Vertical Mixtures of Copulas

Radko Mesiar and Peter Sarkoci

Department of Mathematics and Geometry
Slovak University of Technology
Bratislava, Slovakia

FSTA 2021, Liptovský Ján

2-Copula

Binary operation $C:[0,1]^{2} \rightarrow[0,1]$

- 0 as an annihilator
- 1 as a neutral element
- for all $u_{1} \leq u_{2}$ and $v_{1} \leq v_{2}$ from $[0,1]$

$$
C\left(u_{1}, v_{1}\right)-C\left(u_{1}, v_{2}\right)-C\left(u_{2}, v_{1}\right)+C\left(u_{2}, v_{2}\right) \geq 0
$$

Quasi-Copula

Binary operation $Q:[0,1]^{2} \rightarrow[0,1]$

- nondecreasing in both operands
- 1 as a neutral element
- for all $u_{1}, u_{2}, v_{1}, v_{2}$ in $[0,1]$

$$
\left|Q\left(u_{1}, v_{1}\right)-Q\left(u_{2}, v_{2}\right)\right| \leq\left|u_{1}-u_{2}\right|+\left|v_{1}-v_{2}\right|
$$

Theorem (Sklar)

A mapping $F_{X Y}:[-\infty, \infty]^{2} \rightarrow[0,1]$ is a joint distribution function of a random vector (X, Y) with marginal distributions F_{X} and F_{Y} respectively iff there exists a copula $C_{X Y}$ such that

$$
F_{X Y}(x, y)=C_{X Y}\left(F_{X}(x), F_{Y}(y)\right)
$$

holds for all $x, y \in[-\infty, \infty]$.

Corollary

Copulas are $[0,1]^{2}$-restrictions of probability distribution functions of random vectors with components distributed uniformly on $[0,1]$.

Copula and its Induced Measure

C-volume of a rectangle

Given a copula C and a rectangle $R=\left[u_{1}, u_{2}\right] \times\left[v_{1}, v_{2}\right]$ define C-volume of R by

$$
V_{C}(R)=C\left(u_{1}, v_{1}\right)-C\left(u_{1}, v_{2}\right)-C\left(u_{2}, v_{1}\right)+C\left(u_{2}, v_{2}\right) .
$$

C-measure
Given a copula C the induced C-measure is the

Copula and its Induced Measure

C-volume of a rectangle
Given a copula C and a rectangle $R=\left[u_{1}, u_{2}\right] \times\left[v_{1}, v_{2}\right]$ define C-volume of R by

$$
V_{C}(R)=C\left(u_{1}, v_{1}\right)-C\left(u_{1}, v_{2}\right)-C\left(u_{2}, v_{1}\right)+C\left(u_{2}, v_{2}\right) .
$$

For any two rectangles R_{1}, R_{2} with a common edge if $R_{1} \cup R_{2}$ is a rectangle again, then

$$
V_{C}\left(R_{1} \cup R_{2}\right)=V_{C}\left(R_{1}\right)+V_{C}\left(R_{2}\right)
$$

Given a copula C the induced C-measure is the
\qquad

Copula and its Induced Measure

C-volume of a rectangle
Given a copula C and a rectangle $R=\left[u_{1}, u_{2}\right] \times\left[v_{1}, v_{2}\right]$ define C-volume of R by

$$
V_{C}(R)=C\left(u_{1}, v_{1}\right)-C\left(u_{1}, v_{2}\right)-C\left(u_{2}, v_{1}\right)+C\left(u_{2}, v_{2}\right) .
$$

For any two rectangles R_{1}, R_{2} with a common edge if $R_{1} \cup R_{2}$ is a rectangle again, then

$$
V_{C}\left(R_{1} \cup R_{2}\right)=V_{C}\left(R_{1}\right)+V_{C}\left(R_{2}\right)
$$

C-measure

Given a copula C the induced C-measure is the completion of the σ-additive extension of V_{C}.

- every copula is a quasi-copula
- given two (quasi-)copulas A, B and $\alpha \in[0,1]$ the operation $\alpha A+(1-\alpha) B$ is a (quasi-)copula again
- quasi-copulas are nondecreasing in each variable
- quasi-copulas are continuous
- quasi-copulas admit first partial derivatives λ-almost everywhere

Prototypical examples

- $M(u, v)=\min \{u, v\}$
- $\Pi(u, v)=u v$
- $W(u, v)=\max \{u+v-1,0\}$

Outline

(1) Vertical mixtures

Definition

For a binary operation $O:[0,1]^{2} \rightarrow[0,1]$ we define its residual transform

$$
\mathcal{R}[O](u, v)=\sup \{z \in[0,1] \mid O(u, z) \leq v\}
$$

and its deresiduation

$$
\overline{\mathcal{R}}[O](u, v)=\inf \{z \in[0,1] \mid O(u, z) \geq v\} .
$$

Lemma

Every quasi-copula Q satisfies

$$
\overline{\mathcal{R}}[\mathcal{R}[Q]]=(\overline{\mathcal{R}} \circ \mathcal{R})[Q]=Q .
$$

F. Durante, E. P. Klement, R. Mesiar, C. Sempi, Conjunctors and their residual implicators: characterizations and construction methods, Mediterranean Journal of Mathematics 4(3):343-356, 2007.

Theorem

If A, B are quasi-copulas then so is

$$
\overline{\mathcal{R}}[(1-\alpha) \mathcal{R}[A]+\alpha \mathcal{R}[B]]
$$

regardless of $\alpha \in[0,1]$.

目 F. Durante, E. P. Klement, R. Mesiar, C. Sempi, Conjunctors and their residual implicators: characterizations and construction methods, Mediterranean Journal of Mathematics 4(3):343-356, 2007.

Theorem

If A, B are quasi-copulas then so is

$$
\overline{\mathcal{R}}[(1-\alpha) \mathcal{R}[A]+\alpha \mathcal{R}[B]]
$$

regardless of $\alpha \in[0,1]$.

Question

If A and B are copulas, is the constructed operation also a copula ?

Definition

- $\alpha \in[0,1]$
- $A, B:[0,1]^{2} \rightarrow[0,1]$

Operation

$$
A *_{\alpha} B=\overline{\mathcal{R}}[(1-\alpha) \mathcal{R}[A]+\alpha \mathcal{R}[B]]
$$

is the vertical α-mixture of A and B.

Properties

For quasi-copulas A and B

- $A *_{0} B=A$ and $A *_{1} B=B$
- $\left(A *_{\alpha} B\right)_{\alpha \in[0,1]}$
- $A *_{\alpha} B$ often violates commutativity even if A and B do not

Geometry of vertical mixtures

Example 1

C

x	$x-\frac{1}{2}$
	$x-\frac{1}{2}$
	y

$$
C *_{0.5} M
$$

$$
C \psi_{0.5} M
$$

Put $C_{\alpha}=\Pi *_{\alpha} M$. Then

$$
C_{\alpha}(u, v)=\min \left\{u, \frac{u v}{1-\alpha+\alpha u}\right\}
$$

- C_{α} is a copula regardles of $\alpha \in[0,1]$
- up to the case $\alpha \in\{0,1\}$ the copula C_{α} is noncommutative
- the family $\left(C_{\alpha}\right)_{\alpha \in[0,1]}$ is increasing in α

Example 2

$\Pi *_{0.0} M$

Example 2

$\Pi *_{0.2} M$

$\Pi *_{0.4} M$

Example 2

$\Pi *_{0.6} M$

$\Pi *_{0.8} M$

$\Pi *_{1.0} M$

Put $C_{\alpha}=M *_{\alpha} W$. Then

$$
C_{\alpha}(u, v)=\operatorname{Glue}(\langle W, 0, \alpha\rangle,\langle M, \alpha, 1\rangle)
$$

- C_{α} is a copula regardles of $\alpha \in[0,1]$
- up to the case $\alpha \in\{0,1\}$ the copula C_{α} is noncommutative
- the family $\left(C_{\alpha}\right)_{\alpha \in[0,1]}$ is decreasing in α
- every memenber of the family is singular

Convention

For $A:[0,1] \rightarrow[0,1]$ we denote by $\partial_{1} A(u, v)\left[\partial_{2} A(u, v)\right]$ the value of the partial derivative of A along the first [the second] variable at the argument (u, v).

Convention

For $A:[0,1] \rightarrow[0,1]$ we denote by $\partial_{1} A(u, v)\left[\partial_{2} A(u, v)\right]$ the value of the partial derivative of A along the first [the second] variable at the argument (u, v).

Lemma

A quasi-copula A is a copula iff the mapping $v \mapsto \partial_{1} A(u, v)$ is nondecreasing for λ-almost every $u \in[0,1]$.

Differential tools

Convention

For $A:[0,1] \rightarrow[0,1]$ we denote by $\partial_{1} A(u, v)\left[\partial_{2} A(u, v)\right]$ the value of the partial derivative of A along the first [the second] variable at the argument (u, v).

Lemma

A quasi-copula A is a copula iff the mapping $v \mapsto \partial_{1} A(u, v)$ is nondecreasing for λ-almost every $u \in[0,1]$.

Note

Let a copula C be the distribution function of a random vector (U, V). Then

$$
F_{V \mid U=u}(v)=P[V \leq v \mid U=u]=\partial_{1} C(u, v)
$$

Characterisation of vertically mixable copulas

Theorem

A copula A is vertically α-mixable with a copula B iff the mappings

$$
v \mapsto \partial_{1} A(u, v)+\frac{\alpha \partial_{1} A_{B}(u, v) \partial_{2} A(u, v)}{1-\alpha+\alpha \partial_{2} A_{B}(u, v)}
$$

where

$$
A_{B}(u, v)=\sup \{z \in[0,1] \mid A(u, v)=B(u, z)\}
$$

are nondecreasing for almost all $u \in[0,1]$.

Example

- $A_{M}=A(u, v)$
- $A_{\Pi}=\frac{A(u, v)}{u}$
- $A_{W}=1-u+A(u, v)$

Vertical mixatures with M

Corollary

Let $\alpha \in] 0,1[$. A copula A is vertically α-mixable with M iff the mappings

$$
v \mapsto \frac{\partial_{1} A(u, v)}{1+\frac{\alpha}{1-\alpha} \partial_{2} A(u, v)}
$$

are nondecreasing for almost all $u \in[0,1]$.

Vertical mixatures with M

Corollary

Let $\alpha \in] 0,1[$. A copula A is vertically α-mixable with M iff the mappings

$$
v \mapsto \frac{\partial_{1} A(u, v)}{1+\frac{\alpha}{1-\alpha} \partial_{2} A(u, v)}
$$

are nondecreasing for almost all $u \in[0,1]$.

Vertical mixatures with M

Corollary

Let $\alpha \in] 0,1[$. A copula A is vertically α-mixable with M iff the mappings

$$
v \mapsto \frac{\partial_{1} A(u, v)}{1+\frac{\alpha}{1-\alpha} \partial_{2} A(u, v)}
$$

are nondecreasing for almost all $u \in[0,1]$.

Corollary

Let $\alpha \in] 0,1[$. A copula A is vertically α-mixable with M iff the mappings

$$
v \mapsto \frac{\partial_{1} A(u, v)}{1+\frac{\alpha}{1-\alpha} \partial_{2} A(u, v)}
$$

are nondecreasing for almost all $u \in[0,1]$.

Corollary

Every copula with convex vertical sections is vertically mixable with M. In particullar every stochastically increasing copula is vertically mixable with M.

Theorem (folklore)

Let X, Y be random variables (defined on a common probability space) and $\alpha \in[0,1]$. If X and Y are totally increasingly dependent, then

$$
Q_{\alpha X+(1-\alpha) Y}=\alpha Q_{X}+(1-\alpha) Q_{Y}
$$

Theorem (folklore)

Let X, Y be random variables (defined on a common probability space) and $\alpha \in[0,1]$. If X and Y are totally increasingly dependent, then

$$
Q_{\alpha X+(1-\alpha) Y}=\alpha Q_{X}+(1-\alpha) Q_{Y}
$$

Another folkloric issue

Let X, Y, Z be three random variables distributed uniformly over the unit interval. If there exists $\alpha \in] 0,1[$ for which the joint distribution function of $(X, \alpha Y+(1-\alpha) Z)$ is a copula, then $Y={ }_{P} Z$.

Is there a probabilistic interpretation?

Theorem (folklore)

Let X, Y be random variables (defined on a common probability space) and $\alpha \in[0,1]$. If X and Y are totally increasingly dependent, then

$$
Q_{\alpha X+(1-\alpha) Y}=\alpha Q_{X}+(1-\alpha) Q_{Y}
$$

Another folkloric issue

Let X, Y, Z be three random variables distributed uniformly over the unit interval. If there exists $\alpha \in] 0,1[$ for which the joint distribution function of $(X, \alpha Y+(1-\alpha) Z)$ is a copula, then $Y={ }_{P} Z$.

Question

Which operations on random vectors do correspond to vertical mixtures of copulas?

