Increasing, continuous operations in fuzzy
max —* equations and inequalities

Zofia Matusiewicz?
Jozef Drewniak?

LUniversity of Information Technology and Management in Rzeszéw
zmatusiewicz@wsiz.rzeszow.pl
2|nstitute of Mathematics, University of Rzeszéw in Rzeszéw
jdrewnia@univ.rzeszow.pl

FSTA 2012



The plan of presentation

v

Introduction

» Notation
» Induced implications

v

Systems of equations and inequalities

The greatest solution
Convexity properties
Reduced matrix
Minimal solutions
Family of solution
Example

vV VY VY vV VY

v

Algorithms of computing minimal solutions

v

Example

v

Bibliography



Notations

Let +: [0,1]> — [0,1] and A € [0,1]™*", b € [0,1]™, a,c € [0, 1]. Vectors
x,y € [0,1]" are ordered by
x<y)e (Y x<y)

1<<m
We use notation
oa\/b—max(a b), aA b=min(a,b), a,b € [0,1],
o \/ xi= max X, /\,. X = m|n  Xi Xi € [o,1],
1<i<n SIS
e max —x product of a matrix A and a vector x (Zadeh 1971) we call
Aox €[0,1]™, where

(Aox)i=\/(aj*x), i€{l,...,m}
=1

Families of solutions: ’
e Sc(A b,x)={x€0,1]" : Aox < b},
e S> (A, b,x)={x€0,1]" : Aox > b},
e S(A b,x) ={x€[0,1]": Aox = b} = S5(A, b,*) N S<(A, b, %),
e induced implication (Drewniak 1984) a = ¢ = max{t € [0,1] : a* t < ¢},
e dual induced implication a < ¢ = min{t € [0,1] : a* t > c}.



Induced implications

Lemma 1
If an increasing operation x is left continuous and 1« 0 = 0, then it induces
implication in [0, 1].

Lemma 2
Let a,b €[0,1], {t €[0,1] : ax t > b} # (. If an increasing operation x is right
continuous, then exists a < b.

Example 1

The binary operations and theirs implications:

_ e, 1, a<b
TP(Xv.y)fx Y, a*)b{:, a>b

b

2. a#0

a >

5, aZo for a> b.
Ti(x,y) =0V (x+y—1), asb=1A(1—a+b)

W, _J 1A(l—a+b), b#0
and a b—{o7 b=0 ,az=b,

_ ™ , _ 1, a<b ™
TM(va)fx/\ya aqb{b7 a>h

for all x,y,a,b € [0,1].

andaEb:{



Convexity properties

Lemma 3 (cf. Drewniak 1989)

Let x be increasing operation. Families of solutions of Ao x = b, Aox < b and
Ao x > b have the convexity property, i.e.
x € S<(A, b, *) = [0, x] C S<(A, b, %),
x € 55(A, b, %) = [x,1] C S>(A, b, %),
x <y, x,y € S(A, b, %) = [x,y] C S(A, b, %),
where [0, x], [x, y], [x,1] are intervals in ([0,1]", <).

Corollary 1

If % is an increasing operation, then

o 1cS.(Ab,x)e So(A b, x) #£10,
o 0¢e Sc(Ab,x) < Sc(A b,x)#0.

Definition 1
By greatest solutions of system Ao x < b (and Ao x = b) with max —x
product we call minimal elements in S> (A, b, *) (in S(A, b, %)).

Theorem 1

If an operation * is increasing, left-continuous on the second argument and
1%0 =0, then S<(A, b, *) the complete lattice. Moreover, if S (A, b, *) # 0
and S(A, b,*) # 0, then S5 (A, b,*) # 0 and S(A, b, x) # 0 are closed under

arbitrary suprema.



The greatest solution
Let u = maxS<(A, b,*) = max{x € [0,1]" : Ao x < b}.

Theorem 2
If an operation * is increasing, left-continuous on the second argument and
1% 0 =0, then there u is the greatest element of S¢(A, b, *), where

m

u= A(ag = bi), je{1,...,n}.

i=1
It means u = A = b.

Corollary 2
If an operation x is increasing, left-continuous on the second argument and
1%0=0, then S<(A, b,x) =[0,A > b].

Theorem 3
If an operation x is increasing, left-continuous on the second argument,
1+0=0 and S(A, b, *) # 0, then maxS(A, b,*) = A 2 b.



Reduced matrix

Definition 2
Let x € S(A, b, *). By reduced matrix of equation system Ao x = b we call the
matrix A, (x), where

i o, ifagxx;=0b . .
a;j(X): % I 2% ’I6{17"'7m}>./€{1a"'7n}'
0 , in other case

Let x € S>(A, b, x). By reduced matrix of system of inequalities Ao x > b we
call AL ,(x), where

i, ifagxxi>bi . .
a(x) =40 AT ZO e myjef{1,... n)
v 0 , in other case

Theorem 4 (Drewniak, Matusiewicz 2010)

If an operation * is increasing, left-continuous on the second argument, and it
has neutral element e = 1, then S(A, b, x) = S(A,(u), b, *).



Minimal solutions (1)

Definition 3

By minimal solutions of system Aox > b (and Ao x = b) with max —x product
we call minimal elements in S> (A, b, *) (in S(A, b, %)). The set of all minimal
solution is denoted by S2(A, b, x) (S°(A, b, x)).

Corollary 3 (cf. Drewniak 1989)

If x Is increasing operation, then
U [x,1] C Sx(A, b, ).

x€SY (A,b,*)

Theorem 5

If % is increasing, right-continuous on the second argument, then

e each x € 5> (A, b, *) is bounded from below by some v € S2(A, b, *),
e cach x € S(A, b, x) is bounded from below by some v € S°(A, b, %),
e we have S°(A, b,*) C S2(A, b, *).

Theorem 6
If * Is increasing, continuous on the second argument and 1 x 0 = 0, then
S(Abx)= U [v,A> b

vESO(A,b,x)



Algorithm of computing minimal solutions (1)

Let S>(A, b, *) # 0, an operation * be increasing, right-continuous on the
second argument one and

0< bm<...<by< by

ALGORITHM |
Step 1. Determine the reduced matrix A%, (x). Let i :=1, K := 0,
V:.={1,...,m}.
Step 2. Choose k; that aj,, > 0 and calculate vy, = aj, & b and
K:=KU {k,}

Step 3. Determine the set
V:=Vn{i<s< moraz a’sk'_ % vi; < bs}.
Step 4. If V # (), to i := min V and return to Step 2.
In other case go to Step 5.
Step 5. If k ¢ K, then v, :=0.

Let us denote the set of all vectors v from this algorithm obtained for

x € 5> (A, b, %) by Alg(x)(see Step 2).

Corollary 4

Let x € S>(A, b, x). If an operation * is increasing, right-continuous on the

second argument, then
cardAlg(x) < m".



Minimal solutions (2)

Theorem 7

If an operation * is increasing, right-continuous on the second argument, then
S2(A, b,*) C Alg(1).

Theorem 8

Let x € S(A, b, x). If an operation x is increasing, right-continuous on the
second argument, then Alg(x) C S(A, b, *).

Theorem 9
Let b € (0,1]". If an operation * is increasing, continuous on the second
argument and 1+ 0 = 0, then S°(A, b, ¥) C Alg(A = b).

VA

s@ab=|J ma>H
veSO(A,b,«)



Example 2

Let xxy = /x -y and

~[01 016 025 [o4] . [ 0 016 025
A=102 000 0.05}’17{0.3}’&(1){0.2 009 0

We get a—b = bf:, b? < a.

Using Alg(1) we get:

1. For ki = 2 we get K = {2} and V = ). We obtain v; = 0.16 < 0.4 = 1.
2. For ki =3 we get v =02 < 04=08and K= {3}, V=1{2},i=2
Choosing k» = 1, we compute v = 0.2 < 0.3 =0.45, K = {1,3}, V = 0.
3. For ki =3 weget vi=02<04=08and K={3}, V={2},i=2.
Choosing k> = 2, we compute v3 = 0.09 < 0.3 =1, K = {2,3}, V = 0.
Thus we have the following projections:

0 0.45 0
vi=1 1 , v = 0 ,v3 = 1 .
0 0.8 0.8

Since v'||v? and v! < v3, then SY(A, b, x) = {v',v?}.



Algorithm of computing minimal solutions (2)

Let an operation * be increasing, continuous on the second argument and have
neutral element e = 1.
ALGORYTM I
Step 0. We calculate u = A > b.
Step 1. We determine Alg(u) from Algorithm 1.
Step 2. We determine S°(A, b, %) as a set of minimal elements in Alg(u).

Definition 4
An operation * is conditionally cancellative if
axx=axy#0=x=y fora,x,ye€(0,1]

Theorem 10
Let x be increasing, continuous on the second argument and conditionally
cancellative operation and 1 %0 = 0, then If v € S°(A, b, %), then v; € {0, u;}

forje N, whereu=A> b.

Corollary 5

If x Is increasing, continuous on the second argument and conditionally
cancellative operation and 1«0 = 0, then
card S°(A, b, ¥) < ([Z]).
2



Example 3

Let x = Tp and

1 08 05 05 0.5
A— 0.8 08 01 04 b— 0.4
04 06 03 03 |’ 0.3
04 04 02 01 0.2
We determine Alg(u):
0.5 0.5 0.5 0.5 0.5
_ 0.5 1_ 0.5 V2 — 0 . 0 A= 0
1 ’ 0 ’ 1 ’ 0 ’ 1
1 0 0 1 0
0 0 0.5 0 0
s_ 05| e [0 s | 0| s_|O05] o |0
1 ’ 1|’ 0 ’ 0 ’ 1
0 1 1 1 1

From Algorithm |I" we obtain the solutions of Ao x = b. In this set we have all
minimal solution of the system. We get S°(A, b, x) = {v!,v? v3 v® v® v8},
because vZ = v*, v® = °, v = V7.
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