Algebras of Fuzzy Sets

Rozália Madarász
Join work with I. Bošnjak, G. Vojvodić, M. Bradić

Department of Mathematics and Informatics,
Faculty of Science, University of Novi Sad, Serbia

FSTA 2012, Liptovský Ján
Subject of this talk

- universal-algebraic investigations of fuzzy structures
Subject of this talk

- universal-algebraic investigations of fuzzy structures
- lattice of idempotent fuzzy subsets of a groupoid
Subject of this talk

- universal-algebraic investigations of fuzzy structures
- lattice of idempotent fuzzy subsets of a groupoid
- generalization: algebras of fuzzy sets (fuzzy power algebras)-results about homomorphisms, subalgebras, direct products
Subject of this talk

- universal-algebraic investigations of fuzzy structures
- lattice of idempotent fuzzy subsets of a groupoid
- generalization: algebras of fuzzy sets (fuzzy power algebras)- results about homomorphisms, subalgebras, direct products
- very new results: special kinds of fuzzy equalities, identities, equational classes, Birkhoff-style theorems
The beginnings

- coming from universal algebra, power structures...
The beginnings

- coming from universal algebra, power structures...
The beginnings

- coming from universal algebra, power structures...
- $\mathcal{F}_2(D)$ of all idempotent fuzzy subsets of a cancellative semigroup D forms a complete lattice
The beginnings

- coming from universal algebra, power structures...
- $\mathcal{F}_2(D)$ of all idempotent fuzzy subsets of a cancellative semigroup D forms a complete lattice
- results concerning the set $\mathcal{F}(D)$ of all fuzzy subsets of D and its substructures $\mathcal{F}_{-1}(D)$ and $\mathcal{F}_2(D)$.
The beginnings

- coming from universal algebra, power structures...
- $\mathcal{F}_2(D)$ of all idempotent fuzzy subsets of a cancellative semigroup D forms a complete lattice
- results concerning the set $\mathcal{F}(D)$ of all fuzzy subsets of D and its substructures $\mathcal{F}_{-1}(D)$ and $\mathcal{F}_2(D)$.
- If D is a cancellative groupoid, then the sup-min product is distributive over an arbitrary intersection of fuzzy sets in $\mathcal{F}(D)$!
Lattice of fuzzy sets of a groupoid

- $\mathcal{D} = \langle D, \cdot \rangle$ a groupoid, $\mathcal{F}(D)$ all fuzzy subsets of D, $\mu : D \to [0, 1]$
Lattice of fuzzy sets of a groupoid

- \(\mathcal{D} = \langle D, \cdot \rangle \) a groupoid, \(\mathcal{F}(D) \) all fuzzy subsets of \(D \),
 \(\mu : D \to [0, 1] \)
- sup-min *product* of two fuzzy subsets \(\lambda \) and \(\mu \):
 \[
 (\lambda \cdot \mu)(x) = \sup_{x=ab} \min(\lambda(a), \mu(b)).
 \]
Lattice of fuzzy sets of a groupoid

- $\mathcal{D} = \langle D, \cdot \rangle$ a groupoid, $\mathcal{F}(D)$ all fuzzy subsets of D, $\mu : D \rightarrow [0, 1]$

- sup-min *product* of two fuzzy subsets λ and μ:

\[(\lambda \cdot \mu)(x) = \sup_{x=ab} \min(\lambda(a), \mu(b)).\]

- $\mathcal{F}_{-1}(D) = \{ \lambda \in \mathcal{F}(D) \mid \lambda \subseteq \lambda \cdot \lambda \}$

- $\mathcal{F}_2(D) = \{ \lambda \in \mathcal{F}(D) \mid \lambda = \lambda \cdot \lambda \}$
RID and LID groupoids

Definition

For a groupoid G we will say that it is right intersection-distributive (RID) if for any family $\{\lambda_i \mid i \in I\} \subseteq \mathcal{F}(D)$ and any $\mu \in \mathcal{F}(D)$ it holds

$$\left(\bigcap_{i \in I} \lambda_i \right) \cdot \mu = \bigcap_{i \in I} (\lambda_i \cdot \mu).$$

Similarly, D is left intersection-distributive (LID).
RID and LID groupoids

Definition

For a groupoid G we will say that it is right intersection-distributive (RID) if for any family $\{\lambda_i \mid i \in I\} \subseteq \mathcal{F}(D)$ and any $\mu \in \mathcal{F}(D)$ it holds

$$\left(\bigcap_{i \in I} \lambda_i\right) \cdot \mu = \bigcap_{i \in I} (\lambda_i \cdot \mu).$$

Similarly, D is left intersection-distributive (LID)

- The only RID semigroups are left-zero semigroups. The only LID semigroups are...
RID and LID groupoids

Definition

For a groupoid G we will say that it is right intersection-distributive (RID) if for any family $\{\lambda_i \mid i \in I\} \subseteq \mathcal{F}(D)$ and any $\mu \in \mathcal{F}(D)$ it holds

$$(1) \quad \left(\bigcap_{i \in I} \lambda_i \right) \cdot \mu = \bigcap_{i \in I} (\lambda_i \cdot \mu).$$

Similarly, D is left intersection-distributive (LID)

- The only RID semigroups are left-zero semigroups. The only LID semigroups are...
- A finite groupoid can not be both RID and LID.
RID and LID groupoids

Definition

For a groupoid G we will say that it is right intersection-distributive (RID) if for any family $\{\lambda_i \mid i \in I\} \subseteq \mathcal{F}(D)$ and any $\mu \in \mathcal{F}(D)$ it holds

$$
(1) \quad (\bigcap_{i \in I} \lambda_i) \cdot \mu = \bigcap_{i \in I} (\lambda_i \cdot \mu).
$$

Similarly, D is left intersection-distributive (LID)

- The only RID semigroups are left-zero semigroups. The only LID semigroups are...
- A finite groupoid can not be both RID and LID.
- An infinite groupoid D is both RID and LID iff in its Cayley table every element from D appears at most once.
RID and LID groupoids

Definition

For a groupoid G we will say that it is right intersection-distributive (RID) if for any family $\{\lambda_i \mid i \in I\} \subseteq \mathcal{F}(D)$ and any $\mu \in \mathcal{F}(D)$ it holds

$$(1) \quad \left(\bigcap_{i \in I} \lambda_i \right) \cdot \mu = \bigcap_{i \in I} (\lambda_i \cdot \mu).$$

Similarly, D is left intersection-distributive (LID)

- The only RID semigroups are left-zero semigroups. The only LID semigroups are...
- A finite groupoid can not be both RID and LID.
- An infinite groupoid D is both RID and LID iff in its Cayley table every element from D appears at most once.
- There are infinite groupoids which are at the same time RID and LID.
Theorem

(1) A groupoid D is RID iff D satisfies the quasiidentity

$$xy = zt \Rightarrow x = z.$$

(2) A groupoid D is LID iff D satisfies the quasiidentity

$$yx = tz \Rightarrow x = z.$$
Results

Theorem

(1) A groupoid D is RID iff D satisfies the quasiidentity

$$xy = zt \Rightarrow x = z.$$

(2) A groupoid D is LID iff D satisfies the quasiidentity

$$yx = tz \Rightarrow x = z.$$

Theorem

Let D be a groupoid. Then $F_2(D)$ is a complete lattice which is a complete join-sublattice of $F_1(D)$, and a complete meet-sublattice of $F^{-1}(D)$.

R. Madaras, I Bošnjak, G. Vojvodić, M. Bradić

University of Novi Sad

Algebras of Fuzzy Sets
General problem: fuzzy power algebras

Universal algebras in fuzzy world

- Rosenfeld (1971) - fuzzy groups
General problem: fuzzy power algebras

Universal algebras in fuzzy world

- Rosenfeld (1971) - fuzzy groups
General problem: fuzzy power algebras

Universal algebras in fuzzy world

- Rosenfeld (1971) - fuzzy groups
General problem: fuzzy power algebras

Universal algebras in fuzzy world

- Rosenfeld (1971) - fuzzy groups
General problem: fuzzy power algebras

Universal algebras in fuzzy world

- Rosenfeld (1971) - fuzzy groups
- Vojvodic, Šešelja (1983), Tepavčević
Different approaches

- *different degree of generality*: first concrete algebras (fuzzy groups, lattices, vector spaces,...) then unifying results (homomorphisms, congruences, factor algebras,...)
Different approaches

• *different degree of generality*: first concrete algebras (fuzzy groups, lattices, vector spaces,...) then unifying results (homomorphisms, congruences, factor algebras,...)

• *different structures of truth degree*: real unit interval (standard Gödel, Lukasiewicz or product structure), complete lattices, residuated lattices,...
Different approaches

- **different degree of generality**: first concrete algebras (fuzzy groups, lattices, vector spaces,...) then unifying results (homomorphisms, congruences, factor algebras,...)

- **different structures of truth degree**: real unit interval (standard Gödel, Lukasiewicz or product structure), complete lattices, residuated lattices,...

- **different fuzzyfication**: what is fuzzyfied - the universe, operations, equality relation,...
Different approaches

• *different degree of generality*: first concrete algebras (fuzzy groups, lattices, vector spaces,...) then unifying results (homomorphisms, congruences, factor algebras,...)

• *different structures of truth degree*: real unit interval (standard Gödel, Lukasiewicz or product structure), complete lattices, residuated lattices,...

• *different fuzzyfication*: what is fuzzyfied - the universe, operations, equality relation,...

• We choose: universal algebras, complete residuated lattices (sometimes, complete lattices), and trying to connect different fuzzyfifications...
Residuated lattices

A *residuated lattice* is an algebra \(L = \langle L, \wedge, \vee, 0, 1, \otimes, \rightarrow \rangle \) where

1. \(\langle L, \wedge, \vee, 0, 1, \rangle \) is a lattice with the least element 0 and the greatest element 1.
A residuated lattice is an algebra $\mathcal{L} = \langle L, \wedge, \vee, 0, 1, \otimes, \to \rangle$ where

(i) $\langle L, \wedge, \vee, 0, 1, \rangle$ is a lattice with the least element 0 and the greatest element 1.

(ii) $\langle L, \otimes, 1 \rangle$ is a commutative monoid.
A residuated lattice is an algebra $\mathcal{L} = \langle L, \wedge, \vee, 0, 1, \otimes, \rightarrow \rangle$ where

(i) $\langle L, \wedge, \vee, 0, 1, \rangle$ is a lattice with the least element 0 and the greatest element 1.

(ii) $\langle L, \otimes, 1 \rangle$ is a commutative monoid.

(iii) \otimes and \rightarrow satisfy the adjointness property, i.e. $x \leq y \rightarrow z$ iff $x \otimes y \leq z$ holds.
Residuated lattices

A *residuated lattice* is an algebra $\mathcal{L} = \langle L, \land, \lor, 0, 1, \otimes, \to \rangle$ where

(i) $\langle L, \land, \lor, 0, 1, \rangle$ is a lattice with the least element 0 and the greatest element 1.

(ii) $\langle L, \otimes, 1 \rangle$ is a commutative monoid.

(iii) \otimes and \to satisfy the adjointness property, i.e. $x \leq y \to z$ iff $x \otimes y \leq z$ holds.

If the lattice $\langle L, \land, \lor, 0, 1, \rangle$ is complete, then \mathcal{L} is a complete residuated lattice.
A residuated lattice is an algebra $\mathcal{L} = \langle L, \wedge, \vee, 0, 1, \otimes, \to \rangle$ where

(i) $\langle L, \wedge, \vee, 0, 1, \rangle$ is a lattice with the least element 0 and the greatest element 1.

(ii) $\langle L, \otimes, 1 \rangle$ is a commutative monoid.

(iii) \otimes and \to satisfy the adjointness property, i.e. $x \leq y \to z$ iff $x \otimes y \leq z$ holds.

If the lattice $\langle L, \wedge, \vee, 0, 1, \rangle$ is complete, then \mathcal{L} is a complete residuated lattice.

- introduced by Ward and Dilworth in 1939, in ring theory.
Residuated lattices

A residuated lattice is an algebra \(\mathcal{L} = \langle L, \wedge, \vee, 0, 1, \otimes, \rightarrow \rangle \) where

(i) \(\langle L, \wedge, \vee, 0, 1, \rangle \) is a lattice with the least element 0 and the greatest element 1.

(ii) \(\langle L, \otimes, 1 \rangle \) is a commutative monoid.

(iii) \(\otimes \) and \(\rightarrow \) satisfy the adjointness property, i.e. \(x \leq y \rightarrow z \) iff \(x \otimes y \leq z \) holds.

If the lattice \(\langle L, \wedge, \vee, 0, 1, \rangle \) is complete, then \(\mathcal{L} \) is a complete residuated lattice.

- introduced by Ward and Dilworth in 1939, in ring theory.
- Gougen (1967): as a structure of truth values in fuzzy logic; Pavelka (1979)
A *residuated lattice* is an algebra $\mathcal{L} = \langle L, \land, \lor, 0, 1, \otimes, \rightarrow \rangle$ where

(i) $\langle L, \land, \lor, 0, 1, \rangle$ is a lattice with the least element 0 and the greatest element 1.

(ii) $\langle L, \otimes, 1 \rangle$ is a commutative monoid.

(iii) \otimes and \rightarrow satisfy the adjointness property, i.e. $x \leq y \rightarrow z$ iff $x \otimes y \leq z$ holds.

If the lattice $\langle L, \land, \lor, 0, 1, \rangle$ is complete, then \mathcal{L} is a complete residuated lattice.

- introduced by Ward and Dilworth in 1939, in ring theory.
- Gougen (1967): as a structure of truth values in fuzzy logic; Pavelka (1979)
- examples: on $[0, 1]$, Lukasiewicz, Gödel and product structures
Basic notions and notation

Let $\mathcal{L} = \langle L, \land, \lor, 0, 1, \otimes, \rightarrow \rangle$ be a complete residuated lattice, X a nonempty set.

- set of all L-fuzzy sets on X: $\mathcal{F}_{\mathcal{L}}(X)$, or $\mathcal{F}(X)$ or L^X
Basic notions and notation

Let $\mathcal{L} = \langle L, \land, \lor, 0, 1, \otimes, \to \rangle$ be a complete residuated lattice, X a nonempty set.

- **set of all L-fuzzy sets on X:** $\mathcal{F}_\mathcal{L}(X)$, or $\mathcal{F}(X)$ or L^X
- **fuzzy relation on A:** $\eta : A^n \to L$.
Basic notions and notation

Let $\mathcal{L} = \langle L, \land, \lor, 0, 1, \otimes, \rightarrow \rangle$ be a complete residuated lattice, X a nonempty set.

- **set of all L-fuzzy sets on X:** $\mathcal{F}_L(X)$, or $\mathcal{F}(X)$ or L^X
- **fuzzy relation on A:** $\eta : A^n \to L$.
- **fuzzy equivalence:** a binary fuzzy relation on A which is
 - reflexive: $\eta(x, x) = 1$, for all $x \in A$,
 - symmetric: $\eta(x, y) = \eta(y, x)$, for $x, y \in A$,
 - transitive: $\eta(x, y) \otimes \eta(y, z) \leq \eta(x, z)$, for all $x, y, z, \in A$.

Basic notions and notation

Let $\mathcal{L} = \langle L, \wedge, \vee, 0, 1, \otimes, \to \rangle$ be a complete residuated lattice, X a nonempty set.

- **set of all L-fuzzy sets on X:** $\mathcal{F}_L(X)$, or $\mathcal{F}(X)$ or L^X
- **fuzzy relation on A:** $\eta : A^n \to L$.
- **fuzzy equivalence:** a binary fuzzy relation on A which is
 - reflexive: $\eta(x, x) = 1$, for all $x \in A$,
 - symmetric: $\eta(x, y) = \eta(y, x)$, for $x, y \in A$,
 - transitive: $\eta(x, y) \otimes \eta(y, z) \leq \eta(x, z)$, for all $x, y, z, \in A$.
- **fuzzy equality:** fuzzy equivalence relation η if from $\eta(x, y) = 1$ it follows $x = y$.

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić

Algebras of Fuzzy Sets
Extension Principle

- extension principle: how to extend a function
 \(f : X_1 \times \cdots \times X_n \rightarrow Y \) into \(\tilde{f} : L^{X_1} \times \cdots \times L^{X_n} \rightarrow L^Y \) (L. Zadeh)
- applications: fuzzy arithmetic, engineering problems, analysis of
discrete dynamical systems, fuzzy fractals, fuzzy transportation
problems...
Extension Principle

- extension principle: how to extend a function
 \(f : X_1 \times \cdots \times X_n \rightarrow Y \) into \(\bar{f} : L^{X_1} \times \cdots \times L^{X_n} \rightarrow L^Y \) (L. Zadeh)
- applications: fuzzy arithmetic, engineering problems, analysis of discrete dynamical systems, fuzzy fractals, fuzzy transportation problems...
- Let \(\mathcal{L} \) be a complete lattice or a complete residuated lattice,
 \(f : X_1 \times \cdots \times X_n \rightarrow Y \). Define \(\bar{f} : L^{X_1} \times \cdots \times L^{X_n} \rightarrow L^Y \)

 \[
 \bar{f}(\mu_1, \ldots, \mu_n)(y) = \bigvee_{x_i \in X_i, f(x_1, \ldots, x_n) = y} \mu_1(x_1) \land \cdots \land \mu_n(x_n). \quad (1)
 \]
If we have a residuated lattice, $f : X_1 \times \cdots \times X_n \rightarrow Y$, we can extend it to a function $\bar{f} : L^{X_1} \times \cdots \times L^{X_n} \rightarrow L^Y$ in an alternative way:

\[
\bar{f}^{\otimes}(\mu_1, \ldots, \mu_n)(y) = \bigvee_{x_i \in X_i} \mu_1(x_1) \otimes \cdots \otimes \mu_n(x_n).
\]
• If we have a residuated lattice, \(f : X_1 \times \cdots \times X_n \rightarrow Y \), we can extend it to a function \(\bar{f} : L^{X_1} \times \cdots \times L^{X_n} \rightarrow L^Y \) in an alternative way:

\[
\bar{f}^\otimes (\mu_1, \ldots, \mu_n)(y) = \bigvee_{x_i \in X_i, f(x_1, \ldots, x_n) = y} \mu_1(x_1) \otimes \cdots \otimes \mu_n(x_n).
\]

(2)

• extension principle in the context of algebras:
 • Murali (1991); set of truth values: real unit interval (min/max)
• If we have a residuated lattice, \(f : X_1 \times \cdots \times X_n \rightarrow Y \), we can extend it to a function \(\bar{f} : L^{X_1} \times \cdots \times L^{X_n} \rightarrow L^Y \) in an alternative way:

\[
\bar{f} \otimes (\mu_1, \ldots, \mu_n)(y) = \bigvee_{x_i \in X_i, f(x_1, \ldots, x_n) = y} \mu_1(x_1) \otimes \cdots \otimes \mu_n(x_n). \tag{2}
\]

• extension principle in the context of algebras:
 • Murali (1991); set of truth values: real unit interval (min/max)
 • Ésik, Liu (2007) used this structures to prove ”Kleene theorems” for fuzzy tree languages; set of truth values: completely distributive lattice
• If we have a residuated lattice, \(f : X_1 \times \cdots \times X_n \to Y \), we can extend it to a function \(\bar{f} : L^{X_1} \times \cdots \times L^{X_n} \to L^Y \) in an alternative way:

\[
\bar{f}^{\otimes} (\mu_1, \ldots, \mu_n)(y) = \bigvee_{x_i \in X_i, f(x_1, \ldots, x_n) = y} \mu_1(x_1) \otimes \cdots \otimes \mu_n(x_n).
\]

• extension principle in the context of algebras:
 • Murali (1991); set of truth values: real unit interval (min/max)
 • Ésik, Liu (2007) used this structures to prove ”Kleene theorems” for fuzzy tree languages; set of truth values: completely distributive lattice
Algebra of fuzzy sets 1

Definition

Let \(\mathcal{L} \) be a complete lattice or a residuated lattice and \(\mathcal{A} = \left\langle A, \{f \mid f \in \Omega\} \right\rangle \) be a universal algebra. If \(f \in \Omega \) is an \(n \)-ary fundamental operation of \(\mathcal{A} \), define \(\bar{f}^\land : \mathcal{F}(A)^n \to \mathcal{F}(A) \) in the following way:

\[
\bar{f}^\land(\mu_1, \ldots, \mu_n)(y) = \bigvee_{\substack{x_i \in X_i \\text{ s.t. } f(x_1, \ldots, x_n) = y}} \mu_1(x_1) \land \cdots \land \mu_n(x_n).
\]

The algebra \(\mathcal{F}^\land(\mathcal{A}) = \left\langle \mathcal{F}(A), \{\bar{f}^\land \mid f \in \Omega\} \right\rangle \) will be called the \(\land \)-algebra of fuzzy sets induced by \(\mathcal{A} \).
Definition

Let \(\mathcal{L} \) be a residuated lattice and \(\mathcal{A} = \langle A, \{f \mid f \in \Omega \} \rangle \) be a universal algebra. If \(f \in \Omega \) is an \(n \)-ary fundamental operation of \(\mathcal{A} \), define \(\bar{f}^\otimes : \mathcal{F}(A)^n \to \mathcal{F}(A) \) in the following way:

\[
\bar{f}^\otimes (\mu_1, \ldots, \mu_n)(y) = \bigvee_{\substack{x_i \in x_i \\ f(x_1, \ldots, x_n) = y}} \mu_1(x_1) \otimes \cdots \otimes \mu_n(x_n).
\]

The algebra \(\mathcal{F}^\otimes(\mathcal{A}) = \langle \mathcal{F}(A), \{\bar{f}^\otimes \mid f \in \Omega \} \rangle \) will be called the \(\otimes \)-algebra of fuzzy sets induced by \(\mathcal{A} \).
Definition

Let \mathcal{L} be a residuated lattice and $\mathcal{A} = \langle A, \{f \mid f \in \Omega\} \rangle$ be a universal algebra. If $f \in \Omega$ is an n-ary fundamental operation of \mathcal{A}, define $\tilde{f}^{\otimes} : \mathcal{F}(A)^n \to \mathcal{F}(A)$ in the following way:

$$\tilde{f}^{\otimes}(\mu_1, \ldots, \mu_n)(y) = \bigvee_{\substack{x_i \in x_i \\ f(x_1, \ldots, x_n) = y}} \mu_1(x_1) \otimes \cdots \otimes \mu_n(x_n).$$

The algebra $\mathcal{F}^{\otimes}(\mathcal{A}) = \langle \mathcal{F}(A), \{\tilde{f}^{\otimes} \mid f \in \Omega\} \rangle$ will be called the \otimes-algebra of fuzzy sets induced by \mathcal{A}.

Of course, if \mathcal{L} is a complete Heyting algebra, or more specially, if $L = \{0, 1\}$, the two kinds of induced algebras of fuzzy sets coincide.
Power algebras 1

- crisp case: both kinds of induced algebras of fuzzy sets become the ordinary *power algebra* of A (*algebra of complexes* or *global* of A).
Power algebras 1

- crisp case: both kinds of induced algebras of fuzzy sets become the ordinary *power algebra* of A (*algebra of complexes* or *global* of A).

Definition

Let A be a non-empty set, $\mathcal{P}(A)$ the set of all subsets of A, and $f : A^n \to A$. We define $f^+ : \mathcal{P}(A)^n \to \mathcal{P}(A)$ in the following way:

$$f^+ (X_1, \ldots, X_n) = \{ f(x_1, \ldots, x_n) \mid x_1 \in X_1, \ldots, x_n \in X_n \}.$$

If $\mathcal{A} = \langle A, \{f \mid f \in \Omega\} \rangle$ is an algebra, the **power algebra** (or **complex algebra**, or **global**) $\mathcal{P}(\mathcal{A})$ is defined as:

$$\mathcal{P}(\mathcal{A}) = \langle \mathcal{P}(A), \{f^+ \mid f \in \Omega\} \rangle.$$
Power algebras 2

- crisp power algebras are used:
 - group theory, semigroup theory
 - lattices (the set of ideals of a distributive lattice L again forms a lattice, and meets and joins in the new lattice are precisely the power operations of meets and joins in L)
 - formal language theory (the product of two languages is simply the power operation of concatenation of words)
 - non-classical logics (Jonsson, Tarski, Boolean algebras with operators...)

Proposition

Let A be any universal algebra, and L the usual two element Boolean algebra. Then both of \wedge-algebra and the \otimes-algebra of L-fuzzy sets induced by A coincide with the power algebra of A, i.e.

$$F^{\wedge}(A) = F^{\otimes}(A) = P(A).$$
Power algebras 2

- crisp power algebras are used:
 - group theory, semigroup theory
 - lattices (the set of ideals of a distributive lattice L again forms a lattice, and meets and joins in the new lattice are precisely the power operations of meets and joins in L)
 - formal language theory (the product of two languages is simply the power operation of concatenation of words)
 - non-classical logics (Jonsson, Tarski, Boolean algebras with operators...)

Proposition

Let \mathcal{A} be any universal algebra, and \mathcal{L} the usual two element Boolean algebra. Then both of \land-algebra and the \otimes-algebra of L-fuzzy sets induced by \mathcal{A} coincide with the power algebra of \mathcal{A}, i.e.

$$\mathcal{F}^\land(\mathcal{A}) = \mathcal{F}^\otimes(\mathcal{A}) = \mathcal{P}(\mathcal{A}).$$
Homomorphisms 1

Definition

Let A and B be algebras of the same type Ω. A mapping $\alpha : A \to B$ is a **homomorphism from** A to B if for all $n \geq n$, all $f \in \Omega_n$, all $a_1, a_2, \ldots, a_n \in A$,

$$\alpha(f^A(a_1, a_2, \ldots, a_n)) = f^B(\alpha(a_1), \alpha(a_2), \ldots, \alpha(a_n)).$$

Proposition

Let \mathcal{L} be a lattice or a residuated lattice. Then:

(a) If $\alpha : A \to B$, $\beta : B \to C$, then $(\beta \circ \alpha) = \overline{\beta} \circ \overline{\alpha}$.

(b) If $\alpha : A \to B$ is a bijection, then $\overline{\alpha} : \mathcal{F}(A) \to \mathcal{F}(B)$ is also a bijection.
Let $\alpha : A \to B$ be a homomorphism. Will the induced mapping $\overline{\alpha} : \mathcal{F}(A) \to \mathcal{F}(B)$ be a homomorphism from $\mathcal{F}^\otimes(A)$ to $\mathcal{F}^\otimes(B)$, and from $\mathcal{F}^\wedge(A)$ to $\mathcal{F}^\wedge(B)$? The two kinds of induced algebras of fuzzy sets do not behave in the same way!
Homomorphisms 2

Let $\alpha : A \rightarrow B$ be a homomorphism. Will the induced mapping $\overline{\alpha} : F(A) \rightarrow F(B)$ be a homomorphism from $F \otimes (A)$ to $F \otimes (B)$, and from $F^{\wedge} (A)$ to $F^{\wedge} (B)$? The two kinds of induced algebras of fuzzy sets do not behave in the same way!

Theorem

Let L be a complete residuated lattice, A and B two algebras of type Ω. If $\alpha : A \rightarrow B$ is a homomorphism, then $\overline{\alpha} : F \otimes (A) \rightarrow F \otimes (B)$ is also a homomorphism.

BUT: there are algebras A, B, a complete lattice L, such that $\alpha : A \rightarrow B$ is a homomorphism, but $\overline{\alpha} : F^{\wedge} (A) \rightarrow F^{\wedge} (B)$ is not a homomorphism!
Example

<table>
<thead>
<tr>
<th>·</th>
<th>(u_1)</th>
<th>(u_2)</th>
<th>(v_1)</th>
<th>(v_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_1)</td>
<td>(v_1)</td>
<td>(v_1)</td>
<td>(u_1)</td>
<td>(u_2)</td>
</tr>
<tr>
<td>(u_2)</td>
<td>(v_1)</td>
<td>(v_1)</td>
<td>(u_2)</td>
<td>(u_2)</td>
</tr>
<tr>
<td>(v_1)</td>
<td>(v_2)</td>
<td>(v_2)</td>
<td>(v_1)</td>
<td>(v_1)</td>
</tr>
<tr>
<td>(v_2)</td>
<td>(v_2)</td>
<td>(v_2)</td>
<td>(v_1)</td>
<td>(v_1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>·</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(a)</td>
</tr>
<tr>
<td>(b)</td>
<td>(b)</td>
<td>(b)</td>
</tr>
</tbody>
</table>

Let \(\mathcal{L}\) be the pentagon (with \(0 < r < q < 1, 0 < p < 1, p\) not being comparable to \(r\) or \(q\)). There is a homomorphism from \(\mathcal{A}\) to \(\mathcal{B}\) such that \(\bar{\alpha} : \mathcal{F}^\wedge(\mathcal{A}) \to \mathcal{F}^\wedge(\mathcal{B})\) is not a homomorphism.
Theorem

Let \mathcal{L} be a completely distributive lattice, \mathcal{A} and \mathcal{B} two algebras of type Ω. If $\alpha : \mathcal{A} \rightarrow \mathcal{B}$ is a homomorphism, then $\overline{\alpha} : \mathcal{F}^\wedge(\mathcal{A}) \rightarrow \mathcal{F}^\wedge(\mathcal{B})$ is also a homomorphism.
Theorem

Let \mathcal{L} be a completely distributive lattice, \mathcal{A} and \mathcal{B} two algebras of type Ω. If $\alpha : \mathcal{A} \rightarrow \mathcal{B}$ is a homomorphism, then $\overline{\alpha} : \mathcal{F}^\wedge(\mathcal{A}) \rightarrow \mathcal{F}^\wedge(\mathcal{B})$ is also a homomorphism.

Theorem

Let \mathcal{L} be a complete lattice or a complete residuated lattice, and \mathcal{A} a subalgebra of algebra \mathcal{B}. Then $\mathcal{F}^\wedge(\mathcal{A})$ can be embedded into the algebra $\mathcal{F}^\wedge(\mathcal{B})$.
Theorem

Let \mathcal{L} be a completely distributive lattice, \mathcal{A} and \mathcal{B} two algebras of type Ω. If $\alpha : \mathcal{A} \rightarrow \mathcal{B}$ is a homomorphism, then $\overline{\alpha} : F^\wedge(\mathcal{A}) \rightarrow F^\wedge(\mathcal{B})$ is also a homomorphism.

Theorem

Let \mathcal{L} be a complete lattice or a complete residuated lattice, and \mathcal{A} a subalgebra of algebra \mathcal{B}. Then $F^\wedge(\mathcal{A})$ can be embedded into the algebra $F^\wedge(\mathcal{B})$.

Theorem

Let \mathcal{L} be a complete residuated lattice, and \mathcal{A} a subalgebra of algebra \mathcal{B}. Then $F\otimes(\mathcal{A})$ can be embedded into the algebra $F\otimes(\mathcal{B})$.

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić
University of Novi Sad
Algebras of Fuzzy Sets
Fuzzy products 1

Definition

The **fuzzy product** of the family of fuzzy subsets \(\langle \eta_i \in \mathcal{F}(A_i) \mid i \in I \rangle \) is the fuzzy subset \(\prod^\wedge \eta_i : \prod A_i \to L \) defined in the following way: if \(x \in \prod A_i \), where \(x_i = x(i) \) for \(i \in I \), then

\[
(\prod^\wedge \langle \eta_i \mid i \in I \rangle)(x) = \bigwedge \{ \eta_i(x_i) \mid i \in iI \}.
\]
Fuzzy products 1

Definition

The **fuzzy product** of the family of fuzzy subsets \(\langle \eta_i \in \mathcal{F}(A_i) \mid i \in I \rangle \) is the fuzzy subset \(\prod^\wedge \eta_i : \prod A_i \to L \) defined in the following way: if \(x \in \prod A_i \), where \(x_i = x(i) \) for \(i \in I \), then

\[
(\prod^\wedge \langle \eta_i \mid i \in I \rangle)(x) = \bigwedge \{ \eta_i(x_i) \mid i \in iI \}.
\]

Theorem

Let \(\mathcal{L} \) be a completely distributive lattice and \(\langle A_i \mid i \in I \rangle \) be a family of algebras of the type \(\Omega \). The mapping

\[
\varphi : \prod_{i \in I} \mathcal{F}(A_i) \to \mathcal{F}(\prod_{i \in I} A_i)
\]

defined by \(\varphi(\eta) = \prod^\wedge \eta(i) \) is a homomorphism from \(\prod_{i \in I} \mathcal{F}(^\wedge A_i) \) to \(\mathcal{F}(\prod_{i \in I} A_i) \).
Fuzzy products 2

It is not hard to see that the above defined mapping
\[\varphi : \prod_{i \in I} \mathcal{F}(A_i) \rightarrow \mathcal{F}(\prod_{i \in I} A_i) \]
is not necessarily injective.

Example

Take \(L = [0, 1] \), \(I = \{1, 2, 3\} \) and \(\eta_1, \eta_2, \eta_3, \eta_4 : A \rightarrow L \) such that
\[
\eta_1(x) = 0.1, \quad \text{for all } x \in A \\
\eta_2(x) = 0.1, \quad \text{for all } x \in A \\
\eta_3(x) = 0.9, \quad \text{for all } x \in A \\
\eta_4(x) = 0.8, \quad \text{for all } x \in A
\]
Then \(\varphi((\eta_1, \eta_2, \eta_3)) = \varphi((\eta_1, \eta_2, \eta_4)) = \mu \), where \(\mu(x) = 0.1 \) for all \(x \in A \).
Fuzzy products 3

Definition

\[\mathcal{F}_+(A) \subseteq \mathcal{F}(A) \] is defined by

\[\mathcal{F}_+(A) = \{ \eta : A \rightarrow L \mid (\exists x \in A) \, \eta(x) = 1 \}. \]
Definition

$\mathcal{F}_+(A) \subseteq \mathcal{F}(A)$ is defined by
$\mathcal{F}_+(A) = \{ \eta : A \to L \mid (\exists x \in A) \; \eta(x) = 1 \}$.

Theorem

Let $\langle A_i \mid i \in I \rangle$ be a family of sets. Then the mapping
$\varphi_+ : \prod_{i \in I} \mathcal{F}_+(A_i) \to \mathcal{F}_+(\prod_{i \in I} A_i)$ defined by $\varphi_+(\eta) = \prod_{i \in I}^\wedge \eta(i)$ is injective.
Definition

\(\mathcal{F}_+(A) \subseteq \mathcal{F}(A) \) is defined by
\[
\mathcal{F}_+(A) = \{ \eta : A \to L \mid (\exists x \in A) \, \eta(x) = 1 \}.
\]

Theorem

Let \(\langle A_i \mid i \in I \rangle \) be a family of sets. Then the mapping
\[
\varphi_+ : \prod_{i \in I} \mathcal{F}_+(A_i) \to \mathcal{F}_+(\prod_{i \in I} A_i)
\]
defined by \(\varphi_+(\eta) = \prod_{i \in I} \eta(i) \) is injective.

Theorem

Let \(\mathcal{A} \) be an algebra of type \(\Omega \). Then \(\mathcal{F}_+(A) \) is a subuniverse of the algebras \(\mathcal{F}^\wedge(A) \) and \(\mathcal{F}^\otimes(A) \).
It can be proved that the two kind of algebras of fuzzy sets behave in different way in respect to direct products.

Theorem

Let \mathcal{L} be a completely distributive lattice and $\langle A_i \mid i \in I \rangle$ be a family of algebras of the type Ω. The mapping

$$\varphi : \prod_{i \in I} \mathcal{F}(A_i) \to \mathcal{F}(\prod_{i \in I} A_i)$$

defined by $\varphi(\eta) = \prod^\wedge \eta(i)$ is a homomorphism from $\prod_{i \in I} \mathcal{F}^\wedge(A_i)$ to $\mathcal{F}^\wedge(\prod_{i \in I} A_i)$.
Fuzzy products 4

It can be proved that the two kind of algebras of fuzzy sets behave in different way in respect to direct products.

Theorem

Let \(\mathcal{L} \) be a completely distributive lattice and \(\langle \mathcal{A}_i \mid i \in I \rangle \) be a family of algebras of the type \(\Omega \). The mapping
\[
\varphi : \prod_{i \in I} \mathcal{F}(A_i) \to \mathcal{F}(\prod_{i \in I} A_i)
\]
defined by \(\varphi(\eta) = \prod^\wedge \eta(i) \) is a homomorphism from \(\prod_{i \in I} \mathcal{F}^\wedge(A_i) \) to \(\mathcal{F}^\wedge(\prod_{i \in I} A_i) \).

BUT: We can construct two algebras \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) such that the mapping \(\varphi : \mathcal{F}(A_1) \times \mathcal{F}(A_2) \to \mathcal{F}(A_1 \times A_2) \) defined by
\[
\varphi(\langle \eta, \mu \rangle) = \prod_{i \in \{1,2\}}^\wedge \eta(i)
\]
is not a homomorphism from \(\mathcal{F}^\otimes(\mathcal{A}_1) \times \mathcal{F}^\otimes(\mathcal{A}_2) \) to \(\mathcal{F}^\otimes(\mathcal{A}_1 \times \mathcal{A}_2) \).
Example

The algebras A_1 and A_2 will be groupoids given respectively by their Cayley’s tables:

\[
\begin{array}{c|cc}
 \cdot & a & b \\
\hline
 a & b & a \\
 b & b & b \\
\end{array}
\quad
\begin{array}{c|ccc}
 \cdot & c & d \\
\hline
 c & c & d \\
 d & c & c \\
\end{array}
\]

Let \mathcal{L} be standard residual lattice on the real unit interval $[0,1]$ with the product structure, i.e. \otimes is the usual product of real numbers. Let us take $\eta = \langle \eta_1, \eta_2 \rangle$, $\mu = \langle \mu_1, \mu_2 \rangle$, where $\eta_1(a) = 0.6$, $\eta_2(c) = 0.5$, $\mu_1(b) = 0.7$, $\mu_2(d) = 0.8$. It can be proved that

\[
(\varphi(\eta \cdot \mu))(\langle a, d \rangle) \neq (\varphi(\eta) \cdot \varphi(\mu))(\langle a, d \rangle).
\]
Algebras with fuzzy equalities

Proposition

Let \mathcal{L} be a complete residuated lattice, \mathcal{A} a universal algebra, and \approx the similarity relation defined on $\mathcal{F}(\mathcal{A}) = \mathcal{L}^\mathcal{A}$ by

$$(\eta \approx \mu) = \wedge \{ \eta(x) \leftrightarrow \mu(x) \mid x \in A \}.$$

Then the structures $\langle \mathcal{F}(\mathcal{A}), \approx \rangle$ and $\langle \mathcal{F}^\otimes(\mathcal{A}), \approx \rangle$ are algebras with fuzzy equality.
Algebras with fuzzy equalities

Proposition

Let \mathcal{L} be a complete residuated lattice, \mathcal{A} a universal algebra, and \approx the similarity relation defined on $\mathcal{F}(\mathcal{A}) = \mathcal{L}^\mathcal{A}$ by

$$(\eta \approx \mu) = \wedge \{ \eta(x) \leftrightarrow \mu(x) \mid x \in \mathcal{A} \}.$$

Then the structures $\langle \mathcal{F}^\wedge(\mathcal{A}), \approx \rangle$ and $\langle \mathcal{F}^\otimes(\mathcal{A}), \approx \rangle$ are algebras with fuzzy equality.

Definition (Belohlavek)

Let \mathcal{L} be a complete residuated lattice, $\langle \mathcal{A}, \Omega \rangle$ be a universal algebra, and \approx an fuzzy equality on \mathcal{A}. Then the structure $\mathcal{A} = \langle \mathcal{A}, \Omega, \approx \rangle$ is an \mathcal{L}-algebra with fuzzy equality if each operation $f \in \Omega$ is compatible with \approx, i.e. for any n-ary $f \in \Omega$, for all $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathcal{A}$ we have

$$(a_1 \approx b_1) \otimes \cdots \otimes (a_n \approx b_n) \leq f(a_1, \ldots, a_n) \approx f(b_1, \ldots, b_n).$$
Fuzzy (sub)algebras and equalities

Definition (B. Šešelja, A. Tepavčević)

Let \mathcal{A} be a universal algebra of type Ω, L a complete lattice, $\mu : \mathcal{A} \to L$ a fuzzy (sub)algebra of \mathcal{A}. A μ-fuzzy equality is any binary fuzzy relation $E : \mathcal{A}^2 \to L$ such that:

- $E(x, y) < \mu(x) = E(x, x)$, for all different $x, y \in \mathcal{A}$,
- $E(x, y) = E(y, x)$, for all $x, y \in \mathcal{A}$,
- $E(x, y) \land E(y, z) \leq E(x, z)$, for all $x, y, z \in \mathcal{A}$,
- $E(a_1, b_1) \land E(a_2, b_2) \land \cdots \land E(a_n, b_n) \leq E(f(a_1, \ldots, a_n), f(b_1, \ldots, b_n))$, for all...
Fuzzy (sub)algebras and equalities

Definition (B. Šešelja, A. Tepavčević)

Let A be a universal algebra of type Ω, L a complete lattice, $\mu : A \to L$ a fuzzy (sub)algebra of A. A μ-**fuzzy equality** is any binary fuzzy relation $E : A^2 \to L$ such that:

- $E(x, y) < \mu(x) = E(x, x)$, for all different $x, y \in A$,
- $E(x, y) = E(y, x)$, for all $x, y \in A$,
- $E(x, y) \land E(y, z) \leq E(x, z)$, for all $x, y, z \in A$,
- $E(a_1, b_1) \land E(a_2, b_2) \land \cdots \land E(a_n, b_n) \leq E(f(a_1, \ldots, a_n), f(b_1, \ldots, b_n))$, for all...

Let A be a universal algebra of type Ω, L a complete lattice. Then $\mu : A \to L$ is a **fuzzy (sub)algebra** of A if for all...

$$\mu(a_1) \land \mu(a_2) \land \cdots \land \mu(a_n) < \mu(f(a_1, a_2, \ldots, a_n)).$$
Right \((\mu, r)\) relation

- algebras with fuzzy equality: variety theorem (Belohlavek)
Right (μ, r) relation

- algebras with fuzzy equality: variety theorem (Belohlavek)
- fuzzy (sub)algebras with fuzzy equality: one direction of variety theorem

Definition
Let M be a universal algebra of, L a residuated lattice, $r \in L$, and $\mu: M \to L$. The right (μ, r) relation is the fuzzy relation $\approx: M \times M \to L$ defined in the following way:

$$(a \approx b) = \defrule \begin{cases} 1, & a = b \\mu(a) \lor \mu(b) \rightarrow r, & a \neq b \end{cases}$$
Right \((\mu, r)\) relation

- algebras with fuzzy equality: variety theorem (Belohlavek)
- fuzzy (sub)algebras with fuzzy equality: one direction of variety theorem
- Question: How to modify the definition of \(\mu\)-equality, such that we can get the other direction of the HSP theorem?
Right \((\mu, r)\) relation

- algebras with fuzzy equality: variety theorem (Belohlavek)
- fuzzy (sub)algebras with fuzzy equality: one direction of variety theorem
- Question: How to modify the definition of \(\mu\)-equality, such that we can get the other direction of the HSP theorem?
- Milanka Bradić (PhD student): a new definition of \(\mu\)-equality...
Right \((\mu, r)\) relation

- algebras with fuzzy equality: variety theorem (Belohlavek)
- fuzzy (sub)algebras with fuzzy equality: one direction of variety theorem
- Question: How to modify the definition of \(\mu\)-equality, such that we can get the other direction of the HSP theorem?
- Milanka Bradić (PhD student): a new definition of \(\mu\)-equality...

Definition

Let \(\mathcal{M}\) be a universal algebra of, \(\mathcal{L}\) a residuated lattice, \(r \in L\), and \(\mu : M \rightarrow L\). The **right (\(\mu, r\)) relation** is the fuzzy relation \(\approx^{\mathcal{M}} : M \times M \rightarrow L\) defined in the following way:

\[
(a \approx^{\mathcal{M}} b) \overset{\text{def}}{=} \begin{cases}
1, & a = b \\
(\mu(a) \lor \mu(b)) \rightarrow r, & a \neq b
\end{cases}
\]
Example

Let \(\mathbb{N} \) be the set of positive integers, and \(\mathcal{M} = \langle \mathbb{N}, +, \cdot \rangle, \ r = 1/3, \mathcal{L} \) standard lattice on \([0, 1]\) (Lukasiewicz or product structure - Gödel is trivial in this case!),

\[
\mu(n) = \text{def} \ \min \left(\frac{1}{3} + \frac{1}{n}, 1 \right).
\]

(4)

If \(\approx : \mathbb{N} \times \mathbb{N} \rightarrow \mathcal{L} \) is the right \((\mu, r)\) relation:

\[
m \approx n = \text{def} \begin{cases} 1, & m = n \\ \mu(m) \lor \mu(n) \rightarrow \frac{1}{3} & m \neq n. \end{cases}
\]

(5)

Then:

- \(\mu(n) \in (r, 1], \) for all \(m \in \mathbb{N}, \)
- \(\mu(m + n) \leq \mu(m) \) and \(\mu(m \cdot n) \leq \mu(m) \)
Right similarity with Lukasiewicz structure

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>$\mu(a)$</th>
<th>$\mu(b)$</th>
<th>$a \approx b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>60000</td>
<td>90000</td>
<td>0,33335</td>
<td>0,33334</td>
<td>0,99997</td>
</tr>
<tr>
<td>60000</td>
<td>$b > 60000$</td>
<td>0,33335</td>
<td>$\mu(b)$</td>
<td>0,99997</td>
</tr>
<tr>
<td>500</td>
<td>60000</td>
<td>0,33533</td>
<td>0,33335</td>
<td>0,998</td>
</tr>
<tr>
<td>500</td>
<td>$b > 500$</td>
<td>0,33533</td>
<td>$\mu(b)$</td>
<td>0,998</td>
</tr>
<tr>
<td>5</td>
<td>30000</td>
<td>0,53333</td>
<td>0,33337</td>
<td>0,8</td>
</tr>
<tr>
<td>5</td>
<td>$b > 5$</td>
<td>0,53333</td>
<td>$\mu(b)$</td>
<td>0,8</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>0,66667</td>
<td>0,53333</td>
<td>0,66667</td>
</tr>
<tr>
<td>3</td>
<td>$b > 3$</td>
<td>0,66667</td>
<td>$\mu(b)$</td>
<td>0,66667</td>
</tr>
<tr>
<td>2</td>
<td>$b > 2$</td>
<td>0,83333</td>
<td>$\mu(b)$</td>
<td>0,5</td>
</tr>
<tr>
<td>1</td>
<td>$b > 1$</td>
<td>1</td>
<td>$\mu(b)$</td>
<td>$\frac{1}{3}$</td>
</tr>
</tbody>
</table>
Right similarity with the product structure

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>$\mu(a)$</th>
<th>$\mu(b)$</th>
<th>$a \approx b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>60000</td>
<td>90000</td>
<td>0,33335</td>
<td>0,33334</td>
<td>0,99995</td>
</tr>
<tr>
<td>90000</td>
<td>$b > 60000$</td>
<td>0,33335</td>
<td>$\mu(b)$</td>
<td>0,99995</td>
</tr>
<tr>
<td>500</td>
<td>60000</td>
<td>0,33533</td>
<td>0,33335</td>
<td>0,99404</td>
</tr>
<tr>
<td>500</td>
<td>$b > 500$</td>
<td>0,33533</td>
<td>$\mu(b)$</td>
<td>0,99404</td>
</tr>
<tr>
<td>5</td>
<td>30000</td>
<td>0,53333</td>
<td>0,33337</td>
<td>0,625</td>
</tr>
<tr>
<td>5</td>
<td>$b > 5$</td>
<td>0,53333</td>
<td>$\mu(b)$</td>
<td>0,5</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>0,66667</td>
<td>0,53333</td>
<td>0,5</td>
</tr>
<tr>
<td>3</td>
<td>$b > 3$</td>
<td>0,66667</td>
<td>$\mu(b)$</td>
<td>0,4</td>
</tr>
<tr>
<td>2</td>
<td>$b > 2$</td>
<td>0,83333</td>
<td>$\mu(b)$</td>
<td>0,5</td>
</tr>
<tr>
<td>1</td>
<td>$b > 1$</td>
<td>1</td>
<td>$\mu(b)$</td>
<td>$\frac{1}{3}$</td>
</tr>
</tbody>
</table>
Theorem

Let \mathcal{M} be a universal algebra of type Ω, \mathcal{L} a residuated lattice, $r \in L$, $\mu : M \rightarrow L$, and $\approx^\mathcal{M} : M \times M \rightarrow L$ the right (μ, r) relation. Suppose that $r < \mu(m)$ for all $m \in M$ and for all $f \in \Omega_n$, $n \geq 1$, it holds

$$\mu(f^\mathcal{M}(m_1, \ldots, m_n)) \leq \bigwedge_{i=1}^{n} \mu(m_i), \text{ for all } m_1, \ldots, m_n \in M,$$

(6)

Then $\langle M, \Omega, \approx^\mathcal{M} \rangle$ is an \mathcal{L}–algebra with fuzzy equality.
Theorem

Let \mathcal{M} be a universal algebra of type Ω, \mathcal{L} a residuated lattice, $r \in L$, $\mu : \mathcal{M} \to L$, and $\approx^\mathcal{M} : \mathcal{M} \times \mathcal{M} \to L$ the right (μ, r) relation. Suppose that $r < \mu(m)$ for all $m \in \mathcal{M}$ and for all $f \in \Omega_n$, $n \geq 1$, it holds

$$\mu(f^\mathcal{M}(m_1, \ldots, m_n)) \leq \bigwedge_{i=1}^n \mu(m_i), \text{ for all } m_1, \ldots, m_n \in \mathcal{M}, \quad (6)$$

Then $\langle \mathcal{M}, \Omega, \approx^\mathcal{M} \rangle$ is an \mathcal{L}—algebra with fuzzy equality.

RESULTS:

- right (μ, r) identity,
- right (μ, r) equational class of algebras (r is fixed, μ not)
- Birkhoff-like theorems! (HSP stability and equational classes)
Left \((\mu, s)\) relation

Definition

Let \(M\) be a universal algebra of, \(L\) a residuated lattice, \(s \in L\), and \(\mu : M \rightarrow L\). The **left \((\mu, s)\) relation** is the fuzzy relation \(\approx^M : M \times M \rightarrow L\) defined in the following way:

\[
(a \approx^M b) = \begin{cases}
1, & a = b \\
(s \rightarrow (\mu(a) \lor \mu(b))), & a \neq b
\end{cases}
\]

(7)

Example: financial mathematics (money, debt, credits, creditworthiness, solvency,...)
Theorem

Let \mathcal{M} be a universal algebra of type Ω, \mathcal{L} a residuated lattice, $s \in L$, $\mu : M \rightarrow L$, and $\approx^\mathcal{M} : M \times M \rightarrow L$ the left (μ, s) relation. Suppose that $\mu(m) < s$ for all $m \in M$ and for all $f \in \Omega_n$, $n \geq 1$, it holds

$$\bigvee_{i=1}^n \mu(m_i) \leq \mu(f^\mathcal{M}(m_1, \ldots, m_n)) \text{ for all } m_1, \ldots, m_n \in M,$$

Then $\langle \mathcal{M}, \Omega, \approx^\mathcal{M} \rangle$ is an \mathcal{L}—algebra with fuzzy equality.
Let \mathcal{M} be a universal algebra of type Ω, \mathcal{L} a residuated lattice, $s \in L$, $\mu : M \rightarrow L$, and $\approx^\mathcal{M} : M \times M \rightarrow L$ the left (μ, s) relation. Suppose that $\mu(m) < s$ for all $m \in M$ and for all $f \in \Omega_n$, $n \geq 1$, it holds

$$\bigvee_{i=1}^n \mu(m_i) \leq \mu(f^\mathcal{M}(m_1, \ldots, m_n))$$ for all $m_1, \ldots, m_n \in M$.

Then $\langle M, \Omega, \approx^\mathcal{M} \rangle$ is an $\mathcal{L} -$ algebra with fuzzy equality.

RESULTS:

- left (μ, s) identity,
- left (μ, s) equational class of algebras (r is fixed, μ not)
- Birkhoff-like theorems! (HSP stability and equational classes)
Further directions

- properties of special equational classes
- back to groupoids!
- structure of truth values as parameter! (how this impact the results)
- applications?
Thank you for your attention!