Increasing, continuous operations in fuzzy max -* equations and inequalities

Zofia Matusiewicz¹ Józef Drewniak²

¹University of Information Technology and Management in Rzeszów zmatusiewicz@wsiz.rzeszow.pl
²Institute of Mathematics, University of Rzeszów in Rzeszów jdrewnia@univ.rzeszow.pl

FSTA 2012

The plan of presentation

- Introduction
 - Notation
 - Induced implications
- Systems of equations and inequalities
 - The greatest solution
 - Convexity properties
 - Reduced matrix
 - Minimal solutions
 - Family of solution
 - Example
- Algorithms of computing minimal solutions
- Example
- Bibliography

Notations

Let $*: [0,1]^2 \to [0,1]$ and $A \in [0,1]^{m \times n}$, $b \in [0,1]^m$, $a, c \in [0,1]$. Vectors $x, y \in [0,1]^n$ are ordered by $(x \leqslant y) \Leftrightarrow (\bigvee_{1 \le i \le m} x_j \leqslant y_j).$

We use notation

•
$$a \lor b = \max(a, b), a \land b = \min(a, b), a, b \in [0, 1],$$

- $\bigvee_{1 \leq i \leq n} x_i = \max_{1 \leq i \leq n} x_i, \ \bigwedge_{i=1}^n x_i = \min_{1 \leq i \leq n} x_i, \ x_i \in [0, 1],$
- max -* product of a matrix A and a vector x (Zadeh 1971) we call $A \circ x \in [0, 1]^m$, where

$$(A \circ x)_i = \bigvee_{j=1}^n (a_{ij} * x_j), \quad i \in \{1, \ldots, m\}.$$

Families of solutions:

- $S_{\leq}(A, b, *) = \{x \in [0, 1]^n : A \circ x \leq b\},\$
- $S_{\geq}(A, b, *) = \{x \in [0, 1]^n : A \circ x \geq b\},\$
- $S(A, b, *) = \{x \in [0, 1]^n : A \circ x = b\} = S_{\geq}(A, b, *) \cap S_{\leq}(A, b, *),$
- induced implication (Drewniak 1984) $a \xrightarrow{*} c = \max\{t \in [0, 1] : a * t \leq c\}$,
- dual induced implication $a \stackrel{*}{\leftarrow} c = \min\{t \in [0,1] : a * t \ge c\}$.

Induced implications

Lemma 1

If an increasing operation * is left continuous and 1 * 0 = 0, then it induces implication in [0, 1].

Lemma 2

Let $a, b \in [0, 1]$, $\{t \in [0, 1] : a * t \ge b\} \neq \emptyset$. If an increasing operation * is right continuous, then exists $a \stackrel{*}{\leftarrow} b$.

Example 1

The binary operations and theirs implications:

$$\begin{split} T_P(x,y) &= x \cdot y, \quad a \xrightarrow{T_P} b = \begin{cases} 1, & a \leq b \\ \frac{b}{a}, & a > b \end{cases} \\ \text{and } a \xleftarrow{T_P} b &= \begin{cases} \frac{b}{a}, & a \neq 0 \\ 0, & a = 0 \end{cases} \text{ for } a \geq b. \\ T_L(x,y) &= 0 \lor (x+y-1), \quad a \xrightarrow{T_L} b = 1 \land (1-a+b) \\ and a \xleftarrow{T_L} b &= \begin{cases} 1 \land (1-a+b), & b \neq 0 \\ 0, & b = 0 \end{cases}, \quad a \geq b, \\ T_M(x,y) &= x \land y, \quad a \xrightarrow{T_M} b = \begin{cases} 1, & a \leq b \\ b, & a > b \end{cases}, \quad a \xleftarrow{T_M} b = b, a \geq b \end{cases} \\ \text{for all } x, y, a, b \in [0, 1]. \end{split}$$

Convexity properties

Lemma 3 (cf. Drewniak 1989)

Let * be increasing operation. Families of solutions of $A \circ x = b$, $A \circ x \leq b$ and $A \circ x \geq b$ have the convexity property, i.e.

 $\begin{aligned} & x \in S_{\leqslant}(A,b,*) \Rightarrow [\mathbf{0},x] \subset S_{\leqslant}(A,b,*), \\ & x \in S_{\geqslant}(A,b,*) \Rightarrow [x,\mathbf{1}] \subset S_{\geqslant}(A,b,*), \\ & x \leqslant y, \ x, y \in S(A,b,*) \Rightarrow [x,y] \subset S(A,b,*), \end{aligned}$ where $[\mathbf{0},x], \ [x,y], \ [x,\mathbf{1}]$ are intervals in $([0,1]^n,\leqslant).$

Corollary 1

If * is an increasing operation, then

- $1 \in S_{\geqslant}(A, b, *) \Leftrightarrow S_{\geqslant}(A, b, *) \neq \emptyset$,
- $\mathbf{0} \in S_{\leqslant}(A, b, *) \Leftrightarrow S_{\leqslant}(A, b, *) \neq \emptyset.$

Definition 1

By greatest solutions of system $A \circ x \leq b$ (and $A \circ x = b$) with max -* product we call minimal elements in $S_{\geq}(A, b, *)$ (in S(A, b, *)).

Theorem 1

If an operation * is increasing, left-continuous on the second argument and 1 * 0 = 0, then $S_{\leq}(A, b, *)$ the complete lattice. Moreover, if $S_{\geq}(A, b, *) \neq \emptyset$ and $S(A, b, *) \neq \emptyset$, then $S_{\geq}(A, b, *) \neq \emptyset$ and $S(A, b, *) \neq \emptyset$ are closed under arbitrary suprema.

The greatest solution

Let
$$u = \max S_{\leq}(A, b, *) = \max\{x \in [0, 1]^n : A \circ x \leq b\}.$$

Theorem 2

If an operation * is increasing, left-continuous on the second argument and 1 * 0 = 0, then there u is the greatest element of $S_{\leq}(A, b, *)$, where

$$u_j = \bigwedge_{i=1}^m (a_{ij} \xrightarrow{*} b_i), \ j \in \{1, \ldots, n\}.$$

It means $u = A \stackrel{\circ}{\to} b$.

Corollary 2

If an operation * is increasing, left-continuous on the second argument and 1 * 0 = 0, then $S_{\leq}(A, b, *) = [0, A \stackrel{\circ}{\rightarrow} b]$.

Theorem 3 If an operation * is increasing, left-continuous on the second argument, 1 * 0 = 0 and $S(A, b, *) \neq \emptyset$, then max $S(A, b, *) = A \xrightarrow{\circ} b$.

Reduced matrix

Definition 2

Let $x \in S(A, b, *)$. By reduced matrix of equation system $A \circ x = b$ we call the matrix $A'_b(x)$, where

$$\mathsf{a}'_{ij}(x) = egin{cases} \mathsf{a}_{ij} &, ext{ if } \mathsf{a}_{ij} * x_j = b_i \ \mathsf{0} &, ext{ in other case} \end{cases}, i \in \{1,\ldots,m\}, j \in \{1,\ldots,n\}.$$

Let $x \in S_{\geq}(A, b, *)$. By reduced matrix of system of inequalities $A \circ x \ge b$ we call $A'_{\ge b}(x)$, where

$$a_{ij}^\geqslant(x)=egin{cases}a_{ij}&, ext{ if }a_{ij}st x_j\geqslant b_i\0&, ext{ in other case}\end{cases},i\in\{1,\ldots,m\},j\in\{1,\ldots,n\}.$$

Theorem 4 (Drewniak, Matusiewicz 2010)

If an operation * is increasing, left-continuous on the second argument, and it has neutral element e = 1, then $S(A, b, *) = S(A'_b(u), b, *)$.

Minimal solutions (1)

Definition 3

By minimal solutions of system $A \circ x \ge b$ (and $A \circ x = b$) with max -* product we call minimal elements in $S_{\ge}(A, b, *)$ (in S(A, b, *)). The set of all minimal solution is denoted by $S_{\ge}^{0}(A, b, *)$ ($S^{0}(A, b, *)$).

Corollary 3 (cf. Drewniak 1989)

If * *is increasing operation, then*

$$\bigcup_{x\in S^{\mathbf{0}}_{\geqslant}(A,b,*)} [x,1] \subset S_{\geqslant}(A,b,*).$$

Theorem 5

If * is increasing, right-continuous on the second argument, then

- each $x \in S_{\geq}(A, b, *)$ is bounded from below by some $v \in S_{\geq}^{0}(A, b, *)$,
- each $x \in S(A, b, *)$ is bounded from below by some $v \in S^0(A, b, *)$,
- we have $S^0(A, b, *) \subset S^0_{\geq}(A, b, *)$.

Theorem 6

If * is increasing, continuous on the second argument and 1 * 0 = 0, then $S(A, b, *) = \bigcup_{v \in S^0(A, b, *)} [v, A \xrightarrow{\circ} b].$

Algorithm of computing minimal solutions (1)

Let $S_{\geqslant}(A, b, *) \neq \emptyset$, an operation * be increasing, right-continuous on the second argument one and

 $0 < b_m \leq \ldots \leq b_2 \leq b_1.$

ALGORITHM I Step 1. Determine the reduced matrix $A'_{\ge b}(x)$. Let i := 1, $K := \emptyset$, $V := \{1, \dots, m\}$. Step 2. Choose k_i that $a'_{ik_i} > 0$ and calculate $v_{k_i} = a'_{ik_i} \stackrel{*}{\leftarrow} b_i$ and $K := K \cup \{k_i\}$.

Step 3. Determine the set

 $V := V \cap \{i < s \leq m \text{ oraz } a'_{sk_i} * v_{k_i} < b_s\}.$ Step 4. If $V \neq \emptyset$, to $i := \min V$ and return to Step 2. In other case go to Step 5.

Step 5. If $k \notin K$, then $v_k := 0$.

Let us denote the set of all vectors v from this algorithm obtained for $x \in S_{\geq}(A, b, *)$ by Alg(x) (see Step 2).

Corollary 4

Let $x \in S_{\geq}(A, b, *)$. If an operation * is increasing, right-continuous on the second argument, then

card $Alg(x) \leq m^n$.

Minimal solutions (2)

Theorem 7

If an operation * is increasing, right-continuous on the second argument, then $S^0_{\geq}(A, b, *) \subset Alg(1)$.

Theorem 8

Let $x \in S(A, b, *)$. If an operation * is increasing, right-continuous on the second argument, then $Alg(x) \subset S(A, b, *)$.

Theorem 9

Let $b \in (0,1]^n$. If an operation * is increasing, continuous on the second argument and 1 * 0 = 0, then $S^0(A, b, *) \subset Alg(A \xrightarrow{\circ} b)$.

Example 2

Let $x * y = \sqrt{x \cdot y}$ and $A = \begin{bmatrix} 0.1 & 0.16 & 0.25 \\ 0.2 & 0.09 & 0.05 \end{bmatrix}$, $b = \begin{bmatrix} 0.4 \\ 0.3 \end{bmatrix}$, $A'_b(1) = \begin{bmatrix} 0 & 0.16 & 0.25 \\ 0.2 & 0.09 & 0 \end{bmatrix}$. We get $a \stackrel{*}{\leftarrow} b = \frac{b^2}{a}$, $b^2 \leq a$. Using A/g(1) we get: 1. For $k_1 = 2$ we get $K = \{2\}$ and $V = \emptyset$. We obtain $v_2^1 = 0.16 \stackrel{*}{\leftarrow} 0.4 = 1$. 2. For $k_1 = 3$ we get $v_3^2 = 0.2 \stackrel{*}{\leftarrow} 0.4 = 0.8$ and $K = \{3\}$, $V = \{2\}$, i = 2. Choosing $k_2 = 1$, we compute $v_1^2 = 0.2 \stackrel{*}{\leftarrow} 0.3 = 0.45$, $K = \{1,3\}$, $V = \emptyset$. 3. For $k_1 = 3$ we get $v_3^3 = 0.2 \stackrel{*}{\leftarrow} 0.4 = 0.8$ and $K = \{3\}$, $V = \{2\}$, i = 2. Choosing $k_2 = 2$, we compute $v_2^3 = 0.09 \stackrel{*}{\leftarrow} 0.3 = 1$, $K = \{2,3\}$, $V = \emptyset$. Thus we have the following projections:

$$v^{1} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, v^{2} = \begin{bmatrix} 0.45\\0\\0.8 \end{bmatrix}, v^{3} = \begin{bmatrix} 0\\1\\0.8 \end{bmatrix}.$$

Since $v^1 || v^2$ and $v^1 \leqslant v^3$, then $S^0_{\geqslant}(A, b, *) = \{v^1, v^2\}$.

Algorithm of computing minimal solutions (2)

Let an operation * be increasing, continuous on the second argument and have neutral element e = 1.

ALGORYTM I'

Step 0. We calculate $u = A \xrightarrow{\circ} b$.

Step 1. We determine Alg(u) from Algorithm I.

Step 2. We determine $S^{0}(A, b, *)$ as a set of minimal elements in Alg(u).

Definition 4

An operation * is conditionally cancellative if

 $a * x = a * y \neq 0 \Rightarrow x = y$ for $a, x, y \in (0, 1]$.

Theorem 10

Let * be increasing, continuous on the second argument and conditionally cancellative operation and 1 * 0 = 0, then If $v \in S^0(A, b, *)$, then $v_j \in \{0, u_j\}$ for $j \in N$, where $u = A \xrightarrow{\circ} b$.

Corollary 5

If * is increasing, continuous on the second argument and conditionally cancellative operation and 1*0=0, then

card $S^{0}(A, b, *) \leq {n \choose \left\lfloor \frac{n}{2} \right\rfloor}.$

Example 3

Let
$$* = T_P$$
 and

$$A = \begin{bmatrix} 1 & 0.8 & 0.5 & 0.5 \\ 0.8 & 0.8 & 0.1 & 0.4 \\ 0.4 & 0.6 & 0.3 & 0.3 \\ 0.4 & 0.4 & 0.2 & 0.1 \end{bmatrix}, \quad b = \begin{bmatrix} 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \end{bmatrix}.$$
We determine $Alg(u)$:

$$u = \begin{bmatrix} 0.5\\0.5\\1\\1\\1 \end{bmatrix}, v^{1} = \begin{bmatrix} 0.5\\0.5\\0\\0\\0 \end{bmatrix}, v^{2} = \begin{bmatrix} 0.5\\0\\1\\0\\0 \end{bmatrix}, v^{3} = \begin{bmatrix} 0.5\\0\\0\\1\\1 \end{bmatrix}, v^{4} = \begin{bmatrix} 0.5\\0\\1\\0\\1\\0 \end{bmatrix}, v^{5} = \begin{bmatrix} 0\\0.5\\1\\0\\1\\1 \end{bmatrix}, v^{6} = \begin{bmatrix} 0\\0\\1\\1\\1 \end{bmatrix}, v^{7} = \begin{bmatrix} 0.5\\0\\0\\1\\1 \end{bmatrix}, v^{8} = \begin{bmatrix} 0\\0.5\\0\\1\\1 \end{bmatrix}, v^{9} = \begin{bmatrix} 0\\0\\1\\1\\1 \end{bmatrix}.$$

From Algorithm I' we obtain the solutions of $A \circ x = b$. In this set we have all minimal solution of the system. We get $S^0(A, b, *) = \{v^1, v^2, v^3, v^5, v^6, v^8\}$, because $v^2 = v^4$, $v^6 = v^9$, $v^3 = v^7$.

Literature

- E. Czogała, J. Drewniak, W. Pedrycz, Fuzzy relation equations on a finite set, Fuzzy Sets and Systems 7 (1982), 89—101.
- E. Czogała, J. Drewniak, Associative monotonic operations in fuzzy set theory, Fuzzy Sets and Systems 12 (1984), 249—269.
- J. Drewniak, Fuzzy relation equations and inequalities, Fuzzy Sets and Systems 14 (1984), 237-247.
- J. Drewniak, Fuzzy relation calculus, Silesian University, Katowice 1989.
- J. Drewniak, Z. Matusiewicz, Properties of max –* fuzzy relation equations, Soft Computing 14 (10) (2010), 1037—1041.
- S.-C. Han, H.-X. Li, J.-Y. Wang, Resolution of finite fuzzy relation equations based on strong pseudo-t-norms, Applied Mathematics Letters 19 (8) (2006), 752-757.
- A.A. Molai, E. Khorram, An algorithm for solving fuzzy relation equations with max-T composition operator, Information Sciences 178 (2008) 1293—1308.
- B.-S. Shieh, Solutions of fuzzy relation equations based on continuous *t*-norms, Information Sciences 177(19) (2007), 4208—4215.

• G.B. Stamou, S.G. Tzafestas, Resolution of composite fuzzy relation equations based on Archimedean triangular norms, Fuzzy Sets and Systems 120 (2001) 395—407.