> Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusior for Reconstruction

Two Approaches to Image Fusion

Irina Perfilieva Martina Daňková

University of Ostrava Institute for Research and Applications of Fuzzy Modeling 30. dubna 22, 701 03 Ostrava 1, Czech Republic Irina.Perfilieva@osu.cz

Liptovsky Jan, FSTA 2012

January 31, 2011

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Two Approaches to Image Fusion

Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusion for Reconstruction

1 Introduction

2 Focus Measures for F-transform Fusion

3 Image Fusion for Reconstruction

> Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusion for Reconstruction

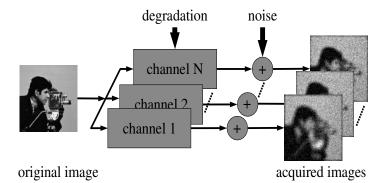
Fusion of Images

Description of a Problem

- Ideal image *u* intensity function of two variables,
- C_1, \ldots, C_K acquired channels,
- C_i(x, y) = D_i(u(x, y)) + n_i(x, y) image acquisition model where
 - *D_i* unknown operator describing the image degradations,
 - *n_i* additive random noise.

Main Purpose of Image Fusion

To obtain an image \hat{u} which is as a "good estimate" of u and represents an original scene better than each individual channel.


Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusior for Reconstruction

Multichannel acquisition model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

> Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusion for Reconstruction

Piecewise Ideal Imaging (Multifocus Imaging)

- The degradation of each channel is given by a convolution with space-invariant kernel,
- every point (x, y) of the scene is assumed to be acquired undistorted in (at least) one channel, i.e.

$$C_i(x,y) = (u * h_i^k)(x,y) \Leftrightarrow (x,y) \in \Omega_k,$$

where

$$h_i^k(x, y, s, t) = h_i^k(x - s, y - t),$$

$$\Omega = \bigcup_{i=1}^K \Omega_k,$$

$$(\forall k) (\exists i) (h_i^k(x - s, y - t)) = \delta(x - s, y - t)).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

> Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusion for Reconstruction

Image Fusion for Multifocus Imaging

Idea of a Fusion Algorithm

- **Compare** the channels in image domain or in transformed domain.
- Identify the channel in which the pixel (or the region) is depicted undistorted, i.e.,
 - local focus measure is calculated over the pixel neighborhood,
 - the channel which maximizes the focus measure is chosen.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Mosaic the undistorted parts.

> Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusion for Reconstruction

Most Popular Focus Measures

Focus measures are based on the quantity of high frequencies

• Image variance

$$M = \iint (C_i(x, y) - E_i)^2 \, \mathrm{d}x \mathrm{d}y$$

where E_i denotes the mean gray level value of C_i .

Energy of a Fourier spectrum

$$M = \iint |\hat{C}_i(u, v)| \,\mathrm{dudv}$$

> Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusior for Reconstruction

Image Fusion on the Base of the F-transform

(1) **Decompose** channel images C_1, \ldots, C_K into inverse F-transforms and error functions using the one-level decomposition.

(2) Apply the fusion operator

$$\kappa(x_1,\ldots,x_K) = x_p$$
, if $|x_p| = \max(|x_1|,\ldots,|x_K|)$

to the respective F-transform components of C_i , $i \in I$.

- (3) Apply the fusion operator to the to the respective F-transform components of the error functions e_i , $i \in I$.
- (4) Reconstruct the fused image from the inverse F-transforms with the fused components of the image and the fused components of the error function.

Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusion for Reconstruction

Local Focus Measures for the F-transform Fusion

F-transform focus measures reflect quantity of low frequencies

$$M_1^{kl} = \iint (C_i(x, y)A_k(x)B_l(y) \,\mathrm{d}x\mathrm{d}y)$$

$$M_2^{pq} = \iint \left(\sum_{k=1}^n \sum_{l=1}^m (C_l(x, y) - M_1^{kl}) A_k(x) B_l(y) \right) A_p(x) B_q(y) \mathrm{d}x \mathrm{d}y$$

> Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusion for Reconstruction

Properties of Local Focus Measures for the F-transform Fusion

- Monotonicity
- Robustness

Robustness

A focus measure *M* is **robust** if for any four images I_1 , I_2 , \tilde{I}_1 and \tilde{I}_2 such that \tilde{I}_1 and \tilde{I}_2 are "close" to I_1 and I_2 , respectively,

$$M(I_1) < M(I_2) \Rightarrow M(\tilde{I}_1) < M(\tilde{I}_2).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

> Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusion for Reconstruction

Robustness and Removing Noise

Removing Additive Noise

• F-Transform removes an additive noise $s \in C[a, b]$ if $F_{n,s} = [0, ..., 0].$

• In this case, for all $x \in [a, b]$

 $f_{F,n}(x) = (f+s)_{F,n}(x).$

A focus measure M_1 for the F-transform Fusion is **robust** is the closeness is connected with a presence of an additive noise.

> Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusior for Reconstruction

Robustness and Removing Noise

Removing Additive Noise

F-Transform removes an additive noise s ∈ C[a, b] if

$$F_{n,s} = [0, \ldots, 0].$$

• In this case, for all $x \in [a, b]$

$$f_{F,n}(x) = (f+s)_{F,n}(x).$$

A focus measure M_1 for the F-transform Fusion is **robust** is the closeness is connected with a presence of an additive noise.

> Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusior for Reconstruction

Robustness and Removing Noise

Removing Additive Noise

• F-Transform removes an additive noise $s \in C[a, b]$ if

$$F_{n,s} = [0, ..., 0].$$

• In this case, for all $x \in [a, b]$

$$f_{F,n}(x) = (f+s)_{F,n}(x).$$

A focus measure M_1 for the F-transform Fusion is **robust** is the closeness is connected with a presence of an additive noise.

> Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusion for Reconstruction

Removing Noise

Which Noise can be Removed?

Noise *s* is removable on $[x_2, x_{n-1}]$ if

• $s \in C[a,b] - 2h$ -periodical function and for k = 2, ..., n-1

 $s(x_k - x) = -s(x_k + x)$ on interval $[x_{k-1}, x_{k+1}]$,

or

• $s \in C[a, b] - h$ -periodical function and for k = 2, ..., n - 1

$$\int_{x_{k-1}}^{x_k} s(x) \mathrm{d} x = 0.$$

> Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusior for Reconstruction

Removing Noise

Which Noise can be Removed?

Noise *s* is removable on $[x_2, x_{n-1}]$ if

• $s \in C[a, b] - 2h$ -periodical function and for k = 2, ..., n-1

 $s(x_k - x) = -s(x_k + x)$ on interval $[x_{k-1}, x_{k+1}]$,

or

• $s \in C[a, b] - h$ -periodical function and for k = 2, ..., n - 1

$$\int_{x_{k-1}}^{x_k} s(x) \mathrm{d} x = 0.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

> Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusion for Reconstruction

Image Reconstruction

Problem Description

Image reconstruction – reconstruction of a damaged image where the damage is anything what the original image does not include. It can be noise, text, scratch, etc.

Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusion for Reconstruction

F-transform for Image Reconstruction

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Assumption. The damaged area can be separated

Proposed Method

- Apply the F-transform (approximation + filtration)
- Fuse the original (damaged) image with the inverse F-transform

Illustration

・ロン ・ 四 と ・ 回 と ・ 回 と

э

Approaches to Image Fusion

Two

Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusion for Reconstruction

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Fusion Irina Perfilieva, Martina Daňková

Two Approaches

to Image

Introduction

Focus Measures for F-transform Fusion

Image Fusion for Reconstruction

- Fusion is considered from the point of maximizing a local focus measure
- Traditional and the F-transform approaches has been discussed
- Properties of the F-transform focus measure were highlighted
- The F-transform based fusion for reconstruction was introduced

Irina Perfilieva, Martina Daňková

Introduction

Focus Measures for F-transform Fusion

Image Fusion for Reconstruction

Future Research

- Reduce one optimization step in the F-transform fusion
- Reduce manual choice of parameters in Fusion for Reconstruction