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Subject of this talk

• universal-algebraic investigations of fuzzy structures

• lattice of idempotent fuzzy subsets of a groupoid
• generalization: algebras of fuzzy sets (fuzzy power algebras)-

results about homomorphisms, subalgebras, direct products
• very new results: special kinds of fuzzy equalities, identities,

equational classes, Birkhoff-style theorems
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The beginnings

• coming from universal algebra, power structures...

• Ray S., The lattice of all idempotent fuzzy subsets of a groupoid,
Fuzzy sets and systems, 96 (1998) 239-245.

• F2(D) of all idempotent fuzzy subsets of a cancellative
semigroup D forms a complete lattice

• results concerning the set F(D) of all fuzzy subsets of D and its
substructures F−1(D) and F2(D).

• If D is a cancellative groupoid, then the sup-min product is
distributive over an arbitrary intersection of fuzzy sets in F(D) !
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Algebras of Fuzzy Sets



INTRODUCTION DEFINITIONS ALGEBRAS OF FUZZY SETS FUZZY EQUALITIES

The beginnings

• coming from universal algebra, power structures...
• Ray S., The lattice of all idempotent fuzzy subsets of a groupoid,

Fuzzy sets and systems, 96 (1998) 239-245.
• F2(D) of all idempotent fuzzy subsets of a cancellative

semigroup D forms a complete lattice
• results concerning the set F(D) of all fuzzy subsets of D and its

substructures F−1(D) and F2(D).

• If D is a cancellative groupoid, then the sup-min product is
distributive over an arbitrary intersection of fuzzy sets in F(D) !
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Lattice of fuzzy sets of a groupoid

• D = 〈D, ·〉 a groupoid, F(D) all fuzzy subsets of D,
µ : D→ [0, 1]

• sup-min product of two fuzzy subsets λ and µ:

(λ · µ)(x) = sup
x=ab

min(λ(a), µ(b)).

•
F−1(D) = {λ ∈ F(D) | λ ⊆ λ · λ}

F2(D) = {λ ∈ F(D) | λ = λ · λ}
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RID and LID groupoids

Definition

For a groupoid G we will say that it is right intersection-distributive
(RID) if for any family {λi | i ∈ I} ⊆ F(D) and any µ ∈ F(D) it
holds

(1) (
⋂
i∈I

λi) · µ =
⋂
i∈I

(λi · µ).

Similarly, D is left intersection-distributive (LID)

• The only RID semigroups are left-zero semigroups. The only
LID semigroups are...

• A finite groupoid can not be both RID and LID.
• An infinite groupoid D is both RID and LID iff in its Cayley

table every element from D appears at most once.
• There are infinite groupoids which are at the same time RID and

LID.
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Results

Theorem

(1) A groupoid D is RID iff D satisfies the quasiidentity

xy = zt⇒ x = z.

(2) A groupoid D is LID iff D satisfies the quasiidentity

yx = tz⇒ x = z.

Theorem

Let D be a groupoid. Then F2(D) is a complete lattice which is a
complete join-sublattice of F1(D), and a complete meet-sublattice of
F−1(D).
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General problem: fuzzy power algebras

Universal algebras in fuzzy world
• Rosenfeld (1971) - fuzzy groups

• Murali (1991),Samhan (1995), : fuzzy subalgebras, fuzzy
congruences,...

• Kuraoki, Suzuki (2002, 2007):lattice of fuzzy subalgebras of an
algebra

• Chakraborty, Khare (1993) Demirci ,(2004), Di Nola, Gerla
(1997)

• Belohlavek, Vychodil (2000, 2002, 2003, 2006)
• Vojvodic, Šešelja (1983),Tepavčević
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Different approaches

• different degree of generality: first concrete algebras (fuzzy
groups, lattices, vector spaces,...) then unifying results
(homomorphisms, congruences, factor algebras,...)

• different structures of truth degree: real unit interval (standard
Gödel, Lukasiewicz or product structure), complete lattices,
residuated lattices,...

• different fuzzyfication: what is fuzzyfied - the universe,
operations, equality relation,...

• We choose: universal algebras, complete residuated lattices
(sometimes, complete lattices), and trying to connect different
fuzzyfications...
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Residuated lattices

A residuated lattice is an algebra L = 〈L,∧,∨, 0, 1,⊗,→〉 where

(i) 〈L,∧,∨, 0, 1, 〉 is a lattice with the least element 0 and the
greatest element 1.

(ii) 〈L,⊗, 1〉 is a commutative monoid.

(iii) ⊗ and→ satisfy the adjointness property, i.e. x ≤ y→ z iff
x⊗ y ≤ z holds.

If the lattice 〈L,∧,∨, 0, 1, 〉 is complete, then L is a complete
residuated lattice.

• introduced by Ward and Dilworth in 1939, in ring theory.
• Gougen (1967): as a structure of truth values in fuzzy logic;

Pavelka (1979)
• examples: on [0, 1], Lukasiewicz, Gödel and product structures
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If the lattice 〈L,∧,∨, 0, 1, 〉 is complete, then L is a complete
residuated lattice.

• introduced by Ward and Dilworth in 1939, in ring theory.
• Gougen (1967): as a structure of truth values in fuzzy logic;

Pavelka (1979)
• examples: on [0, 1], Lukasiewicz, Gödel and product structures
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Basic notions and notation

Let L = 〈L,∧,∨, 0, 1,⊗,→〉 be a complete residuated lattice, X a
nonempty set.
• set of all L-fuzzy sets on X: FL(X), or F(X) or LX

• fuzzy relation on A: η : An → L.
• fuzzy equivalence: a binary fuzzy relation on A which is

• reflexive: η(x, x) = 1, for all x ∈ A,
• symmetric: η(x, y) = η(y, x), for x, y ∈ A,
• transitive: η(x, y)⊗ η(y, z) ≤ η(x, z), for all x, y, z,∈ A.

• fuzzy equality: fuzzy equivalence relation η if from η(x, y) = 1
it follows x = y.
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Extension Principle

• extension principle: how to extend a function
f : X1 × · · · × Xn → Y into f : LX1 × · · · × LXn → LY (L. Zadeh)

• applications: fuzzy arithmetic, engineering problems, analysis of
discrete dynamical systems, fuzzy fractals, fuzzy transportation
problems...

• Let L be a complete lattice or a complete residuated lattice,
f : X1 × · · · × Xn → Y . Define f : LX1 × · · · × LXn → LY

f (µ1, . . . , µn)(y) =
∨

xi∈Xi
f (x1,...,xn)=y

µ1(x1) ∧ · · · ∧ µn(xn). (1)
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• If we have a residuated lattice, f : X1 × · · · × Xn → Y , we can
extend it to a function f : LX1 × · · · × LXn → LY in an alternative
way:

f⊗(µ1, . . . , µn)(y) =
∨

xi∈Xi
f (x1,...,xn)=y

µ1(x1)⊗ · · · ⊗ µn(xn). (2)

• extension principle in the context of algebras:
• Murali (1991); set of truth values: real unit interval (min/max)
• Ésik, Liu (2007) used this structures to prove ”Kleene theorems”

for fuzzy tree languages; set of truth values: completely
distributive lattice
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Algebra of fuzzy sets 1

Definition

Let L be a complete lattice or a residuated lattice and
A = 〈A, {f | f ∈ Ω}〉 be a universal algebra. If f ∈ Ω is an n-ary
fundamental operation of A, define f∧ : F(A)n → F(A) in the
following way:

f∧(µ1, . . . , µn)(y) =
∨

xi∈Xi
f (x1,...,xn)=y

µ1(x1) ∧ · · · ∧ µn(xn).

The algebra F∧(A) = 〈F(A), {f∧ | f ∈ Ω}〉 will be called the
∧-algebra of fuzzy sets induced by A.
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Algebra of fuzzy sets 2

Definition

Let L be a residuated lattice and A = 〈A, {f | f ∈ Ω}〉 be a universal
algebra. If f ∈ Ω is an n-ary fundamental operation of A, define
f⊗ : F(A)n → F(A) in the following way:

f⊗(µ1, . . . , µn)(y) =
∨

xi∈Xi
f (x1,...,xn)=y

µ1(x1)⊗ · · · ⊗ µn(xn).

The algebra F⊗(A) = 〈F(A), {f⊗ | f ∈ Ω}〉 will be called the
⊗-algebra of fuzzy sets induced by A.

Of course, if L is a complete Heyting algebra, or more specially, if
L = {0, 1}, the two kinds of induced algebras of fuzzy sets coincide.
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Power algebras 1

• crisp case: both kinds of induced algebras of fuzzy sets become
the ordinary power algebra of A ( algebra of complexes or
global of A).

• Definition

Let A be a non-empty set, P(A) the set of all subsets of A, and
f : An → A. We define f+ : P(A)n → P(A) in the following way:

f+(X1, . . . ,Xn) = {f (x1, . . . , xn) | x1 ∈ X1, . . . , xn ∈ Xn}.

If A = 〈A, {f | f ∈ Ω}〉 is an algebra, the power algebra (or complex
algebra, or global) P(A) is defined as:

P(A) = 〈P(A), {f+ | f ∈ Ω}〉.
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Power algebras 2

• crisp power algebras are used:
• group theory, semigroup theory
• lattices ( the set of ideals of a distributive lattice L again forms a

lattice, and meets and joins in the new lattice are precisely the
power operations of meets and joins in L)

• formal language theory (the product of two languages is simply
the power operation of concatenation of words)

• non-classical logics (Jonsson, Tarski, Boolean algebras with
operators...)

Proposition

Let A be any universal algebra, and L the usual two element Boolean
algebra. Then both of ∧-algebra and the ⊗-algebra of L-fuzzy sets
induced by A coincide with the power algebra of A, i.e.

F∧(A) = F⊗(A) = P(A).
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Homomorphisms 1

Definition

Let A and B be algebras of the same type Ω. A mapping α : A→ B is
a homomorphism from A to B if for all n ≥ n, all f ∈ Ωn, all
a1, a2, . . . , an ∈ A,

α(fA(a1, a2, . . . , an)) = fB(α(a1), α(a2), . . . , α(an)).

Proposition

Let L be a lattice or a residuated lattice. Then:

(a) If α : A→ B, β : B→ C, then (β ◦ α) = β ◦ α.

(b) If α : A→ B is a bijection, then α : F(A)→ F(B) is also a
bijection.
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Homomorphisms 2

Let α : A → B be a homomorphism. Will the induced mapping
α : F(A)→ F(B) be a homomorphism from F⊗(A) to F⊗(B), and
from F∧(A) to F∧(B)? The two kinds of induced algebras of fuzzy
sets do not behave in the same way!

Theorem

Let L be a complete residuated lattice, A and B two algebras of type
Ω. If α : A → B is a homomorphism, then α : F⊗(A)→ F⊗(B) is
also a homomorphism.

BUT: there are algebras A,B, a complete lattice L, such that
α : A → B is a homomorphism, but α : F∧(A)→ F∧(B) is not a
homomorphism!
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Example

Example
· u1 u2 v1 v2

u1 v1 v1 u1 u2
u2 v1 v1 u2 u2
v1 v2 v2 v1 v1
v2 v2 v2 v1 v1

· a b
a b a
b b b

Let L be the pentagon (with 0 < r < q < 1, 0 < p < 1, p not being
comparable to r or q). There is a homomorphism from A to B such
that α : F∧(A)→ F∧(B) is not a homomorphism.
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Theorem

Let L be a completely distributive lattice, A and B two algebras of
type Ω. If α : A → B is a homomorphism, then
α : F∧(A)→ F∧(B) is also a homomorphism.

Theorem

Let L be a complete lattice or a complete residuated lattice, and A a
subalgebra of algebra B. Then F∧(A) can be embedded into the
algebra F∧(B).

Theorem

Let L be a complete residuated lattice, and A a subalgebra of algebra
B. Then F⊗(A) can be embedded into the algebra F⊗(B).
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Fuzzy products 1

Definition

The fuzzy product of the family of fuzzy subsets 〈ηi ∈ F(Ai) | i ∈ I〉
is the fuzzy subset

∏∧ηi :
∏

Ai → L defined in the following way: if
x ∈

∏
Ai, where xi = x(i) for i ∈ I, then

(
∏∧
〈ηi | i ∈ I〉)(x) =

∧
{ηi(xi) | i ∈ iI}.

Theorem

Let L be a completely distributive lattice and 〈Ai | i ∈ I〉 be a family
of algebras of the type Ω. The mapping
ϕ :
∏

i∈I F(Ai)→ F(
∏

i∈I Ai) defined by ϕ(η) =
∏∧η(i) is a

homomorphism from
∏

i∈I F∧(Ai) to F∧(
∏

i∈I Ai).
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Fuzzy products 2

It is not hard to see that the above defined mapping
ϕ :
∏

i∈I F(Ai)→ F(
∏

i∈I Ai) is not necessarily injective.

Example

Take L = [0, 1], I = {1, 2, 3} and η1, η2, η3, η4 : A→ L such that
η1(x) = 0.1, for all x ∈ A
η2(x) = 0.1, for all x ∈ A
η3(x) = 0.9, for all x ∈ A
η4(x) = 0.8, for all x ∈ A
Then ϕ((η1, η2, η3)) = ϕ((η1, η2, η4)) = µ, where µ(x) = 0.1 for all
x ∈ A.
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Fuzzy products 3

Definition

F+(A) ⊆ F(A) is defined by
F+(A) = {η : A→ L | (∃x ∈ A) η(x) = 1}.

Theorem

Let 〈Ai | i ∈ I〉 be a family of sets. Then the mapping
ϕ+ :

∏
i∈I F+(Ai)→ F+(

∏
i∈I Ai) defined by ϕ+(η) =

∏∧
i∈Iη(i) is

injective.

Theorem

Let A be an algebra of type Ω. Then F+(A) is a subuniverse of the
algebras F∧(A) and F⊗(A).
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Let 〈Ai | i ∈ I〉 be a family of sets. Then the mapping
ϕ+ :

∏
i∈I F+(Ai)→ F+(

∏
i∈I Ai) defined by ϕ+(η) =

∏∧
i∈Iη(i) is

injective.

Theorem

Let A be an algebra of type Ω. Then F+(A) is a subuniverse of the
algebras F∧(A) and F⊗(A).
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Fuzzy products 4

It can be proved that the two kind of algebras of fuzzy sets behave in
different way in respect to direct products.

Theorem

Let L be a completely distributive lattice and 〈Ai | i ∈ I〉 be a family
of algebras of the type Ω. The mapping
ϕ :
∏

i∈I F(Ai)→ F(
∏

i∈I Ai) defined by ϕ(η) =
∏∧η(i) is a

homomorphism from
∏

i∈I F∧(Ai) to F∧(
∏

i∈I Ai).

BUT: We can construct two algebras A1 and A2 such that the
mapping ϕ : F(A1)×F(A2)→ F(A1 × A2) defined by
ϕ(〈η, µ〉) =

∏∧
i∈{1,2}η(i) is not a homomorphism from

F⊗(A1)×F⊗(A2) to F⊗(A1 ×A2).
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Example

Example

The algebras A1 and A2 will be groupoids given respectively by their
Cayley’s tables:
· a b
a b a
b b b

· c d
c c d
d c c

Let L be standard residual lattice on the real unit interval [0,1] with
the product structure, i.e. ⊗ is the usual product of real numbers. Let
us take η = 〈η1, η2〉, µ = 〈µ1, µ2〉, where η1(a) = 0.6, η2(c) = 0.5,
µ1(b) = 0.7, µ2(d) = 0.8. It can be proved that

(ϕ(η · µ))(〈a, d〉) 6= (ϕ(η) · ϕ(µ)(〈a, d〉).
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Algebras with fuzzy equalities

Proposition

Let L be a complete residuated lattice, A a universal algebra, and ≈
the similarity relation defined on F(A) = LA by
(η ≈ µ) = ∧{η(x)↔ µ(x) | x ∈ A}. Then the structures 〈F∧(A),≈〉
and 〈F⊗(A),≈〉 are algebras with fuzzy equality.

Definition (Belohlavek)

Let L be a complete residuated lattice, 〈A,Ω〉 be a universal algebra,
and ≈ an fuzzy equality on A. Then the structure A = 〈A,Ω,≈〉 is an
L-algebra with fuzzy equality if each operation f ∈ Ω is compatible
with ≈, i.e. for any n-ary f ∈ Ω, for all a1, . . . , an, b1, . . . , bn ∈ A we
have (a1 ≈ b1)⊗ · · · ⊗ (an ≈ bn) ≤ f (a1, . . . , an) ≈ f (b1, . . . , bn).
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Fuzzy (sub)algebras and equalities

Definition (B. Šešelja, A. Tepavčević)

Let A be a universal algeba of type Ω, L a complete lattice, µ : A→ L
a fuzzy (sub)algebra of A. A µ-fuzzy equality is any binary fuzzy
relation E : A2 → L such that:
• E(x, y) < µ(x) = E(x, x), for all different x, y ∈ A,
• E(x, y) = E(y, x), for all x, y ∈ A,
• E(x, y) ∧ E(y, z) ≤ E(x, z), for all x, y, z ∈ A,
• E(a1, b1) ∧ E(a2, b2) ∧ · · · ∧ E(an, bn) ≤

E(f (a1, . . . , an), f (b1, . . . , bn)), for all...

Let A be a universal algeba of type Ω, L a complete lattice. Then
µ : A→ L is a fuzzy (sub)algebra of A if for all...

µ(a1) ∧ µ(a2) ∧ · · · ∧ µ(an) ≤ µ(f (a1, a2, . . . , an)).
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Right (µ, r) relation

• algebras with fuzzy equality : variety theorem (Belohlavek)

• fuzzy (sub)algebras with fuzzy equality: one direction of variety
theorem

• Question: How to modify the definition of µ-equality, such that
we can get the other direction of the HSP theorem?

• Milanka Bradić (PhD student): a new definition of µ-equality...

Definition

LetM be a universal algebra of, L a residuated lattice, r ∈ L, and
µ : M −→ L. The right (µ, r) relation is the fuzzy relation
≈M: M ×M −→ L defined in the following way:

(a ≈M b) =def

{
1, a = b

(µ(a) ∨ µ(b))→ r, a 6= b
(3)
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Algebras of Fuzzy Sets



INTRODUCTION DEFINITIONS ALGEBRAS OF FUZZY SETS FUZZY EQUALITIES

Right (µ, r) relation

• algebras with fuzzy equality : variety theorem (Belohlavek)
• fuzzy (sub)algebras with fuzzy equality: one direction of variety

theorem
• Question: How to modify the definition of µ-equality, such that

we can get the other direction of the HSP theorem?
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Example

Let N be the set of positive integers, andM = 〈N,+, ·〉, r = 1/3, L
standard lattice on [0, 1] (Lukasiewicz or product structure - Gödel is
trivial in this case!),

µ(n) =def min
(

1
3

+
1
n
, 1
)
. (4)

If ≈: N × N −→ L is the right (µ, r) relation:

m ≈ n =def

{
1, m = n

(µ(m) ∨ µ(n))→ 1
3 m 6= n.

(5)

Then:
• µ(n) ∈ (r, 1], for all m ∈ N,
• µ(m + n) 6 µ(m) and µ(m · n) 6 µ(m)
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Right similarity with Lukasiewicz structure

a b µ(a) µ(b) a ≈ b
60000 90000 0,33335 0,33334 0,99997
60000 b > 60000 0,33335 µ(b) 0,99997
500 60000 0,33533 0,33335 0,998
500 b > 500 0,33533 µ(b) 0,998
5 30000 0,53333 0,33337 0,8
5 b > 5 0,53333 µ(b) 0,8
3 5 0,66667 0,53333 0,66667
3 b > 3 0,66667 µ(b) 0,66667
2 b > 2 0,83333 µ(b) 0,5
1 b > 1 1 µ(b) 1

3
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Right similarity with the product structure

a b µ(a) µ(b) a ≈ b
60000 90000 0,33335 0,33334 0,99995
60000 b > 60000 0,33335 µ(b) 0,99995
500 60000 0,33533 0,33335 0,99404
500 b > 500 0,33533 µ(b) 0,99404
5 30000 0,53333 0,33337 0,625
5 b > 5 0,53333 µ(b) 0,5
3 5 0,66667 0,53333 0,5
3 b > 3 0,66667 µ(b) 0,4
2 b > 2 0,83333 µ(b) 0,5
1 b > 1 1 µ(b) 1

3
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Theorem

LetM be a universal algebra of type Ω, L a residuated lattice, r ∈ L,
µ : M −→ L, and ≈M: M ×M −→ L the right (µ, r) relation.
Suppose that r < µ(m) for all m ∈ M and for all f ∈ Ωn, n > 1, it
holds

µ(fM(m1, . . . ,mn)) 6
n∧

i=1

µ(mi), for all m1, . . . ,mn ∈ M, (6)

Then 〈M,Ω,≈M〉 is an L−algebra with fuzzy equality.

RESULTS:
• right (µ, r) identity,
• right (µ, r) equational class of algebras (r is fixed, µ not)
• Birkhoff-like theorems! (HSP stability and equational classes)
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Left (µ, s) relation

Definition

LetM be a universal algebra of, L a residuated lattice, s ∈ L, and
µ : M −→ L. The left (µ, s) relation is the fuzzy relation
≈M: M ×M −→ L defined in the following way:

(a ≈M b) =def

{
1, a = b

(s→ (µ(a) ∨ µ(b))), a 6= b
(7)

Example: financial mathematics (money, debt, credits,
creditworthiness, solvency,...)
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n∨
i=1
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Further directions

• properties of special equational classes
• back to groupoids!
• structure of truth values as parameter! (how this impact the

results)
• applications?
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Thank you for your attention!
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