An aggregation operator designed for solving bilevel linear programming

Pavels Orlovs and Olga Montvida

Department of Mathematics, University of Latvia

11th International Conference on
Fuzzy Set Theory and Applications Liptovsky Jan, Slovak Republic January 30 - February 3, 2012

LATVIJAS
UNIVERSITATE

IEGULDTJUMS TAVĀ NĀKOTNĒ

Bilevel linear programming problem (BLPP)

P^{U} - upper level problem, $P^{L}=\left(P_{1}^{L}, P_{2}^{L}, \ldots, P_{n}^{L}\right)$ - lower level problems:

$$
\begin{gathered}
P^{U}: y_{0}(x)=c_{01} x_{1}+c_{02} x_{2}+\ldots+c_{0 k} x_{k} \longrightarrow \min \\
P_{1}^{L}: \quad y_{1}(x)=c_{11} x_{1}+c_{12} x_{2}+\ldots+c_{1 k} x_{k} \longrightarrow \min \\
\ldots \\
P_{n}^{L}: \quad y_{n}(x)=c_{n 1} x_{1}+c_{n 2} x_{2}+\ldots+c_{n k} x_{k} \longrightarrow \min \\
D:\left\{\begin{array}{l}
a_{j 1} x_{1}+a_{j 2} x_{2}+\ldots+a_{j k} x_{k} \leq b_{j}, j=1, \ldots, m, \\
x_{l} \geq 0, l=1, \ldots, k .
\end{array}\right.
\end{gathered}
$$

We suppose that D is non-empty bounded set.

Membership functions of objectives

$$
\begin{aligned}
& y_{i}^{\min }=\min _{x \in D} y_{i}(x), \quad y_{i}^{\max }=\max _{x \in D} y_{i}(x), \quad i=0, \ldots, n . \\
& z_{i}\left(y_{i}(x)\right)= \begin{cases}1, & y_{i}(x)<y_{i}^{\min }, \\
\frac{y_{i}(x)-y_{i}^{\text {max }}}{y_{i}^{\min }-y_{i}^{\text {max }},}, & y_{i}^{\min } \leq y_{i}(x) \leq y_{i}^{\text {max }}, \\
0, & y_{i}(x)>y_{i}^{\max } .\end{cases} \\
& \text { 122 z(t) }
\end{aligned}
$$

Method for solving multi-objective linear programming problem

We denote:

$$
\mu_{i}(x)=z_{i}\left(y_{i}(x)\right), i=\overline{0, n}
$$

Using the notation above it is reasonable to rewrite the problem:

$$
\min _{i \in\{0, \ldots, n\}} \mu_{i}(x) \longrightarrow \max _{x \in D}
$$

which can be reduced to the linear programming problem (H.J. Zimmermann, 1978):

$$
\begin{gathered}
\sigma \longrightarrow \max _{x, \sigma} \\
\left\{\begin{array}{l}
\mu_{0}(x) \geq \sigma \\
\cdots \\
\mu_{n}(x) \geq \sigma \\
x \in D
\end{array}\right.
\end{gathered}
$$

Let us denote by $\left(x^{*}, \sigma^{*}\right)$ the optimal solution.

Parameters of the BLPP solving algorithm

Parameters $\delta, \Delta_{L}, \Delta_{U}$ are introduced to find the solution $x^{* *}$ for BLPP (M. Sakawa, I. Nishizaki, 2002):
(1) $\mu_{0}\left(x^{* *}\right) \geq \delta$;
(2) $\Delta_{L} \leq \Delta=\frac{\min \left\{\mu_{1}\left(x^{* *}\right), \ldots, \mu_{n}\left(x^{* *}\right)\right\}}{\mu_{0}\left(x^{* *}\right)} \leq \Delta_{U}$.

$$
\min _{i=1, n} \mu_{i}(x) \longrightarrow \max _{x \in D, \mu_{0}(x) \geq \delta}
$$

$$
\sigma \longrightarrow \max _{x, \sigma}
$$

$$
\left\{\begin{array}{l}
\mu_{0}(x) \geq \delta \\
\mu_{1}(x) \geq \sigma \\
\ldots \\
\mu_{n}(x) \geq \sigma \\
x \in D
\end{array}\right.
$$

Parameters of the BLPP solving algorithm

An aggregation operator designed for solving BLPP

To study in details the parameters of BLPP solving algorithm, a special aggregation has been constructed. The aggregation observes objective functions on the lower level considering the classes of equivalence generated by a function on the upper level.

$$
\tilde{A}_{\mu_{0}}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)(x)=\max _{\mu_{0}(x)=\mu_{0}(u)} \min \left(\mu_{1}(u), \mu_{2}(u), \ldots, \mu_{n}(u)\right),
$$

where

$$
\mu_{0}, \mu_{1}, \ldots, \mu_{n} \in[0,1]^{D}, x, u \in D .
$$

General aggregation operator

Let $\mu_{1}, \mu_{2}, \ldots, \mu_{n} \in[0,1]^{X}$ be fuzzy sets and $\tilde{0}, \tilde{1}$ are indicators of \varnothing and X respectively.

Definition

(A. Takaci, 2003) A mapping $\tilde{A}: \bigcup_{n}\left([0,1]^{X}\right)^{n} \rightarrow[0,1]^{X}$ is called a general aggregation operator if the following conditions hold:
($\tilde{A} 1) ~ \tilde{A}(\tilde{0}, \ldots, \tilde{0})=\tilde{0}$;
($\tilde{A} 2) ~ \tilde{A}(\tilde{1}, \ldots, \tilde{1})=\tilde{1}$;
($\tilde{A} 3) \forall \mu_{1}, \mu_{2}, \ldots, \mu_{n}, \eta_{1}, \eta_{2}, \ldots, \eta_{n} \in[0,1]^{X}$:

$$
\left\{\mu_{i} \preceq \eta_{i}, i=\overline{1, n}\right\} \Longrightarrow\left\{\tilde{A}\left(\mu_{1}, \ldots, \mu_{n}\right) \preceq \tilde{\boldsymbol{A}}\left(\eta_{1}, \ldots, \eta_{n}\right)\right\} .
$$

General aggregation operator

- T-extension of an aggregation operator A

$$
\tilde{A}\left(\mu_{1}, \ldots, \mu_{n}\right)(x)=\sup _{x=A\left(x_{1}, \ldots, x_{n}\right)} T\left(\mu_{1}\left(x_{1}\right), \ldots, \mu_{n}\left(x_{n}\right)\right)
$$

- pointwise extension of an aggregation operator A

$$
\tilde{A}\left(\mu_{1}, \ldots, \mu_{n}\right)(x)=A\left(\mu_{1}(x), \ldots, \mu_{n}(x)\right)
$$

Here

$$
\mu_{1}, \ldots, \mu_{n} \in[0,1]^{X}, x, x_{1}, \ldots x_{n} \in X
$$

Factoraggregation

Definition

General aggregation operator $\tilde{A}_{\mu_{0}}$ is called a factoraggregation of fuzzy sets $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ by means of fuzzy set μ_{0} if

$$
\tilde{A}_{\mu_{0}}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)(x)=\sup _{\mu_{0}(u)=\mu_{0}(x)} A\left(\mu_{1}(u), \mu_{2}(u), \ldots, \mu_{n}(u)\right)
$$

where

$$
\mu_{0}, \ldots, \mu_{n} \in[0,1]^{X}, x, u \in X
$$

Equivalence relation generated by μ_{0} :

$$
x \sim_{\mu_{0}} y \Longleftrightarrow \mu_{0}(x)=\mu_{0}(y)
$$

Relation $\sim_{\mu_{0}}$ factorizes X into the classes of equivalence:

$$
X^{\alpha}=\left\{x \in X \mid \mu_{0}(x)=\alpha\right\} .
$$

Properties of factoraggregation

- Associativity

$$
\tilde{A}_{\mu_{0}}\left(\mu_{1}, \tilde{A}_{\mu_{0}}\left(\mu_{2}, \mu_{3}\right)\right)=\tilde{A}_{\mu_{0}}\left(\tilde{A}_{\mu_{0}}\left(\mu_{1}, \mu_{2}\right), \mu_{3}\right)
$$

A is associative $\Longrightarrow \tilde{A}_{\mu_{0}}$ is associative.

- Symmetry

$$
\tilde{A}_{\mu_{0}}\left(\mu_{1}, \mu_{2}\right)=\tilde{A}_{\mu_{0}}\left(\mu_{2}, \mu_{1}\right)
$$

A is symmetric $\Longrightarrow \tilde{A}_{\mu_{0}}$ is symmetric.

- Idempotent elements

An element μ is idempotent for $\tilde{A}_{\mu_{0}}$ if the following condition is satisfied:

$$
x \sim_{\mu_{0}} y \Longrightarrow x \sim_{\mu} y
$$

Properties of factoraggregation

- An element a is an absorbing element of operator $A \Longrightarrow$ $\Longrightarrow \tilde{a}(x) \equiv a$ is an absorbing element of operator $\tilde{A}_{\mu_{0}}$:

$$
\tilde{A}_{\mu_{0}}\left(\mu_{1}, \ldots, \mu_{i-1}, \tilde{a}, \mu_{i+1}, \ldots, \mu_{n}\right)=\tilde{a}
$$

- An element e is a neutral element of operator $A \Longrightarrow$ $\Longrightarrow \tilde{e}(x) \equiv e$ is a neutral element of operator $\tilde{A}_{\mu_{0}}$:

$$
\begin{gathered}
\tilde{A}_{\mu_{0}}\left(\mu_{1}, \ldots, \mu_{i-1}, \tilde{e}, \mu_{i+1}, \ldots, \mu_{n}\right)= \\
\tilde{A}_{\mu_{0}}\left(\mu_{1}, \ldots, \mu_{i-1}, \mu_{i+1}, \ldots, \mu_{n}\right) .
\end{gathered}
$$

Factoraggregation applied for solving BLPP

$$
\tilde{A}_{\mu_{0}}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)(x)=\max _{\mu_{0}(x)=\mu_{0}(u)} \min \left(\mu_{1}(u), \mu_{2}(u), \ldots, \mu_{n}(u)\right)
$$

where

$$
\mu_{1}, \ldots, \mu_{n} \in[0,1]^{D}, x, u \in D
$$

Properties:

- symmetry,
- associativity,
- existence of idempotent elements,
- $\tilde{0}$ is absorbing element,
- $\tilde{1}$ is neutral element.

An aggregation operator designed for solving BLPP

Denoting

$$
\begin{gathered}
\tilde{A}_{\mu_{0}}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)(x)=\mu(x), \\
z\left(y_{0}(x)\right)=\mu(x), \\
t=y_{0}(x),
\end{gathered}
$$

we consider the figures $\alpha=z_{0}(t)$ and $\alpha=z(t)$:

Analysis of BLPP parameters

Analysis of BLPP parameters

Properties of function $z(t)$ obtained by the factoraggregation

- $\sigma^{*}=\min \left\{z\left(t^{*}\right), z_{0}\left(t^{*}\right)\right\}$, where $t^{*}=y_{0}\left(x^{*}\right)$.
- $\max _{t \in\left[y_{0}^{\text {min }}, t^{*}\right]} z(t)=z\left(t^{*}\right)$.
- Function z is monotone on interval $\left[y_{0}^{\min }, t^{*}\right]$:

$$
\forall t^{1}, t^{2} \in\left[y_{0}^{\min }, t^{*}\right]: t^{1}<t^{2} \Longrightarrow z\left(t^{1}\right) \leq z\left(t^{2}\right)
$$

- Function z is convex on interval $\left[y_{0}^{\min }, t^{*}\right]$.

Analysis of BLPP parameters

$$
y_{0}(x)=x_{1}-x_{2} \longrightarrow \min
$$

Thank you for your attention!

