

Petra Murinová

Centre of Excellence IT4Innovations - Division University of Ostrava Institute for Research and Applications of Fuzzy Modeling University of Ostrava Czech Republic petra.murinova@osu.cz

FSTA 2012, January 1, 2012

200

- Aristotle's square and complete square of opposition
- Lukasiewicz fuzzy type theory
- Intermediate Generalized Quantifiers

Analysis of generalized square of opposition in Ł-FTT

- Motivation

Motivation for this research

- Elaboration of theory of intermediate quantifiers from Peterson's book Intermediate Quantifiers - analysis of complete square of opposition with the quantifiers *almost all, most, many*, etc.
- In the book of Peterson is no formal mathematical system.

(日) (日) (日) (日) (日) (日) (日)

• Application of Łukasewicz fuzzy type theory.

-Motivation

Motivation for this research

- Elaboration of theory of intermediate quantifiers from Peterson's book Intermediate Quantifiers - analysis of complete square of opposition with the quantifiers *almost all, most, many*, etc.
- In the book of Peterson is no formal mathematical system.

(日) (日) (日) (日) (日) (日) (日)

• Application of Łukasewicz fuzzy type theory.

-Motivation

Motivation for this research

- Elaboration of theory of intermediate quantifiers from Peterson's book Intermediate Quantifiers - analysis of complete square of opposition with the quantifiers *almost all, most, many*, etc.
- In the book of Peterson is no formal mathematical system.

(日) (日) (日) (日) (日) (日) (日)

• Application of Łukasewicz fuzzy type theory.

Aristotle's square and complete square of opposition

Contradictory, Contrary and Subcontrary

Contradictory

x and y are contradictories iff x and y cannot both be true;
 x and y cannot both be false

Contraries

 x and y are contraries iff x and y cannot both be true; x and y can both be false

Sub-contraries

x and y are sub-contraries iff x and y cannot both be false;
 x and y can both be true

Aristotle's square and complete square of opposition

Contradictory, Contrary and Subcontrary

Contradictory

x and y are contradictories iff x and y cannot both be true;
 x and y cannot both be false

Contraries

• *x* and *y* are contraries iff *x* and *y* cannot both be true; *x* and *y* can both be false

Sub-contraries

x and y are sub-contraries iff x and y cannot both be false;
 x and y can both be true

Aristotle's square and complete square of opposition

Contradictory, Contrary and Subcontrary

Contradictory

x and y are contradictories iff x and y cannot both be true;
 x and y cannot both be false

Contraries

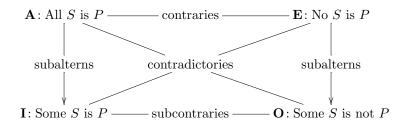
 x and y are contraries iff x and y cannot both be true; x and y can both be false

Sub-contraries

x and y are sub-contraries iff x and y cannot both be false;
 x and y can both be true

Aristotle's square and complete square of opposition

Aristotle's square



・ロト・西ト・ヨト・ヨト・日・ つへぐ

Aristotle's square and complete square of opposition

Complete square of opposition

- The first version of the complete square of opposition was introduced by P. Peterson in (1979) with "Almost-all" and "Many".
- Thompson extends the approach by the intermediate quantifier "Most" and introduced a complete square of opposition with contradictions, contraries and subalterns as follows:

Aristotle's square and complete square of opposition

Complete square of opposition

- The first version of the complete square of opposition was introduced by P. Peterson in (1979) with "Almost-all" and "Many".
- Thompson extends the approach by the intermediate quantifier "Most" and introduced a complete square of opposition with contradictions, contraries and subalterns as follows:

Aristotle's square and complete square of opposition

Complete square of opposition

A: All
$$B$$
 are $A - - - - \mathbf{E}$: No B are A (universal)P: Almost-all B are $A - - - \mathbf{E}$: Few B are A (predominant)T: Most B are $A - - - \mathbf{E}$: Most B are not A (majority)K: Many B are $A - - - \mathbf{E}$: Many B are not A (common)I: Some B are $A - - \mathbf{E}$: Some B are not A (particular)

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 のへで

Łukasiewicz fuzzy type theory

Structure of truth values- MV_{Δ} -algebra

MV_∆-algebra

$$\mathcal{L}_{\cdot} = \langle L, \vee, \wedge, \otimes, \rightarrow, \mathbf{0}, \mathbf{1}, \Delta \rangle, \tag{1}$$

・ ロ ア メ 雪 ア メ 国 ア

ъ

where

- $\Delta a \vee \neg \Delta a = 1$,
- $\Delta(a \lor b) \leq \Delta a \lor \Delta b$,
- $\Delta a \leq a, \qquad \Delta a \leq \Delta \Delta a,$
- $\Delta(a \rightarrow b) \leq \Delta a \rightarrow \Delta b$,
- $\Delta \mathbf{1} = \mathbf{1}$.

Lukasiewicz fuzzy type theory

Example of
$$MV_{\Delta}$$
-algebra

Standard Łukasiewicz algebra

$$\mathcal{L} = \langle [0,1], \lor, \land, \otimes,
ightarrow, 0, 1, \Delta
angle$$

●
$$\forall = \max$$

② $\land = \min$
③ $a \otimes b = \max(0, a + b - 1)$
④ $a \to b = 1 \land (1 - a + b)$
⑤ $\neg a = a \to 0 = 1 - a$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Lukasiewicz fuzzy type theory

Basic syntactical elements

The language of Ł-FTTdenoted by J consists of:

- variables x_{α}, \ldots
- special constants c_{α}, \ldots ($\alpha \in Types$)
- λ and brackets
- $E_{(o\alpha)\alpha}$ for every $\alpha \in Types$ for fuzzy equality,

- **C**₍₀₀₎₀ for conjunction,
- **D**_(*oo*) for delta operation.

Łukasiewicz fuzzy type theory

Basic syntactical elements

The language of \pounds -FTTdenoted by J consists of:

- variables x_{α}, \ldots
- special constants c_{α}, \ldots ($\alpha \in Types$)
- λ and brackets
- $E_{(o\alpha)\alpha}$ for every $\alpha \in Types$ for fuzzy equality,

- **C**_{(oo)o} for conjunction,
- **D**_(oo) for delta operation.

Łukasiewicz fuzzy type theory

Basic syntactical elements

The language of \pounds -FTTdenoted by J consists of:

- variables x_{α}, \ldots
- special constants c_{α}, \ldots ($\alpha \in Types$)
- λ and brackets
- $E_{(o\alpha)\alpha}$ for every $\alpha \in Types$ for fuzzy equality,

- **C**_{(oo)o} for conjunction,
- **D**₍₀₀₎ for delta operation.

Łukasiewicz fuzzy type theory

Basic syntactical elements

The language of \pounds -FTTdenoted by J consists of:

- variables x_{α}, \ldots
- special constants c_{α}, \ldots ($\alpha \in Types$)
- λ and brackets
- $E_{(o\alpha)\alpha}$ for every $\alpha \in Types$ for fuzzy equality,

- **C**_{(oo)o} for conjunction,
- **D**₍₀₀₎ for delta operation.

Lukasiewicz fuzzy type theory

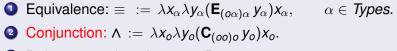
Basic definitions

1 Equivalence: $\equiv := \lambda x_{\alpha} \lambda y_{\alpha} (\mathsf{E}_{(o\alpha)\alpha} y_{\alpha}) x_{\alpha}, \qquad \alpha \in Types.$

- **2** Conjunction: $\Lambda := \lambda x_o \lambda y_o(\mathbf{C}_{(oo)o} y_o) x_o$.
- **3** Delta connective: $\Delta := \lambda x_o \mathbf{D}_{oo} x_o$.

Lukasiewicz fuzzy type theory

Basic definitions



・ロト・日本・日本・日本・日本

3 Delta connective: $\Delta := \lambda x_o \mathbf{D}_{oo} x_o$.

Lukasiewicz fuzzy type theory

Basic definitions

Equivalence: = := \(\lambda x_{\alpha} \lambda y_{\alpha} (\mathbf{E}_{(o\alpha)\alpha} y_{\alpha}) x_{\alpha}, \(\alpha \in \Text{Types.}\)
Conjunction: \(\Lambda := \lambda x_{\alpha} \lambda y_{\alpha} (\mathbf{C}_{(o\alpha)\alpha} y_{\alpha}) x_{\alpha}.\)
Delta connective: \(\Delta := \lambda x_{\alpha} \Delta_{\alpha\alpha} x_{\alpha}.\)

・ロト・日本・日本・日本・日本

Derived connectives

- **1** Representation of truth: $\top := \lambda x_o x_o \equiv \lambda x_o x_o$.
- **2** Representation of falsity: $\bot := \lambda x_o x_o \equiv \lambda x_o \top$.
- 3 Negation: $\neg := \lambda x_o(x_o \equiv \bot)$.
- Implication: $\Rightarrow := \lambda x_o \lambda y_o (x_o \land y_o) \equiv x_o$
- **(** $\mathbf{U}, \nabla, \mathbf{V}$ are defined as in Łukasiewicz logic.
- **6** General quantifier: $(\forall x_{\alpha})A_{o} := (\lambda x_{\alpha}A_{o} \equiv \lambda x_{\alpha}\top),$

(日) (日) (日) (日) (日) (日) (日)

Derived connectives

- **1** Representation of truth: $\top := \lambda x_o x_o \equiv \lambda x_o x_o$.
- **2** Representation of falsity: $\bot := \lambda x_o x_o \equiv \lambda x_o \top$.

3 Negation:
$$\neg := \lambda x_o(x_o \equiv \bot)$$
.

- 3 Implication: $\Rightarrow := \lambda x_o \lambda y_o (x_o \land y_o) \equiv x_o$
- **(** $\mathbf{U}, \nabla, \mathbf{V}$ are defined as in Łukasiewicz logic.
- **6** General quantifier: $(\forall x_{\alpha})A_{o} := (\lambda x_{\alpha}A_{o} \equiv \lambda x_{\alpha}\top),$

(日) (日) (日) (日) (日) (日) (日)

Derived connectives

- **1** Representation of truth: $\top := \lambda x_o x_o \equiv \lambda x_o x_o$.
- **2** Representation of falsity: $\bot := \lambda x_o x_o \equiv \lambda x_o \top$.

3 Negation:
$$\neg := \lambda x_o(x_o \equiv \bot)$$
.

- 3 Implication: $\Rightarrow := \lambda x_o \lambda y_o (x_o \land y_o) \equiv x_o$
- **(** $\mathbf{U}, \nabla, \mathbf{V}$ are defined as in Łukasiewicz logic.
- **6** General quantifier: $(\forall x_{\alpha})A_{o} := (\lambda x_{\alpha}A_{o} \equiv \lambda x_{\alpha}\top),$

(日) (日) (日) (日) (日) (日) (日)

Derived connectives

- **1** Representation of truth: $\top := \lambda x_o x_o \equiv \lambda x_o x_o$.
- **2** Representation of falsity: $\perp := \lambda x_o x_o \equiv \lambda x_o \top$.

3 Negation:
$$\neg := \lambda x_o(x_o \equiv \bot)$$
.

- $Implication: \Rightarrow := \lambda x_o \lambda y_o (x_o \land y_o) \equiv x_o$
- **(** $\mathbf{U}, \nabla, \mathbf{V}$ are defined as in Łukasiewicz logic.
- **6** General quantifier: $(\forall x_{\alpha})A_{o} := (\lambda x_{\alpha}A_{o} \equiv \lambda x_{\alpha}\top),$

(日) (日) (日) (日) (日) (日) (日)

Derived connectives

- **1** Representation of truth: $\top := \lambda x_o x_o \equiv \lambda x_o x_o$.
- **2** Representation of falsity: $\perp := \lambda x_o x_o \equiv \lambda x_o \top$.
- 3 Negation: $\neg := \lambda x_o(x_o \equiv \bot)$.
- Implication: $\Rightarrow := \lambda x_o \lambda y_o (x_o \land y_o) \equiv x_o$
- **(** $\mathbf{\delta}$, ∇ , \vee are defined as in Łukasiewicz logic.
- **6** General quantifier: $(\forall x_{\alpha})A_{o} := (\lambda x_{\alpha}A_{o} \equiv \lambda x_{\alpha}\top),$

(日) (日) (日) (日) (日) (日) (日)

Derived connectives

- **1** Representation of truth: $\top := \lambda x_o x_o \equiv \lambda x_o x_o$.
- **2** Representation of falsity: $\bot := \lambda x_o x_o \equiv \lambda x_o \top$.
- 3 Negation: $\neg := \lambda x_o(x_o \equiv \bot)$.
- Implication: $\Rightarrow := \lambda x_o \lambda y_o (x_o \land y_o) \equiv x_o$
- **(** $\mathbf{U}, \nabla, \mathbf{V}$ are defined as in Łukasiewicz logic.
- **6** General quantifier: $(\forall x_{\alpha})A_{o} := (\lambda x_{\alpha}A_{o} \equiv \lambda x_{\alpha}\top),$

(日) (日) (日) (日) (日) (日) (日)

Solution Existential quantifier: $(\exists x_{\alpha})A_{o} := \neg(\forall x_{\alpha})\neg A_{o}$.

Lukasiewicz fuzzy type theory

Axioms and inference rules in Ł-FTT

- 17 axioms
- two inference rules where the rules *modus ponens and generalization* are the rules derivative.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Łukasiewicz fuzzy type theory

Semantics in Ł-FTT

A frame is a tuple

$$\mathcal{M} = \langle (M_{lpha}, =_{lpha})_{lpha \in Types}, \mathcal{L}_{\Delta} \rangle$$

- $(M_{\alpha})_{\alpha \in Types}$ is a basic frame
- 2 \mathcal{L}_{Δ} is MV-algebra with Δ
- $\mathbf{O} =_{\alpha}$ is a fuzzy equality on M_{α} .
 - We say that a frame *M* is a *model* of a theory *T* if all axioms are true in the degree 1 in *M*.

-Intermediate Generalized Quantifiers

Trichotomous evaluative linguistic expressions

TEE

- are special expressions of natural language, e.g., small, big, about fourteen, very short, more or less deep, not thick.
- Linguistic hedge can be
 - narrowing extremely, significantly, very
 - widening more or less, roughly, quite roughly, very roughly
 - empty hedge
- We will work with expressions: extremely big, very big, not small.
- T^{Ev} has 11 axioms.

-Intermediate Generalized Quantifiers

Trichotomous evaluative linguistic expressions

TEE

- are special expressions of natural language, e.g., small, big, about fourteen, very short, more or less deep, not thick.
- Linguistic hedge can be
 - narrowing extremely, significantly, very
 - widening more or less, roughly, quite roughly, very roughly
 - empty hedge
- We will work with expressions: extremely big, very big, not small.
- T^{Ev} has 11 axioms.

-Intermediate Generalized Quantifiers

Theory of intermediate quantifiers T^{IQ}

- is a special theory of Ł-FTT extending the theory T^{Ev} of evaluative linguistic expressions
- we consider a special formula μ of type o(oα)(oα) such that values of the measure are taken from the set of truth values

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(3) μ has four axioms

-Intermediate Generalized Quantifiers

Definition of intermediate generalized quantifiers

Definitions of intermediate generalized quantifiers of the form "Quantifier B's are A"

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(a)
$$(Q_{E_V}^{\forall} x)(B, A) := (\exists z)((\Delta(z \subseteq B)\&(\forall x)(z x \Rightarrow Ax)) \land Ev((\mu B)z)),$$

(b) $(Q_{E_V}^{\exists} x)(B, A) := (\exists z)((\Delta(z \subseteq B)\&(\exists x)(zx \land Ax)) \land Ev((\mu B)z)).$

-Intermediate Generalized Quantifiers

Definition of intermediate generalized quantifiers

r

Explanation of definition of IGQ

Each formula above consists of three parts:

$$(\exists z)((\mathbf{\Delta}(z \subseteq B)))$$

"the greatest" part of B's

$$\underbrace{(\forall x)(z\,x\Rightarrow Ax))} \land$$

each z's has A

$$\underbrace{Ev((\mu B)z))}_{\text{size of }z \text{ is evaluated by }Ev} (3)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

-Intermediate Generalized Quantifiers

Definition of intermediate generalized quantifiers with presupposition

Interpretation of "Quantifier B's are A" with presupposition

(日) (日) (日) (日) (日) (日) (日)

- (a) $({}^*Q_{Ev}^{\forall}x)(B,A) \equiv (\exists z)((\Delta(z \subseteq B)\&(\exists x)zx\&(\forall x)(zx \Rightarrow Ax)) \land Ev((\mu B)z)),$
- (b) $({}^*Q_{E_V}^\exists x)(B,A) := (\exists z)((\Delta(z \subseteq B)\&(\exists x)zx\&(\exists x)(zx \land Ax)) \land Ev((\mu B)z)).$

where only non-empty subsets of *B* are considered.

Intermediate Generalized Quantifiers

"All", "No", "Almost all", "Few", "Most"

A: All *B* are
$$A := Q_{Bi\Delta}^{\forall}(B, A) \equiv (\forall x)(Bx \Rightarrow Ax)$$
,
E: No *B* are $A := Q_{Bi\Delta}^{\forall}(B, \neg A) \equiv (\forall x)(Bx \Rightarrow \neg Ax)$,
P: Almost all *B* are $A := Q_{BiEx}^{\forall}(B, A) \equiv (\exists z)((\Delta(z \subseteq B)\&(\forall x)(zx \Rightarrow Ax)) \land (BiEx)((\mu B)z))$,
B: Few *B* are $A (:=$ Almost all *B* are not $A) := Q_{BiEx}^{\forall}(B, \neg A) \equiv (\exists z)((\Delta(z \subseteq B)\&(\forall x)(zx \Rightarrow \neg Ax)) \land (BiEx)((\mu B)z))$,
T: Most *B* are $A := Q_{BiVe}^{\forall}(B, A) \equiv (\exists z)((\Delta(z \subseteq B)\&(\forall x)(zx \Rightarrow Ax)) \land (BiVe)((\mu B)z))$,
D: Most *B* are not $A := Q_{BiVe}^{\forall}(B, \neg A) \equiv$

 $(\exists z)((\mathbf{\Delta}(z \subseteq B) \& (\forall x)(zx \Rightarrow \neg Ax)) \land (Bi Ve)((\mu B)z))_{\mathcal{A}}$

LIntermediate Generalized Quantifiers

"Many", "Some"

K: Many *B* are
$$A := Q_{\neg(Sm\bar{\nu})}^{\forall}(B,A) \equiv$$

 $(\exists z)((\Delta(z \subseteq B) \& (\forall x)(zx \Rightarrow Ax)) \land \neg(Sm\bar{\nu})((\mu B)z)),$
G: Many *B* are not $A := Q_{\neg(Sm\bar{\nu})}^{\forall}(B,\neg A) \equiv$
 $(\exists z)((\Delta(z \subseteq B) \& (\forall x)(zx \Rightarrow \neg Ax)) \land \neg(Sm\bar{\nu})((\mu B)z)),$
I: Some *B* are $A := Q_{Bi\Delta}^{\exists}(B,A) \equiv (\exists x)(Bx \land Ax),$
O: Some *B* are not $A := Q_{Bi\Delta}^{\exists}(B,\neg A) \equiv (\exists x)(Bx \land \neg Ax).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Analysis of generalized square of opposition in Ł-FTT

Generalized definitions in Ł-FTT

Contraries

 $P_1, P_2 \in Form_o$ are contraries in T^{IQ} if in every model $\mathcal{M} \models T^{IQ}$ the following is true:

$$\mathcal{M}(P_1)\otimes \mathcal{M}(P_2)=\mathcal{M}(\bot).$$

(日) (日) (日) (日) (日) (日) (日)

We can alternatively say that P_1 and P_2 are contraries if $T^{IQ} \vdash P_1 \& P_2 \equiv \bot$.

Analysis of generalized square of opposition in Ł-FTT

Generalized definitions in Ł-FTT

Sub-contraries

 $P_1, P_2 \in Form_o$ are sub-contraries in T^{IQ} if in every model $\mathcal{M} \models T^{IQ}$ the following is true:

 $\mathcal{M}(P_1) \oplus \mathcal{M}(P_2) = \mathcal{M}(\top).$

(日) (日) (日) (日) (日) (日) (日)

We can alternatively say that P_1 and P_2 are sub-contraries if $T^{IQ} \vdash P_1 \nabla P_2$.

Analysis of generalized square of opposition in Ł-FTT

Generalized definitions in Ł-FTT

Sub-contraries

 $P_1, P_2 \in Form_o$ are sub-contraries in T^{IQ} if in every model $\mathcal{M} \models T^{IQ}$ the following is true:

 $\mathcal{M}(P_1) \oplus \mathcal{M}(P_2) = \mathcal{M}(\top).$

(日) (日) (日) (日) (日) (日) (日)

We can alternatively say that P_1 and P_2 are sub-contraries if $T^{IQ} \vdash P_1 \nabla P_2$.

Analysis of generalized square of opposition in Ł-FTT

Generalized definitions in Ł-FTT

Contradictories

 $P_1, P_2 \in Form_o$ are contradictories in T^{IQ} if in every model $\mathcal{M} \models T^{IQ}$ the following two equalities hold:

•
$$\mathcal{M}(\Delta P_1) \otimes \mathcal{M}(\Delta P_2) = \mathcal{M}(\bot),$$

•
$$\mathcal{M}(\Delta P_1) \oplus \mathcal{M}(\Delta P_2) = \mathcal{M}(\top).$$

Alternatively we can say that P_1 and P_2 are contradictories, if both $T^{IQ} \vdash \Delta P_1 \& \Delta P_2 \equiv \bot$ as well as $T^{IQ} \vdash \Delta P_1 \nabla \Delta P_2$.

Analysis of generalized square of opposition in Ł-FTT

Generalized definitions in Ł-FTT

Subaltern

We say that *A* is a subaltern of *S* in T^{IQ} if in every model $\mathcal{M} \models T^{IQ}$ the inequality

$$\mathcal{M}(A) \leq \mathcal{M}(S)$$

holds true. We will call *S* as *superaltern* of *A*. Alternatively we can say that *A* is a subaltern of *S* if $T^{IQ} \vdash A \Rightarrow S$.

(日) (日) (日) (日) (日) (日) (日)

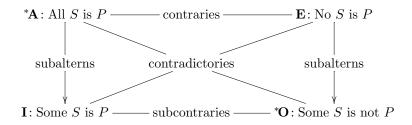
Analysis of generalized square of opposition in Ł-FTT

Properties of classical quantifiers in Ł-FTT

- The formulas *A, E are contraries in T^{IQ} (T^{IQ} ⊢ *A & E ≡ ⊥).
- If $T^{IQ} \vdash (\exists x)Bx$ then the formulas **A**, **E** are contraries in T^{IQ} .
- The formulas ^{*}O and I are sub-contraries in T^{IQ} (T^{IQ} ⊢ ^{*}O∇I).
- If *T*^{IQ} ⊢ (∃*x*)*Bx*, then the formulas **O** and **I** are sub-contraries in *T*^{IQ}.
- The formulas **A** and **O** are contradictories in T^{IQ} .
- The formulas **E** and **I** are contradictories in T^{IQ} .

Analysis of generalized square of opposition in Ł-FTT

Aristotle's square interpreted in T^{IQ}



(日) (日) (日) (日) (日) (日) (日)

Analysis of generalized square of opposition in Ł-FTT

Extension of the theory T^{IQ}

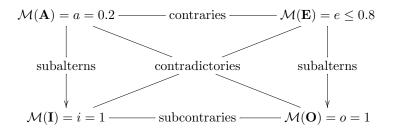
Theory T[B, B']

Let $B, B' \in Form_{o\alpha}$. The theory T[B, B'] is a consistent extension of T^{IQ} such that (a) $T[B, B'] \vdash B \equiv B'$, (b) $T[B, B'] \vdash (\exists x_{\alpha}) \Delta Bx$ and $T[B, B'] \vdash (\exists x_{\alpha}) \Delta B'x$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Analysis of generalized square of opposition in Ł-FTT

Example of generalized Aristotelian square interpreted in T[B, B']



(日) (日) (日) (日) (日) (日) (日)

Analysis of generalized square of opposition in Ł-FTT

Properties of generalized quantifiers in T[B, B']

(日) (日) (日) (日) (日) (日) (日)

The main properties

- $T[B, B'] \vdash B \& P \equiv \bot$,
- $T[B,B'] \vdash \mathbf{D} \& \mathbf{T} \equiv \bot$,
- $T[B, B'] \vdash \mathbf{G\&K} \equiv \bot$.
- $T[B, B'] \vdash \mathbf{G} \& \mathbf{P} \equiv \bot$,
- $T[B,B'] \vdash \mathbf{K} \& \mathbf{B} \equiv \bot$.

Analysis of generalized square of opposition in Ł-FTT

Properties of generalized quantifiers in T[B, B']

(日) (日) (日) (日) (日) (日) (日)

Derived properties

- $T[B, B'] \vdash \mathbf{E} \& \mathbf{K} \equiv \bot$,
- $T[B,B'] \vdash \mathbf{E} \& \mathbf{T} \equiv \bot$,
- $T[B,B'] \vdash \mathbf{E} \& \mathbf{P} \equiv \bot$,
- $T[B,B'] \vdash \mathbf{A\&G} \equiv \bot$,
- $T[B,B'] \vdash \mathbf{A} \& \mathbf{D} \equiv \bot$,
- $T[B, B'] \vdash A \& B \equiv \bot$.

Analysis of generalized square of opposition in Ł-FTT

Example of generalized complete square

$$\mathbf{A}: a \leq p - - - \mathbf{E}: e \leq 1 - p$$

$$\mathbf{P}: p = 0.4 - - \mathbf{B}: e \leq b \leq 1 - p$$

$$\mathbf{T}: p \leq t - - \mathbf{D}: b \leq d$$

$$\mathbf{K}: t \leq k - - - \mathbf{G}: d \leq g$$

$$\mathbf{I}: i = 1 - \mathbf{O}: o = 1$$

(such that $t \otimes d = 0$)

(such that $k \otimes g = 0$)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Analysis of generalized square of opposition in Ł-FTT

Generalized complete square of opposition

A:
$$a = 0.3 - - E$$
: $e = 0.2$
P: $p = 0.4 - - B$: $b = 0.3$
T: $t = 0.45 - D$: $d = 0.49$
K: $k = 0.5 - - G$: $g = 0.5$
I: $i = 1$ O: $o = 1$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ - □ - のへぐ

- Conclusions

Main results

Results

- I developed Ł-FTT.
- I proposed generalized definitions of properties which characterize relations among intermediate generalized quantifiers in the generalized square of opposition.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• I formally proved validity of these relations.

Conclusions

Thank you for your attention.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ