Increasing, continuous operations in fuzzy $\max -*$ equations and inequalities

Zofia Matusiewicz ${ }^{1}$
Józef Drewniak²
${ }^{1}$ University of Information Technology and Management in Rzeszów
zmatusiewicz@wsiz.rzeszow.pl
${ }^{2}$ Institute of Mathematics, University of Rzeszów in Rzeszów
jdrewnia@univ.rzeszow.pl

The plan of presentation

- Introduction
- Notation
- Induced implications
- Systems of equations and inequalities
- The greatest solution
- Convexity properties
- Reduced matrix
- Minimal solutions
- Family of solution
- Example
- Algorithms of computing minimal solutions
- Example
- Bibliography

Notations

Let $*:[0,1]^{2} \rightarrow[0,1]$ and $A \in[0,1]^{m \times n}, b \in[0,1]^{m}, a, c \in[0,1]$. Vectors $x, y \in[0,1]^{n}$ are ordered by

$$
(x \leqslant y) \Leftrightarrow\left(\underset{1 \leqslant j \leqslant m}{\forall} x_{j} \leqslant y_{j}\right)
$$

We use notation

- $a \vee b=\max (a, b), a \wedge b=\min (a, b), a, b \in[0,1]$,
- $\bigvee_{1 \leqslant i \leqslant n} x_{i}=\max _{1 \leqslant i \leqslant n} x_{i}, \bigwedge_{i=1}^{n} x_{i}=\min _{1 \leqslant i \leqslant n} x_{i}, x_{i} \in[0,1]$,
- max - * product of a matrix A and a vector x (Zadeh 1971) we call $A \circ x \in[0,1]^{m}$, where

$$
(A \circ x)_{i}=\bigvee_{j=1}^{n}\left(a_{i j} * x_{j}\right), \quad i \in\{1, \ldots, m\}
$$

Families of solutions:

- $S_{\leqslant}(A, b, *)=\left\{x \in[0,1]^{n}: A \circ x \leqslant b\right\}$,
- $S \geqslant(A, b, *)=\left\{x \in[0,1]^{n}: A \circ x \geqslant b\right\}$,
- $S(A, b, *)=\left\{x \in[0,1]^{n}: A \circ x=b\right\}=S \geqslant(A, b, *) \cap S_{\leqslant}(A, b, *)$,
- induced implication (Drewniak 1984) $a \xrightarrow{*} c=\max \{t \in[0,1]: a * t \leqslant c\}$,
- dual induced implication $a \stackrel{*}{\leftarrow} c=\min \{t \in[0,1]: a * t \geqslant c\}$.

Induced implications

Lemma 1

If an increasing operation $*$ is left continuous and $1 * 0=0$, then it induces implication in $[0,1]$.

Lemma 2

Let $a, b \in[0,1],\{t \in[0,1]: a * t \geqslant b\} \neq \emptyset$. If an increasing operation $*$ is right continuous, then exists $a \stackrel{*}{\leftarrow} b$.

Example 1

The binary operations and theirs implications:

$$
\begin{aligned}
& T_{P}(x, y)=x \cdot y, \quad a \xrightarrow{T_{P}} b= \begin{cases}1, & a \leqslant b \\
\frac{b}{a}, & a>b\end{cases} \\
& \text { and } a \stackrel{T_{P}}{\leftarrow} b=\left\{\begin{array}{ll}
\frac{b}{a}, & a \neq 0 \\
0, & a=0
\end{array} \text { for } a \geqslant b .\right.
\end{aligned} \begin{aligned}
& T_{L}(x, y)=0 \vee(x+y-1), \\
& a \xrightarrow{T_{L}} b=1 \wedge(1-a+b) \\
& \text { and } a \leftarrow \leftarrow b=\left\{\begin{array}{ll}
1 \wedge(1-a+b), & b \neq 0 \\
0, & b=0
\end{array}, a \geqslant b,\right.
\end{aligned}
$$

$$
T_{M}(x, y)=x \wedge y, \quad a \xrightarrow{T_{M}} b=\left\{\begin{array}{ll}
1, & a \leqslant b \\
b, & a>b
\end{array} \quad, \quad a{ }^{T_{M}} b=b, a \geqslant b\right.
$$

$$
\text { for all } x, y, a, b \in[0,1]
$$

Convexity properties

Lemma 3 (cf. Drewniak 1989)
Let $*$ be increasing operation. Families of solutions of $A \circ x=b, A \circ x \leqslant b$ and $A \circ x \geqslant b$ have the convexity property, i.e.

$$
\begin{gathered}
x \in S_{\leqslant}(A, b, *) \Rightarrow[0, x] \subset S_{\leqslant}(A, b, *), \\
x \in S \geqslant(A, b, *) \Rightarrow[x, 1] \subset S \geqslant(A, b, *), \\
x \leqslant y, x, y \in S(A, b, *) \Rightarrow[x, y] \subset S(A, b, *),
\end{gathered}
$$

where $[\mathbf{0}, x],[x, y],[x, 1]$ are intervals in $\left([0,1]^{n}, \leqslant\right)$.
Corollary 1
If $*$ is an increasing operation, then

- $1 \in S \geqslant(A, b, *) \Leftrightarrow S \geqslant(A, b, *) \neq \emptyset$,
- $\mathbf{0} \in S_{\leqslant}(A, b, *) \Leftrightarrow S_{\leqslant}(A, b, *) \neq \emptyset$.

Definition 1

By greatest solutions of system $A \circ x \leqslant b$ (and $A \circ x=b$) with max-* product we call minimal elements in $S \geqslant(A, b, *)$ (in $S(A, b, *)$).

Theorem 1
If an operation $*$ is increasing, left-continuous on the second argument and $1 * 0=0$, then $S_{\leqslant}(A, b, *)$ the complete lattice. Moreover, if $S \geqslant(A, b, *) \neq \emptyset$ and $S(A, b, *) \neq \emptyset$, then $S \geqslant(A, b, *) \neq \emptyset$ and $S(A, b, *) \neq \emptyset$ are closed under arbitrary suprema.

The greatest solution

Let $u=\max S_{\leqslant}(A, b, *)=\max \left\{x \in[0,1]^{n}: A \circ x \leqslant b\right\}$.
Theorem 2
If an operation * is increasing, left-continuous on the second argument and $1 * 0=0$, then there u is the greatest element of $S_{\leqslant}(A, b, *)$, where

$$
u_{j}=\bigwedge_{i=1}^{m}\left(a_{i j} \xrightarrow{*} b_{i}\right), j \in\{1, \ldots, n\} .
$$

It means $u=A \xrightarrow{\circ} b$.
Corollary 2
If an operation $*$ is increasing, left-continuous on the second argument and $1 * 0=0$, then $S_{\leqslant}(A, b, *)=[0, A \xrightarrow{\circ} b]$.

Theorem 3
If an operation $*$ is increasing, left-continuous on the second argument, $1 * 0=0$ and $S(A, b, *) \neq \emptyset$, then $\max S(A, b, *)=A \xrightarrow{\circ} b$.

Reduced matrix

Definition 2

Let $x \in S(A, b, *)$. By reduced matrix of equation system $A \circ x=b$ we call the matrix $A_{b}^{\prime}(x)$, where

$$
a_{i j}^{\prime}(x)=\left\{\begin{array}{ll}
a_{i j} & , \text { if } a_{i j} * x_{j}=b_{i} \\
0 & , \text { in other case }
\end{array}, i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\} .\right.
$$

Let $x \in S \geqslant(A, b, *)$. By reduced matrix of system of inequalities $A \circ x \geqslant b$ we call $A_{\geqslant b}^{\prime}(x)$, where

$$
a_{i j}^{\geqslant}(x)=\left\{\begin{array}{ll}
a_{i j} & , \text { if } a_{i j} * x_{j} \geqslant b_{i} \\
0 & , \text { in other case }
\end{array}, i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\} .\right.
$$

Theorem 4 (Drewniak, Matusiewicz 2010)
If an operation $*$ is increasing, left-continuous on the second argument, and it has neutral element $e=1$, then $S(A, b, *)=S\left(A_{b}^{\prime}(u), b, *\right)$.

Minimal solutions (1)

Definition 3

By minimal solutions of system $A \circ x \geqslant b$ (and $A \circ x=b$) with max $-*$ product we call minimal elements in $S \geqslant(A, b, *)$ (in $S(A, b, *)$). The set of all minimal solution is denoted by $S_{\geqslant}^{0}(A, b, *)\left(S^{0}(A, b, *)\right)$.

Corollary 3 (cf. Drewniak 1989)
If $*$ is increasing operation, then

$$
\bigcup_{x \in S_{\geqslant}^{0}(A, b, *)}[x, 1] \subset S_{\geqslant}(A, b, *)
$$

Theorem 5
If $*$ is increasing, right-continuous on the second argument, then

- each $x \in S \geqslant(A, b, *)$ is bounded from below by some $v \in S_{\geqslant}^{0}(A, b, *)$,
- each $x \in S(A, b, *)$ is bounded from below by some $v \in S^{0}(A, b, *)$,
- we have $S^{0}(A, b, *) \subset S_{\geqslant}^{0}(A, b, *)$.

Theorem 6

If $*$ is increasing, continuous on the second argument and $1 * 0=0$, then

$$
S(A, b, *)=\bigcup_{v \in S^{0}(A, b, *)}[v, A \xrightarrow{\circ} b] .
$$

Algorithm of computing minimal solutions (1)

Let $S_{\geqslant}(A, b, *) \neq \emptyset$, an operation $*$ be increasing, right-continuous on the second argument one and

$$
\begin{gathered}
0<b_{m} \leqslant \ldots \leqslant b_{2} \leqslant b_{1} . \\
\text { ALGORITHM I }
\end{gathered}
$$

Step 1. Determine the reduced matrix $A_{\geqslant b}^{\prime}(x)$. Let $i:=1, K:=\emptyset$,

$$
V:=\{1, \ldots, m\} .
$$

Step 2. Choose k_{i} that $a_{i k_{i}}^{\prime}>0$ and calculate $v_{k_{i}}=a_{i k_{i}}^{\prime} \stackrel{*}{\leftarrow} b_{i}$ and $\mathrm{K}:=K \cup\left\{k_{i}\right\}$.
Step 3. Determine the set

$$
V:=V \cap\left\{i<s \leqslant m \text { oraz } a_{s k_{i}}^{\prime} * v_{k_{i}}<b_{s}\right\} .
$$

Step 4. If $V \neq \emptyset$, to $i:=\min V$ and return to Step 2.
In other case go to Step 5.
Step 5. If $k \notin K$, then $v_{k}:=0$.
Let us denote the set of all vectors v from this algorithm obtained for $x \in S \geqslant(A, b, *)$ by $\operatorname{Alg}(x)($ see Step 2$)$.
Corollary 4
Let $x \in S_{\geqslant}^{\geqslant}(A, b, *)$. If an operation $*$ is increasing, right-continuous on the second argument, then

$$
\operatorname{card} A \lg (x) \leqslant m^{n}
$$

Minimal solutions (2)

Theorem 7

If an operation $*$ is increasing, right-continuous on the second argument, then $S_{\geqslant}^{0}(A, b, *) \subset A \lg (1)$.
Theorem 8
Let $x \in S(A, b, *)$. If an operation $*$ is increasing, right-continuous on the second argument, then $A \lg (x) \subset S(A, b, *)$.

Theorem 9

Let $b \in(0,1]^{n}$. If an operation $*$ is increasing, continuous on the second argument and $1 * 0=0$, then $S^{0}(A, b, *) \subset A \lg (A \xrightarrow{\circ} b)$.

$$
S(A, b, *)=\bigcup_{v \in \boldsymbol{S}^{0}(\boldsymbol{A}, \boldsymbol{b}, *)}[v, \boldsymbol{A} \xrightarrow{\circ} b] .
$$

Example 2

Let $x * y=\sqrt{x \cdot y}$ and
$A=\left[\begin{array}{lll}0.1 & 0.16 & 0.25 \\ 0.2 & 0.09 & 0.05\end{array}\right], b=\left[\begin{array}{l}0.4 \\ 0.3\end{array}\right], A_{b}^{\prime}(\mathbf{1})=\left[\begin{array}{ccc}0 & 0.16 & 0.25 \\ 0.2 & 0.09 & 0\end{array}\right]$.
We get $a \stackrel{*}{\leftarrow} b=\frac{b^{2}}{a}, b^{2} \leqslant a$.
Using $\operatorname{Alg}(1)$ we get:

1. For $k_{1}=2$ we get $K=\{2\}$ and $V=\emptyset$. We obtain $v_{2}^{1}=0.16 \stackrel{*}{\leftarrow} 0.4=1$.
2. For $k_{1}=3$ we get $v_{3}^{2}=0.2 \stackrel{*}{\leftarrow} 0.4=0.8$ and $K=\{3\}, V=\{2\}, i=2$.

Choosing $k_{2}=1$, we compute $v_{1}^{2}=0.2 \stackrel{*}{\leftarrow} 0.3=0.45, K=\{1,3\}, V=\emptyset$.
3. For $k_{1}=3$ we get $v_{3}^{3}=0.2 \stackrel{*}{\leftarrow} 0.4=0.8$ and $K=\{3\}, V=\{2\}, i=2$.

Choosing $k_{2}=2$, we compute $v_{2}^{3}=0.09 \stackrel{*}{\leftarrow} 0.3=1, K=\{2,3\}, V=\emptyset$.
Thus we have the following projections:

$$
v^{1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], v^{2}=\left[\begin{array}{c}
0.45 \\
0 \\
0.8
\end{array}\right], v^{3}=\left[\begin{array}{c}
0 \\
1 \\
0.8
\end{array}\right]
$$

Since $v^{1} \| v^{2}$ and $v^{1} \leqslant v^{3}$, then $S_{\geqslant}^{0}(A, b, *)=\left\{v^{1}, v^{2}\right\}$.

Algorithm of computing minimal solutions (2)

Let an operation $*$ be increasing, continuous on the second argument and have neutral element $e=1$.

ALGORYTM I'

Step 0 . We calculate $u=A \xrightarrow{\circ} b$.
Step 1. We determine $\operatorname{Alg}(u)$ from Algorithm I.
Step 2. We determine $S^{0}(A, b, *)$ as a set of minimal elements in $\operatorname{Alg}(u)$.
Definition 4
An operation $*$ is conditionally cancellative if

$$
a * x=a * y \neq 0 \Rightarrow x=y \quad \text { for } a, x, y \in(0,1]
$$

Theorem 10
Let $*$ be increasing, continuous on the second argument and conditionally cancellative operation and $1 * 0=0$, then If $v \in S^{0}(A, b, *)$, then $v_{j} \in\left\{0, u_{j}\right\}$ for $j \in N$, where $u=A \xrightarrow{\circ} b$.

Corollary 5
If $*$ is increasing, continuous on the second argument and conditionally cancellative operation and $1 * 0=0$, then

$$
\operatorname{card} S^{0}(A, b, *) \leqslant\binom{ n}{\left[\frac{n}{2}\right]}
$$

Example 3

Let $*=T_{P}$ and

$$
A=\left[\begin{array}{cccc}
1 & 0.8 & 0.5 & 0.5 \\
0.8 & 0.8 & 0.1 & 0.4 \\
0.4 & 0.6 & 0.3 & 0.3 \\
0.4 & 0.4 & 0.2 & 0.1
\end{array}\right], \quad b=\left[\begin{array}{c}
0.5 \\
0.4 \\
0.3 \\
0.2
\end{array}\right]
$$

We determine $\operatorname{Alg}(u)$:

$$
\begin{gathered}
u=\left[\begin{array}{c}
0.5 \\
0.5 \\
1 \\
1
\end{array}\right], v^{1}=\left[\begin{array}{c}
0.5 \\
0.5 \\
0 \\
0
\end{array}\right], v^{2}=\left[\begin{array}{c}
0.5 \\
0 \\
1 \\
0
\end{array}\right], v^{3}=\left[\begin{array}{c}
0.5 \\
0 \\
0 \\
1
\end{array}\right], v^{4}=\left[\begin{array}{c}
0.5 \\
0 \\
1 \\
0
\end{array}\right], \\
v^{5}=\left[\begin{array}{c}
0 \\
0.5 \\
1 \\
0
\end{array}\right], v^{6}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right], v^{7}=\left[\begin{array}{c}
0.5 \\
0 \\
0 \\
1
\end{array}\right], v^{8}=\left[\begin{array}{c}
0 \\
0.5 \\
0 \\
1
\end{array}\right], v^{9}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] .
\end{gathered}
$$

From Algorithm I' we obtain the solutions of $A \circ x=b$. In this set we have all minimal solution of the system. We get $S^{0}(A, b, *)=\left\{v^{1}, v^{2}, v^{3}, v^{5}, v^{6}, v^{8}\right\}$, because $v^{2}=v^{4}, v^{6}=v^{9}, v^{3}=v^{7}$.

Literature

- E. Czogała, J. Drewniak, W. Pedrycz, Fuzzy relation equations on a finite set, Fuzzy Sets and Systems 7 (1982), 89—101.
- E. Czogała, J. Drewniak, Associative monotonic operations in fuzzy set theory, Fuzzy Sets and Systems 12 (1984), 249-269.
- J. Drewniak, Fuzzy relation equations and inequalities, Fuzzy Sets and Systems 14 (1984), 237-247.
- J. Drewniak, Fuzzy relation calculus, Silesian University, Katowice 1989.
- J. Drewniak, Z. Matusiewicz, Properties of max -* fuzzy relation equations, Soft Computing 14 (10) (2010), 1037—1041.
- S.-C. Han, H.-X. Li, J.-Y. Wang, Resolution of finite fuzzy relation equations based on strong pseudo-t-norms, Applied Mathematics Letters 19 (8) (2006), 752-757.
- A.A. Molai, E. Khorram, An algorithm for solving fuzzy relation equations with max-T composition operator, Information Sciences 178 (2008) 1293-1308.
- B.-S. Shieh, Solutions of fuzzy relation equations based on continuous t-norms, Information Sciences 177(19) (2007), 4208-4215.
- G.B. Stamou, S.G. Tzafestas, Resolution of composite fuzzy relation equations based on Archimedean triangular norms, Fuzzy Sets and Systems 120 (2001) 395—407.

