nearrow m(a).$

Theorem

Let (M, \star) be a σ -complete MV-algebra with product. Let $m: M \to [0,1]$ satisfy the following conditions: $(\mathbf{0} \ m(0) = 0,$ $a < b \Longrightarrow m(a) < m(b),$ $a \odot b = 0 \Longrightarrow m(a \oplus b) = m(a) + m(b).$ Let $\tau: M \to M$ satisfy the conditions **4** $\tau(0) = 0$, $a \leq b \Longrightarrow \tau(a) \leq \tau(b),$ $(a \odot b) = \tau(a) \odot \tau(b).$ $\bigcirc m(\tau(a)) = m(a)$ for all $a \in M$. Then for any $a \in M$ and any $k \in N$ there holds $m(a \star \prod_{i=1}^{\infty} \tau(\neg a)) = 0.$

$$m(a \star \prod_{i=k}^{\infty} \tau(\neg a)) = 0.$$

$$P(\{x \in A; \forall i \ge k, T^{i}(x) \notin A\}) = 0$$

$$\forall k : P(\{x \in A; \exists i \ge k, T^{i}(x) \in A\}) = 1$$

$$P(\bigcap_{k=1}^{\infty} \{x \in A; \exists i \ge k, T^{i}(x) \in A\}) = 1$$

Beloslav Riečan FSTA 2012

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- Riečan B. (2009), Strong Poincaré recurrence theorem in MV-algebras. Math. Slovaca 60, No 5, 1 - 10.
- Mundici D. (2011), Advanced Łukasiewicz calculus and MV-algebras. Trends in Logic 35, Springer New York.

Definition

Let \mathcal{M} be an MV-algebra with product. A subset $\mathcal{N} \subset \mathcal{M}$ is called **ideal** if is satisfies the following conditions:

- $0 \in \mathcal{N}$.
- If $a \leq b, a \in \mathcal{M}, b \in \mathcal{N}$, then $a \in \mathcal{N}$.

A mapping $\tau : \mathcal{M} \to \mathcal{M}$ is called **conservative** if the following conditions hold:

- If $(\tau^i(b))_{i=0}^{\infty}$ forms a disjoint system (i.e. $\tau^i(b) \odot \tau^j(b) = 0$ for $i \neq j$) then b = 0.
- $\tau(a \odot b) = \tau(a) \odot \tau(b)$ for any $a, b \in \mathcal{M}$.
- $a \le b$ implies $\tau(a) \le \tau(b)$.
- $b \in \mathcal{N} \iff \tau(b) \in \mathcal{N}$.

Theorem

Let \mathcal{M} be a σ -complete MV-algebra with product, $\mathcal{N} \subset \mathcal{M}$ its ideal, $\tau : \mathcal{M} \to \mathcal{M}$ be a conservative mapping. Then

 $a \star \prod_{i=k}^{\infty} \tau^i(\neg a) \in \mathcal{N}$

for any $a \in \mathcal{M}$ and any $k \in N$.