An aggregation operator designed for solving bilevel linear programming

Pavels Orlovs and Olga Montvida

Department of Mathematics, University of Latvia

11th International Conference on Fuzzy Set Theory and Applications Liptovsky Jan, Slovak Republic January 30 – February 3, 2012

IEGULDĪJUMS TAVĀ NĀKOTNĒ

This work has been supported by the European Social Fund within the project Support for Doctoral Studies at University of Latvia .

Bilevel linear programming problem (BLPP)

 P^{U} – upper level problem, $P^{L} = (P_{1}^{L}, P_{2}^{L}, ..., P_{n}^{L})$ – lower level problems:

$$P^{U}: y_{0}(x) = c_{01}x_{1} + c_{02}x_{2} + \dots + c_{0k}x_{k} \longrightarrow \min$$
$$P^{L}_{1}: y_{1}(x) = c_{11}x_{1} + c_{12}x_{2} + \dots + c_{1k}x_{k} \longrightarrow \min$$

$$P_n^L: \quad y_n(x) = c_{n1}x_1 + c_{n2}x_2 + \ldots + c_{nk}x_k \longrightarrow \min$$

$$D: \begin{cases} a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jk}x_k \leq b_j, \ j = 1, \dots, m, \\ x_l \geq 0, \ l = 1, \dots, k. \end{cases}$$

We suppose that *D* is non-empty bounded set.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Membership functions of objectives

Pavels Orlovs and Olga Montvida An aggregation operator designed for solving BLPP

Method for solving multi-objective linear programming problem

We denote:

$$\mu_i(\mathbf{x}) = \mathbf{z}_i(\mathbf{y}_i(\mathbf{x})), i = \overline{\mathbf{0}, \mathbf{n}}.$$

Using the notation above it is reasonable to rewrite the problem:

$$\min_{i\in\{0,\dots,n\}}\mu_i(x)\longrightarrow\max_{x\in D},$$

which can be reduced to the linear programming problem (H.J. Zimmermann, 1978):

$$\sigma \longrightarrow \max_{\mathbf{x},\sigma} \\ \begin{cases} \mu_0(\mathbf{x}) \ge \sigma \\ \dots \\ \mu_n(\mathbf{x}) \ge \sigma \\ \mathbf{x} \in \mathbf{D} \end{cases}$$

Let us denote by (x^*, σ^*) the optimal solution.

Pavels Orlovs and Olga Montvida

An aggregation operator designed for solving BLPP

Parameters of the BLPP solving algorithm

Parameters δ , Δ_L , Δ_U are introduced to find the solution x^{**} for BLPP (M. Sakawa, I. Nishizaki, 2002):

$$\begin{cases} \mu_0(x) \ge \delta \\ \mu_1(x) \ge \sigma \\ \dots \\ \mu_n(x) \ge \sigma \\ x \in D \end{cases}$$

Parameters of the BLPP solving algorithm

イロト 不得 とくほ とくほ とう

3

To study in details the parameters of BLPP solving algorithm, a special aggregation has been constructed. The aggregation observes objective functions on the lower level considering the classes of equivalence generated by a function on the upper level.

$$\tilde{A}_{\mu_0}(\mu_1,\mu_2,...,\mu_n)(x) = \max_{\mu_0(x)=\mu_0(u)} \min(\mu_1(u),\mu_2(u),...,\mu_n(u)),$$

where

$$\mu_0, \mu_1, ..., \mu_n \in [0, 1]^D, \ x, u \in D.$$

▲圖 → ▲ 国 → ▲ 国 → 二 国 →

Let $\mu_1, \mu_2, ..., \mu_n \in [0, 1]^X$ be fuzzy sets and $\tilde{0}$, $\tilde{1}$ are indicators of \emptyset and X respectively.

Definition

(A. Takaci, 2003) A mapping $\tilde{A} : \bigcup_{n} ([0,1]^{X})^{n} \to [0,1]^{X}$ is called a general aggregation operator if the following conditions hold: (\tilde{A} 1) $\tilde{A}(\tilde{0},...,\tilde{0}) = \tilde{0}$; (\tilde{A} 2) $\tilde{A}(\tilde{1},...,\tilde{1}) = \tilde{1}$; (\tilde{A} 3) $\forall \mu_{1}, \mu_{2}, ..., \mu_{n}, \eta_{1}, \eta_{2}, ..., \eta_{n} \in [0,1]^{X}$: $\{\mu_{i} \leq \eta_{i}, i = \overline{1, n}\} \Longrightarrow \{\tilde{A}(\mu_{1},...,\mu_{n}) \leq \tilde{A}(\eta_{1},...,\eta_{n})\}.$

ヘロン 人間 とくほ とくほ とう

General aggregation operator

• T-extension of an aggregation operator A

$$\tilde{A}(\mu_1,...,\mu_n)(x) = \sup_{x=A(x_1,...,x_n)} T(\mu_1(x_1),...,\mu_n(x_n))$$

pointwise extension of an aggregation operator A

$$\tilde{A}(\mu_1,...,\mu_n)(x) = A(\mu_1(x),...,\mu_n(x))$$

Here

$$\mu_1,...,\mu_n \in [0,1]^X, \ x, x_1,...x_n \in X.$$

< 回 > < 回 > < 回 > … 回

Factoraggregation

Definition

General aggregation operator \tilde{A}_{μ_0} is called a *factoraggregation* of fuzzy sets $\mu_1, \mu_2, \ldots, \mu_n$ by means of fuzzy set μ_0 if

$$\tilde{A}_{\mu_0}(\mu_1,\mu_2,\ldots,\mu_n)(x) = \sup_{\mu_0(u)=\mu_0(x)} A(\mu_1(u),\mu_2(u),\ldots,\mu_n(u))$$

where

$$\mu_0, ..., \mu_n \in [0, 1]^X, \, x, u \in X.$$

Equivalence relation generated by μ_0 :

$$x \sim_{\mu_0} y \Longleftrightarrow \mu_0(x) = \mu_0(y).$$

Relation \sim_{μ_0} factorizes *X* into the classes of equivalence:

$$\boldsymbol{X}^{\alpha} = \{\boldsymbol{x} \in \boldsymbol{X} | \mu_{\boldsymbol{0}}(\boldsymbol{x}) = \alpha\}.$$

イロト イポト イヨト イヨト 三日

Associativity

$$\tilde{\textit{A}}_{\mu_0}(\mu_1,\tilde{\textit{A}}_{\mu_0}(\mu_2,\mu_3))=\tilde{\textit{A}}_{\mu_0}(\tilde{\textit{A}}_{\mu_0}(\mu_1,\mu_2),\mu_3)$$

A is associative $\Longrightarrow \tilde{A}_{\mu_0}$ is associative.

Symmetry

$$\tilde{\textit{A}}_{\mu_0}(\mu_1,\mu_2)=\tilde{\textit{A}}_{\mu_0}(\mu_2,\mu_1)$$

A is symmetric $\Longrightarrow ilde{A}_{\mu_0}$ is symmetric.

Idempotent elements
 An element μ is idempotent for Ã_{μ0} if the following condition is satisfied:

$$x \sim_{\mu_0} y \Longrightarrow x \sim_{\mu} y.$$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

• An element *a* is an absorbing element of operator $A \Longrightarrow \Longrightarrow \tilde{a}(x) \equiv a$ is an absorbing element of operator \tilde{A}_{μ_0} : $\tilde{A}_{\mu_0}(\mu_1, \dots, \mu_{i-1}, \tilde{a}, \mu_{i+1}, \dots, \mu_n) = \tilde{a}.$

• An element *e* is a neutral element of operator $A \Longrightarrow \Longrightarrow \tilde{e}(x) \equiv e$ is a neutral element of operator \tilde{A}_{μ_0} : $\tilde{A}_{\mu_0}(\mu_1, \dots, \mu_{i-1}, \tilde{e}, \mu_{i+1}, \dots, \mu_n) = \tilde{A}_{\mu_0}(\mu_1, \dots, \mu_{i-1}, \mu_{i+1}, \dots, \mu_n).$

(E) < (E)</p>

$$\tilde{A}_{\mu_0}(\mu_1,\mu_2,...,\mu_n)(x) = \max_{\mu_0(x)=\mu_0(u)} \min(\mu_1(u),\mu_2(u),...,\mu_n(u)),$$

where

$$\mu_1, ..., \mu_n \in [0, 1]^D, \ x, u \in D.$$

Properties:

- symmetry,
- associativity,
- existence of idempotent elements,
- 0 is absorbing element,
- 1 is neutral element.

★ E ► ★ E ► E

An aggregation operator designed for solving BLPP

Denoting

$$ilde{A}_{\mu_0}(\mu_1, \mu_2, ..., \mu_n)(x) = \mu(x),$$

 $z(y_0(x)) = \mu(x),$
 $t = y_0(x),$

we consider the figures $\alpha = z_0(t)$ and $\alpha = z(t)$:

Pavels Orlovs and Olga Montvida

An aggregation operator designed for solving BLPP

Analysis of BLPP parameters

Pavels Orlovs and Olga Montvida An aggregation operator designed for solving BLPP

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Analysis of BLPP parameters

Pavels Orlovs and Olga Montvida An aggregation operator designed for solving BLPP

Properties of function z(t) obtained by the factoraggregation

• $\sigma^* = \min\{z(t^*), z_0(t^*)\}, \text{ where } t^* = y_0(x^*).$

•
$$\max_{t \in [y_0^{\min}, t^*]} z(t) = z(t^*).$$

• Function z is monotone on interval [y₀^{min}, t^{*}] :

$$\forall t^1, \ t^2 \in [y_0^{min}, \ t^*]: t^1 < t^2 \Longrightarrow z(t^1) \le z(t^2).$$

• Function z is convex on interval $[y_0^{min}, t^*]$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Analysis of BLPP parameters

Pavels Orlovs and Olga Montvida

An aggregation operator designed for solving BLPP

Thank you for your attention!

Pavels Orlovs and Olga Montvida An aggregation operator designed for solving BLPP

⇒ < ⇒ >

ъ