Algebras of Fuzzy Sets

Rozália Madarász Join work with I. Bošnjak, G. Vojvodić, M. Bradić

Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia

FSTA 2012, Liptovský Ján

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets

universal-algebraic investigations of fuzzy structures

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets

- universal-algebraic investigations of fuzzy structures
- lattice of idempotent fuzzy subsets of a groupoid

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets

- universal-algebraic investigations of fuzzy structures
- lattice of idempotent fuzzy subsets of a groupoid
- generalization: algebras of fuzzy sets (fuzzy power algebras)results about homomorphisms, subalgebras, direct products

- universal-algebraic investigations of fuzzy structures
- lattice of idempotent fuzzy subsets of a groupoid
- generalization: algebras of fuzzy sets (fuzzy power algebras)results about homomorphisms, subalgebras, direct products
- very new results: special kinds of fuzzy equalities, identities, equational classes, Birkhoff-style theorems

• coming from universal algebra, power structures...

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets University of Novi Sad

< □ > < 同

- coming from universal algebra, power structures...
- Ray S., The lattice of all idempotent fuzzy subsets of a groupoid, Fuzzy sets and systems, 96 (1998) 239-245.

The beginnings

- coming from universal algebra, power structures...
- Ray S., The lattice of all idempotent fuzzy subsets of a groupoid, Fuzzy sets and systems, 96 (1998) 239-245.
- $\mathcal{F}_2(D)$ of all idempotent fuzzy subsets of a cancellative semigroup *D* forms a complete lattice

The beginnings

- coming from universal algebra, power structures...
- Ray S., The lattice of all idempotent fuzzy subsets of a groupoid, Fuzzy sets and systems, 96 (1998) 239-245.
- $\mathcal{F}_2(D)$ of all idempotent fuzzy subsets of a cancellative semigroup *D* forms a complete lattice
- results concerning the set \$\mathcal{F}(D)\$ of all fuzzy subsets of \$D\$ and its substructures \$\mathcal{F}_{-1}(D)\$ and \$\mathcal{F}_{2}(D)\$.

The beginnings

- coming from universal algebra, power structures...
- Ray S., The lattice of all idempotent fuzzy subsets of a groupoid, Fuzzy sets and systems, 96 (1998) 239-245.
- $\mathcal{F}_2(D)$ of all idempotent fuzzy subsets of a cancellative semigroup *D* forms a complete lattice
- results concerning the set \$\mathcal{F}(D)\$ of all fuzzy subsets of \$D\$ and its substructures \$\mathcal{F}_{-1}(D)\$ and \$\mathcal{F}_{2}(D)\$.
- If *D* is a cancellative groupoid, then the sup-min product is distributive over an arbitrary intersection of fuzzy sets in $\mathcal{F}(D)$!

Lattice of fuzzy sets of a groupoid

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets

Lattice of fuzzy sets of a groupoid

- $\mathcal{D} = \langle D, \cdot \rangle$ a groupoid, $\mathcal{F}(D)$ all fuzzy subsets of D, $\mu : D \to [0, 1]$
- sup-min *product* of two fuzzy subsets λ and μ :

$$(\lambda \cdot \mu)(x) = \sup_{x=ab} \min(\lambda(a), \mu(b)).$$

University of Novi Sad

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić

Algebras of Fuzzy Sets

Lattice of fuzzy sets of a groupoid

- $\mathcal{D} = \langle D, \cdot \rangle$ a groupoid, $\mathcal{F}(D)$ all fuzzy subsets of D, $\mu : D \to [0, 1]$
- sup-min *product* of two fuzzy subsets λ and μ :

$$(\lambda \cdot \mu)(x) = \sup_{x=ab} \min(\lambda(a), \mu(b)).$$

.

$$\mathcal{F}_{-1}(D) = \{\lambda \in \mathcal{F}(D) \mid \lambda \subseteq \lambda \cdot \lambda\}$$
$$\mathcal{F}_{2}(D) = \{\lambda \in \mathcal{F}(D) \mid \lambda = \lambda \cdot \lambda\}$$

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić

Algebras of Fuzzy Sets

Definition

For a groupoid *G* we will say that it is *right intersection-distributive* (RID) if for any family $\{\lambda_i \mid i \in I\} \subseteq \mathcal{F}(D)$ and any $\mu \in \mathcal{F}(D)$ it holds

(1)
$$(\bigcap_{i\in I}\lambda_i)\cdot\mu=\bigcap_{i\in I}(\lambda_i\cdot\mu).$$

Similarly, *D* is *left intersection-distributive* (LID)

Definition

For a groupoid *G* we will say that it is *right intersection-distributive* (RID) if for any family $\{\lambda_i \mid i \in I\} \subseteq \mathcal{F}(D)$ and any $\mu \in \mathcal{F}(D)$ it holds

(1)
$$(\bigcap_{i\in I}\lambda_i)\cdot\mu=\bigcap_{i\in I}(\lambda_i\cdot\mu).$$

Similarly, *D* is *left intersection-distributive* (LID)

• The only RID semigroups are left-zero semigroups. The only LID semigroups are...

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets

Definition

For a groupoid *G* we will say that it is *right intersection-distributive* (RID) if for any family $\{\lambda_i \mid i \in I\} \subseteq \mathcal{F}(D)$ and any $\mu \in \mathcal{F}(D)$ it holds

(1)
$$(\bigcap_{i\in I}\lambda_i)\cdot\mu=\bigcap_{i\in I}(\lambda_i\cdot\mu).$$

Similarly, *D* is *left intersection-distributive* (LID)

- The only RID semigroups are left-zero semigroups. The only LID semigroups are...
- A finite groupoid can not be both RID and LID.

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets

Definition

For a groupoid *G* we will say that it is *right intersection-distributive* (RID) if for any family $\{\lambda_i \mid i \in I\} \subseteq \mathcal{F}(D)$ and any $\mu \in \mathcal{F}(D)$ it holds

(1)
$$(\bigcap_{i\in I}\lambda_i)\cdot\mu=\bigcap_{i\in I}(\lambda_i\cdot\mu).$$

Similarly, *D* is *left intersection-distributive* (LID)

- The only RID semigroups are left-zero semigroups. The only LID semigroups are...
- A finite groupoid can not be both RID and LID.
- An infinite groupoid *D* is both RID and LID iff in its Cayley table every element from *D* appears at most once.

Definition

For a groupoid *G* we will say that it is *right intersection-distributive* (RID) if for any family $\{\lambda_i \mid i \in I\} \subseteq \mathcal{F}(D)$ and any $\mu \in \mathcal{F}(D)$ it holds

(1)
$$(\bigcap_{i\in I}\lambda_i)\cdot\mu=\bigcap_{i\in I}(\lambda_i\cdot\mu).$$

Similarly, *D* is *left intersection-distributive* (LID)

- The only RID semigroups are left-zero semigroups. The only LID semigroups are...
- A finite groupoid can not be both RID and LID.
- An infinite groupoid *D* is both RID and LID iff in its Cayley table every element from *D* appears at most once.
- There are infinite groupoids which are at the same time RID and

Results

Theorem

(1) A groupoid D is RID iff D satisfies the quasiidentity

$$xy = zt \Rightarrow x = z.$$

(2) A groupoid D is LID iff D satisfies the quasiidentity

$$yx = tz \Rightarrow x = z.$$

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets University of Novi Sad

< □ > < 同

Results

Theorem

(1) A groupoid D is RID iff D satisfies the quasiidentity

$$xy = zt \Rightarrow x = z.$$

(2) A groupoid D is LID iff D satisfies the quasiidentity

$$yx = tz \Rightarrow x = z.$$

Theorem

Let *D* be a groupoid. Then $\mathcal{F}_2(D)$ is a complete lattice which is a complete join-sublattice of $\mathcal{F}_1(D)$, and a complete meet-sublattice of $\mathcal{F}_{-1}(D)$.

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets

Universal algebras in fuzzy world

• Rosenfeld (1971) - fuzzy groups

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets

Universal algebras in fuzzy world

- Rosenfeld (1971) fuzzy groups
- Murali (1991),Samhan (1995), : fuzzy subalgebras, fuzzy congruences,...

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets

Universal algebras in fuzzy world

- Rosenfeld (1971) fuzzy groups
- Murali (1991),Samhan (1995), : fuzzy subalgebras, fuzzy congruences,...
- Kuraoki, Suzuki (2002, 2007):lattice of fuzzy subalgebras of an algebra

Universal algebras in fuzzy world

- Rosenfeld (1971) fuzzy groups
- Murali (1991),Samhan (1995), : fuzzy subalgebras, fuzzy congruences,...
- Kuraoki, Suzuki (2002, 2007):lattice of fuzzy subalgebras of an algebra
- Chakraborty, Khare (1993) Demirci ,(2004), Di Nola, Gerla (1997)

Universal algebras in fuzzy world

- Rosenfeld (1971) fuzzy groups
- Murali (1991),Samhan (1995), : fuzzy subalgebras, fuzzy congruences,...
- Kuraoki, Suzuki (2002, 2007):lattice of fuzzy subalgebras of an algebra
- Chakraborty, Khare (1993) Demirci ,(2004), Di Nola, Gerla (1997)
- Belohlavek, Vychodil (2000, 2002, 2003, 2006)
- Vojvodic, Šešelja (1983), Tepavčević

- Different approaches
 - different degree of generality: first concrete algebras (fuzzy • groups, lattices, vector spaces,...) then unifying results (homomorphisms, congruences, factor algebras,...)

Different approaches

- *different degree of generality*: first concrete algebras (fuzzy groups, lattices, vector spaces,...) then unifying results (homomorphisms, congruences, factor algebras,...)
- *different structures of truth degree*: real unit interval (standard Gödel, Lukasiewicz or product structure), complete lattices, residuated lattices,...

Different approaches

- *different degree of generality*: first concrete algebras (fuzzy groups, lattices, vector spaces,...) then unifying results (homomorphisms, congruences, factor algebras,...)
- *different structures of truth degree*: real unit interval (standard Gödel, Lukasiewicz or product structure), complete lattices, residuated lattices,...
- *different fuzzyfication*: what is fuzzyfied the universe, operations, equality relation,...

Different approaches

- *different degree of generality*: first concrete algebras (fuzzy groups, lattices, vector spaces,...) then unifying results (homomorphisms, congruences, factor algebras,...)
- *different structures of truth degree*: real unit interval (standard Gödel, Lukasiewicz or product structure), complete lattices, residuated lattices,...
- *different fuzzyfication*: what is fuzzyfied the universe, operations, equality relation,...
- We choose: universal algebras, complete residuated lattices (sometimes, complete lattices), and trying to connect different fuzzyfications...

A *residuated lattice* is an algebra $\mathcal{L} = \langle L, \wedge, \vee, 0, 1, \otimes, \rightarrow \rangle$ where

(i) ⟨L, ∧, ∨, 0, 1, ⟩ is a lattice with the least element 0 and the greatest element 1.

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets

A *residuated lattice* is an algebra $\mathcal{L} = \langle L, \wedge, \vee, 0, 1, \otimes, \rightarrow \rangle$ where

- (i) ⟨L, ∧, ∨, 0, 1, ⟩ is a lattice with the least element 0 and the greatest element 1.
- (ii) $\langle L, \otimes, 1 \rangle$ is a commutative monoid.

A *residuated lattice* is an algebra $\mathcal{L} = \langle L, \wedge, \vee, 0, 1, \otimes, \rightarrow \rangle$ where

- (i) ⟨L, ∧, ∨, 0, 1, ⟩ is a lattice with the least element 0 and the greatest element 1.
- (ii) $\langle L, \otimes, 1 \rangle$ is a commutative monoid.
- (iii) \otimes and \rightarrow satisfy the adjointness property, i.e. $x \le y \rightarrow z$ iff $x \otimes y \le z$ holds.

A *residuated lattice* is an algebra $\mathcal{L} = \langle L, \wedge, \vee, 0, 1, \otimes, \rightarrow \rangle$ where

- (i) ⟨L, ∧, ∨, 0, 1, ⟩ is a lattice with the least element 0 and the greatest element 1.
- (ii) $\langle L, \otimes, 1 \rangle$ is a commutative monoid.
- (iii) \otimes and \rightarrow satisfy the adjointness property, i.e. $x \le y \rightarrow z$ iff $x \otimes y \le z$ holds.

If the lattice $\langle L, \wedge, \vee, 0, 1, \rangle$ is complete, then \mathcal{L} is a complete residuated lattice.

A *residuated lattice* is an algebra $\mathcal{L} = \langle L, \wedge, \vee, 0, 1, \otimes, \rightarrow \rangle$ where

- (i) ⟨L, ∧, ∨, 0, 1, ⟩ is a lattice with the least element 0 and the greatest element 1.
- (ii) $\langle L, \otimes, 1 \rangle$ is a commutative monoid.
- (iii) \otimes and \rightarrow satisfy the adjointness property, i.e. $x \le y \rightarrow z$ iff $x \otimes y \le z$ holds.

If the lattice $\langle L, \wedge, \vee, 0, 1, \rangle$ is complete, then \mathcal{L} is a complete residuated lattice.

• introduced by Ward and Dilworth in 1939, in ring theory.

Image: A image: A

A *residuated lattice* is an algebra $\mathcal{L} = \langle L, \wedge, \vee, 0, 1, \otimes, \rightarrow \rangle$ where

- (i) ⟨L, ∧, ∨, 0, 1, ⟩ is a lattice with the least element 0 and the greatest element 1.
- (ii) $\langle L, \otimes, 1 \rangle$ is a commutative monoid.
- (iii) \otimes and \rightarrow satisfy the adjointness property, i.e. $x \le y \rightarrow z$ iff $x \otimes y \le z$ holds.

If the lattice $\langle L, \wedge, \vee, 0, 1, \rangle$ is complete, then \mathcal{L} is a complete residuated lattice.

- introduced by Ward and Dilworth in 1939, in ring theory.
- Gougen (1967): as a structure of truth values in fuzzy logic; Pavelka (1979)

A *residuated lattice* is an algebra $\mathcal{L} = \langle L, \wedge, \vee, 0, 1, \otimes, \rightarrow \rangle$ where

- (i) ⟨L, ∧, ∨, 0, 1, ⟩ is a lattice with the least element 0 and the greatest element 1.
- (ii) $\langle L, \otimes, 1 \rangle$ is a commutative monoid.
- (iii) \otimes and \rightarrow satisfy the adjointness property, i.e. $x \le y \rightarrow z$ iff $x \otimes y \le z$ holds.

If the lattice $\langle L, \wedge, \vee, 0, 1, \rangle$ is complete, then \mathcal{L} is a complete residuated lattice.

- introduced by Ward and Dilworth in 1939, in ring theory.
- Gougen (1967): as a structure of truth values in fuzzy logic; Pavelka (1979)
- examples: on [0, 1], Lukasiewicz, Gödel and product structures 🔗 େ

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić

Algebras of Fuzzy Sets
Let $\mathcal{L} = \langle L, \wedge, \vee, 0, 1, \otimes, \rightarrow \rangle$ be a complete residuated lattice, *X* a nonempty set.

• set of all *L*-fuzzy sets on *X*: $\mathcal{F}_{\mathcal{L}}(X)$, or $\mathcal{F}(X)$ or L^X

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets University of Novi Sad

< □ > < 同

Let $\mathcal{L} = \langle L, \wedge, \vee, 0, 1, \otimes, \rightarrow \rangle$ be a complete residuated lattice, *X* a nonempty set.

- set of all *L*-fuzzy sets on *X*: $\mathcal{F}_{\mathcal{L}}(X)$, or $\mathcal{F}(X)$ or L^X
- **fuzzy relation on** $A: \eta : A^n \to L$.

< □ > < / →

Let $\mathcal{L} = \langle L, \wedge, \vee, 0, 1, \otimes, \rightarrow \rangle$ be a complete residuated lattice, *X* a nonempty set.

- set of all *L*-fuzzy sets on *X*: $\mathcal{F}_{\mathcal{L}}(X)$, or $\mathcal{F}(X)$ or L^X
- fuzzy relation on $A: \eta: A^n \to L$.
- fuzzy equivalence: a binary fuzzy relation on A which is
 - reflexive: $\eta(x, x) = 1$, for all $x \in A$,
 - symmetric: $\eta(x, y) = \eta(y, x)$, for $x, y \in A$,
 - transitive: $\eta(x, y) \otimes \eta(y, z) \le \eta(x, z)$, for all $x, y, z, \in A$.

Algebras of Fuzzy Sets

Let $\mathcal{L} = \langle L, \wedge, \vee, 0, 1, \otimes, \rightarrow \rangle$ be a complete residuated lattice, *X* a nonempty set.

- set of all *L*-fuzzy sets on *X*: $\mathcal{F}_{\mathcal{L}}(X)$, or $\mathcal{F}(X)$ or L^X
- fuzzy relation on $A: \eta: A^n \to L$.
- fuzzy equivalence: a binary fuzzy relation on A which is
 - reflexive: $\eta(x, x) = 1$, for all $x \in A$,
 - symmetric: $\eta(x, y) = \eta(y, x)$, for $x, y \in A$,
 - transitive: $\eta(x, y) \otimes \eta(y, z) \le \eta(x, z)$, for all $x, y, z, \in A$.
- fuzzy equality: fuzzy equivalence relation η if from η(x, y) = 1 it follows x = y.

Image: A image: A

Extension Principle

- extension principle: how to extend a function $f: X_1 \times \cdots \times X_n \to Y$ into $\overline{f}: L^{X_1} \times \cdots \times L^{X_n} \to L^Y$ (L. Zadeh)
- applications: fuzzy arithmetic, engineering problems, analysis of discrete dynamical systems, fuzzy fractals, fuzzy transportation problems...

Extension Principle

- extension principle: how to extend a function
 - $f: X_1 \times \cdots \times X_n \to Y$ into $\overline{f}: L^{X_1} \times \cdots \times L^{X_n} \to L^Y$ (L. Zadeh)
- applications: fuzzy arithmetic, engineering problems, analysis of discrete dynamical systems, fuzzy fractals, fuzzy transportation problems...
- Let \mathcal{L} be a complete lattice or a complete residuated lattice, $f: X_1 \times \cdots \times X_n \to Y$. Define $\overline{f}: L^{X_1} \times \cdots \times L^{X_n} \to L^Y$

$$\overline{f}(\mu_1,\ldots,\mu_n)(y) = \bigvee_{\substack{x_i \in X_i \\ f(x_1,\ldots,x_n) = y}} \mu_1(x_1) \wedge \cdots \wedge \mu_n(x_n).$$
(1)

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić

$$\overline{f}^{\otimes}(\mu_1,\ldots,\mu_n)(\mathbf{y}) = \bigvee_{\substack{x_i \in X_i \\ f(x_1,\ldots,x_n) = \mathbf{y}}} \mu_1(x_1) \otimes \cdots \otimes \mu_n(x_n).$$
(2)

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić

Algebras of Fuzzy Sets

$$\overline{f}^{\otimes}(\mu_1,\ldots,\mu_n)(y) = \bigvee_{x_i \in X_i \atop f(x_1,\ldots,x_n)=y} \mu_1(x_1) \otimes \cdots \otimes \mu_n(x_n).$$
(2)

- extension principle in the context of algebras:
 - Murali (1991); set of truth values: real unit interval (min/max)

$$\overline{f}^{\otimes}(\mu_1,\ldots,\mu_n)(y) = \bigvee_{x_i \in X_i \atop f(x_1,\ldots,x_n) = y} \mu_1(x_1) \otimes \cdots \otimes \mu_n(x_n).$$
(2)

- extension principle in the context of algebras:
 - Murali (1991); set of truth values: real unit interval (min/max)
 - Ésik, Liu (2007) used this structures to prove "Kleene theorems" for fuzzy tree languages; set of truth values: completely distributive lattice

$$\overline{f}^{\otimes}(\mu_1,\ldots,\mu_n)(y) = \bigvee_{x_i \in X_i \atop f(x_1,\ldots,x_n) = y} \mu_1(x_1) \otimes \cdots \otimes \mu_n(x_n).$$
(2)

- extension principle in the context of algebras:
 - Murali (1991); set of truth values: real unit interval (min/max)
 - Ésik, Liu (2007) used this structures to prove "Kleene theorems" for fuzzy tree languages; set of truth values: completely distributive lattice

Algebra of fuzzy sets 1

Definition

Let \mathcal{L} be a complete lattice or a residuated lattice and $\mathcal{A} = \langle A, \{f \mid f \in \Omega\} \rangle$ be a universal algebra. If $f \in \Omega$ is an *n*-ary fundamental operation of \mathcal{A} , define $\overline{f}^{\wedge} : \mathcal{F}(A)^n \to \mathcal{F}(A)$ in the following way:

$$\overline{f}^{\wedge}(\mu_1,\ldots,\mu_n)(y) = \bigvee_{x_i \in X_i \atop f(x_1,\ldots,x_n)=y} \mu_1(x_1) \wedge \cdots \wedge \mu_n(x_n).$$

The algebra $\mathcal{F}^{\wedge}(\mathcal{A}) = \langle \mathcal{F}(\mathcal{A}), \{\overline{f}^{\wedge} | f \in \Omega\} \rangle$ will be called the \wedge -algebra of fuzzy sets induced by \mathcal{A} .

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets

Algebra of fuzzy sets 2

Definition

Let \mathcal{L} be a residuated lattice and $\mathcal{A} = \langle A, \{f \mid f \in \Omega\} \rangle$ be a universal algebra. If $f \in \Omega$ is an *n*-ary fundamental operation of \mathcal{A} , define $\overline{f}^{\otimes} : \mathcal{F}(A)^n \to \mathcal{F}(A)$ in the following way:

$$\overline{f}^{\otimes}(\mu_1,\ldots,\mu_n)(\mathbf{y}) = \bigvee_{\substack{x_i \in X_i \\ f(x_1,\ldots,x_n) = \mathbf{y}}} \mu_1(x_1) \otimes \cdots \otimes \mu_n(x_n).$$

The algebra $\mathcal{F}^{\otimes}(\mathcal{A}) = \langle \mathcal{F}(A), \{\overline{f}^{\otimes} \mid f \in \Omega\} \rangle$ will be called the \otimes -algebra of fuzzy sets induced by \mathcal{A} .

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić

Algebra of fuzzy sets 2

Definition

Let \mathcal{L} be a residuated lattice and $\mathcal{A} = \langle A, \{f \mid f \in \Omega\} \rangle$ be a universal algebra. If $f \in \Omega$ is an *n*-ary fundamental operation of \mathcal{A} , define $\overline{f}^{\otimes} : \mathcal{F}(A)^n \to \mathcal{F}(A)$ in the following way:

$$\overline{f}^{\otimes}(\mu_1,\ldots,\mu_n)(\mathbf{y}) = \bigvee_{\substack{x_i \in X_i \ f(x_1,\ldots,x_n) = \mathbf{y}}} \mu_1(x_1) \otimes \cdots \otimes \mu_n(x_n).$$

The algebra $\mathcal{F}^{\otimes}(\mathcal{A}) = \langle \mathcal{F}(A), \{\overline{f}^{\otimes} | f \in \Omega\} \rangle$ will be called the \otimes -algebra of fuzzy sets induced by \mathcal{A} .

Of course, if \mathcal{L} is a complete Heyting algebra, or more specially, if $L = \{0, 1\}$, the two kinds of induced algebras of fuzzy sets coincide.

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets

 crisp case: both kinds of induced algebras of fuzzy sets become the ordinary *power algebra* of A (*algebra of complexes* or *global* of A).

Power algebras 1

• crisp case: both kinds of induced algebras of fuzzy sets become the ordinary *power algebra* of A (*algebra of complexes* or *global* of A).

Definition

Let *A* be a non-empty set, $\mathcal{P}(A)$ the set of all subsets of *A*, and $f: A^n \to A$. We define $f^+: \mathcal{P}(A)^n \to \mathcal{P}(A)$ in the following way:

$$f^+(X_1,\ldots,X_n) = \{f(x_1,\ldots,x_n) \mid x_1 \in X_1,\ldots,x_n \in X_n\}.$$

If $\mathcal{A} = \langle A, \{f \mid f \in \Omega\} \rangle$ is an algebra, the **power algebra** (or **complex algebra**, or **global**) $\mathcal{P}(\mathcal{A})$ is defined as:

$$\mathcal{P}(\mathcal{A}) = \langle \mathcal{P}(A), \{ f^+ \mid f \in \Omega \} \rangle.$$

Power algebras 2

- crisp power algebras are used:
 - group theory, semigroup theory
 - lattices (the set of ideals of a distributive lattice *L* again forms a lattice, and meets and joins in the new lattice are precisely the power operations of meets and joins in *L*)
 - formal language theory (the product of two languages is simply the power operation of concatenation of words)
 - non-classical logics (Jonsson, Tarski, Boolean algebras with operators...)

Power algebras 2

- crisp power algebras are used:
 - group theory, semigroup theory
 - lattices (the set of ideals of a distributive lattice *L* again forms a lattice, and meets and joins in the new lattice are precisely the power operations of meets and joins in *L*)
 - formal language theory (the product of two languages is simply the power operation of concatenation of words)
 - non-classical logics (Jonsson, Tarski, Boolean algebras with operators...)

Proposition

Let \mathcal{A} be any universal algebra, and \mathcal{L} the usual two element Boolean algebra. Then both of \wedge -algebra and the \otimes -algebra of L-fuzzy sets induced by \mathcal{A} coincide with the power algebra of \mathcal{A} , i.e.

$$\mathcal{F}^{\wedge}(\mathcal{A}) = \mathcal{F}^{\otimes}(\mathcal{A}) = \mathcal{P}(\mathcal{A}).$$

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić

Algebras of Fuzzy Sets

Homomorphisms 1

Definition

Let \mathcal{A} and \mathcal{B} be algebras of the same type Ω . A mapping $\alpha : A \to B$ is a **homomorphism from** \mathcal{A} to \mathcal{B} if for all $n \ge n$, all $f \in \Omega_n$, all $a_1, a_2, \ldots, a_n \in A$,

$$\alpha(f^{\mathcal{A}}(a_1, a_2, \dots, a_n)) = f^{\mathcal{B}}(\alpha(a_1), \alpha(a_2), \dots, \alpha(a_n)).$$

Proposition

Let \mathcal{L} be a lattice or a residuated lattice. Then:

(a) If
$$\alpha : A \to B, \beta : B \to C$$
, then $\overline{(\beta \circ \alpha)} = \overline{\beta} \circ \overline{\alpha}$.

(b) If $\alpha : A \to B$ is a bijection, then $\overline{\alpha} : \mathcal{F}(A) \to \mathcal{F}(B)$ is also a bijection.

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets

Homomorphisms 2

Let $\alpha : \mathcal{A} \to \mathcal{B}$ be a homomorphism. Will the induced mapping $\overline{\alpha} : \mathcal{F}(A) \to \mathcal{F}(B)$ be a homomorphism from $\mathcal{F}^{\otimes}(\mathcal{A})$ to $\mathcal{F}^{\otimes}(\mathcal{B})$, and from $\mathcal{F}^{\wedge}(\mathcal{A})$ to $\mathcal{F}^{\wedge}(\mathcal{B})$? The two kinds of induced algebras of fuzzy sets do not behave in the same way!

Homomorphisms 2

Let $\alpha : \mathcal{A} \to \mathcal{B}$ be a homomorphism. Will the induced mapping $\overline{\alpha} : \mathcal{F}(A) \to \mathcal{F}(B)$ be a homomorphism from $\mathcal{F}^{\otimes}(\mathcal{A})$ to $\mathcal{F}^{\otimes}(\mathcal{B})$, and from $\mathcal{F}^{\wedge}(\mathcal{A})$ to $\mathcal{F}^{\wedge}(\mathcal{B})$? The two kinds of induced algebras of fuzzy sets do not behave in the same way!

Theorem

Let \mathcal{L} be a complete residuated lattice, \mathcal{A} and \mathcal{B} two algebras of type Ω . If $\alpha : \mathcal{A} \to \mathcal{B}$ is a homomorphism, then $\overline{\alpha} : \mathcal{F}^{\otimes}(\mathcal{A}) \to \mathcal{F}^{\otimes}(\mathcal{B})$ is also a homomorphism.

BUT: there are algebras \mathcal{A}, \mathcal{B} , a complete lattice L, such that $\alpha : \mathcal{A} \to \mathcal{B}$ is a homomorphism, but $\overline{\alpha} : \mathcal{F}^{\wedge}(\mathcal{A}) \to \mathcal{F}^{\wedge}(\mathcal{B})$ is not a homomorphism!

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets University of Novi Sad

(日)

Example

Example								
•	u_1	u_2	v_1	/2				
u_1	<i>v</i> ₁	v_1	u_1	<i>i</i> ₂				
u_2	<i>v</i> ₁	v_1	u_2	ι_2				
v_1	<i>v</i> ₂	v_2	v_1	'1				
v_2	<i>v</i> ₂	v_2	v_1	'1				
$\begin{array}{c cc} \cdot & a & b \\ \hline a & b & a \\ b & b & b \end{array}$								
Let \mathcal{L} be the pentagon (with $0 < r < q < 1, 0 < p < 1, p$ not being comparable to r or q). There is a homomorphism from A to B such								

that $\overline{\alpha} : \mathcal{F}^{\wedge}(\mathcal{A}) \to \mathcal{F}^{\wedge}(\mathcal{B})$ is not a homomorphism.

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić

Algebras of Fuzzy Sets

Theorem

Let \mathcal{L} be a completely distributive lattice, \mathcal{A} and \mathcal{B} two algebras of type Ω . If $\alpha : \mathcal{A} \to \mathcal{B}$ is a homomorphism, then $\overline{\alpha} : \mathcal{F}^{\wedge}(\mathcal{A}) \to \mathcal{F}^{\wedge}(\mathcal{B})$ is also a homomorphism.

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets

Theorem

Let \mathcal{L} be a completely distributive lattice, \mathcal{A} and \mathcal{B} two algebras of type Ω . If $\alpha : \mathcal{A} \to \mathcal{B}$ is a homomorphism, then $\overline{\alpha} : \mathcal{F}^{\wedge}(\mathcal{A}) \to \mathcal{F}^{\wedge}(\mathcal{B})$ is also a homomorphism.

Theorem

Let \mathcal{L} be a complete lattice or a complete residuated lattice, and \mathcal{A} a subalgebra of algebra \mathcal{B} . Then $\mathcal{F}^{\wedge}(\mathcal{A})$ can be embedded into the algebra $\mathcal{F}^{\wedge}(\mathcal{B})$.

Theorem

Let \mathcal{L} be a completely distributive lattice, \mathcal{A} and \mathcal{B} two algebras of type Ω . If $\alpha : \mathcal{A} \to \mathcal{B}$ is a homomorphism, then $\overline{\alpha} : \mathcal{F}^{\wedge}(\mathcal{A}) \to \mathcal{F}^{\wedge}(\mathcal{B})$ is also a homomorphism.

Theorem

Let \mathcal{L} be a complete lattice or a complete residuated lattice, and \mathcal{A} a subalgebra of algebra \mathcal{B} . Then $\mathcal{F}^{\wedge}(\mathcal{A})$ can be embedded into the algebra $\mathcal{F}^{\wedge}(\mathcal{B})$.

Theorem

Let \mathcal{L} be a complete residuated lattice, and \mathcal{A} a subalgebra of algebra \mathcal{B} . Then $\mathcal{F}^{\otimes}(\mathcal{A})$ can be embedded into the algebra $\mathcal{F}^{\otimes}(\mathcal{B})$.

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets University of Novi Sad

Definition

The **fuzzy product** of the family of fuzzy subsets $\langle \eta_i \in \mathcal{F}(A_i) | i \in I \rangle$ is the fuzzy subset $\prod^{\wedge} \eta_i : \prod A_i \to L$ defined in the following way: if $x \in \prod A_i$, where $x_i = x(i)$ for $i \in I$, then

$$(\prod^{\wedge} \langle \eta_i \mid i \in I \rangle)(x) = \bigwedge \{\eta_i(x_i) \mid i \in iI\}.$$

University of Novi Sad

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets

Definition

The **fuzzy product** of the family of fuzzy subsets $\langle \eta_i \in \mathcal{F}(A_i) | i \in I \rangle$ is the fuzzy subset $\prod^{\wedge} \eta_i : \prod A_i \to L$ defined in the following way: if $x \in \prod A_i$, where $x_i = x(i)$ for $i \in I$, then

$$(\prod^{\wedge} \langle \eta_i \mid i \in I \rangle)(x) = \bigwedge \{ \eta_i(x_i) \mid i \in iI \}.$$

Theorem

Let \mathcal{L} be a completely distributive lattice and $\langle \mathcal{A}_i \mid i \in I \rangle$ be a family of algebras of the type Ω . The mapping $\varphi : \prod_{i \in I} \mathcal{F}(A_i) \to \mathcal{F}(\prod_{i \in I} A_i)$ defined by $\varphi(\eta) = \prod^{\wedge} \eta(i)$ is a homomorphism from $\prod_{i \in I} \mathcal{F}^{\wedge}(\mathcal{A}_i)$ to $\mathcal{F}^{\wedge}(\prod_{i \in I} \mathcal{A}_i)$.

It is not hard to see that the above defined mapping $\varphi: \prod_{i \in I} \mathcal{F}(A_i) \to \mathcal{F}(\prod_{i \in I} A_i)$ is not necessarily injective.

Example

Take L = [0, 1], $I = \{1, 2, 3\}$ and $\eta_1, \eta_2, \eta_3, \eta_4 : A \to L$ such that $\eta_1(x) = 0.1$, for all $x \in A$ $\eta_2(x) = 0.1$, for all $x \in A$ $\eta_3(x) = 0.9$, for all $x \in A$ $\eta_4(x) = 0.8$, for all $x \in A$ Then $\varphi((\eta_1, \eta_2, \eta_3)) = \varphi((\eta_1, \eta_2, \eta_4)) = \mu$, where $\mu(x) = 0.1$ for all $x \in A$.

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić

Definition

$$\mathcal{F}_+(A) \subseteq \mathcal{F}(A) \text{ is defined by} \\ \mathcal{F}_+(A) = \{\eta : A \to L \mid (\exists x \in A) \ \eta(x) = 1\}.$$

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets University of Novi Sad

O > <
 O >

Definition

$$\mathcal{F}_+(A) \subseteq \mathcal{F}(A) \text{ is defined by} \\ \mathcal{F}_+(A) = \{\eta : A \to L \mid (\exists x \in A) \ \eta(x) = 1\}.$$

Theorem

Let $\langle \mathcal{A}_i \mid i \in I \rangle$ be a family of sets. Then the mapping $\varphi_+ : \prod_{i \in I} \mathcal{F}_+(A_i) \to \mathcal{F}_+(\prod_{i \in I} A_i)$ defined by $\varphi_+(\eta) = \prod_{i \in I}^{\wedge} \eta(i)$ is injective.

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets

Definition

$$\mathcal{F}_+(A) \subseteq \mathcal{F}(A) \text{ is defined by} \\ \mathcal{F}_+(A) = \{\eta : A \to L \mid (\exists x \in A) \ \eta(x) = 1\}.$$

Theorem

Let $\langle \mathcal{A}_i \mid i \in I \rangle$ be a family of sets. Then the mapping $\varphi_+ : \prod_{i \in I} \mathcal{F}_+(A_i) \to \mathcal{F}_+(\prod_{i \in I} A_i)$ defined by $\varphi_+(\eta) = \prod_{i \in I}^{\wedge} \eta(i)$ is injective.

Theorem

Let \mathcal{A} be an algebra of type Ω . Then $\mathcal{F}_+(A)$ is a subuniverse of the algebras $\mathcal{F}^{\wedge}(\mathcal{A})$ and $\mathcal{F}^{\otimes}(\mathcal{A})$.

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets University of Novi Sad

Image: A matched block of the second seco

It can be proved that the two kind of algebras of fuzzy sets behave in different way in respect to direct products.

Theorem

Let \mathcal{L} be a completely distributive lattice and $\langle \mathcal{A}_i \mid i \in I \rangle$ be a family of algebras of the type Ω . The mapping $\varphi : \prod_{i \in I} \mathcal{F}(A_i) \to \mathcal{F}(\prod_{i \in I} A_i)$ defined by $\varphi(\eta) = \prod^{\wedge} \eta(i)$ is a homomorphism from $\prod_{i \in I} \mathcal{F}^{\wedge}(\mathcal{A}_i)$ to $\mathcal{F}^{\wedge}(\prod_{i \in I} \mathcal{A}_i)$.

It can be proved that the two kind of algebras of fuzzy sets behave in different way in respect to direct products.

Theorem

Let \mathcal{L} be a completely distributive lattice and $\langle \mathcal{A}_i \mid i \in I \rangle$ be a family of algebras of the type Ω . The mapping $\varphi : \prod_{i \in I} \mathcal{F}(A_i) \to \mathcal{F}(\prod_{i \in I} A_i)$ defined by $\varphi(\eta) = \prod^{\wedge} \eta(i)$ is a homomorphism from $\prod_{i \in I} \mathcal{F}^{\wedge}(\mathcal{A}_i)$ to $\mathcal{F}^{\wedge}(\prod_{i \in I} \mathcal{A}_i)$.

BUT: We can construct two algebras \mathcal{A}_1 and \mathcal{A}_2 such that the mapping $\varphi : \mathcal{F}(A_1) \times \mathcal{F}(A_2) \to \mathcal{F}(A_1 \times A_2)$ defined by $\varphi(\langle \eta, \mu \rangle) = \prod_{i \in \{1,2\}}^{\wedge} \eta(i)$ is not a homomorphism from $\mathcal{F}^{\otimes}(\mathcal{A}_1) \times \mathcal{F}^{\otimes}(\mathcal{A}_2)$ to $\mathcal{F}^{\otimes}(\mathcal{A}_1 \times \mathcal{A}_2)$.

(日)

Example

Example

The algebras A_1 and A_2 will be groupoids given respectively by their Cayley's tables:

•	a	b	·	С	d
a	b	а	С	С	d
b	b	b	d	С	С

Let \mathcal{L} be standard residual lattice on the real unit interval [0,1] with the product structure, i.e. \otimes is the usual product of real numbers. Let us take $\eta = \langle \eta_1, \eta_2 \rangle$, $\mu = \langle \mu_1, \mu_2 \rangle$, where $\eta_1(a) = 0.6$, $\eta_2(c) = 0.5$, $\mu_1(b) = 0.7$, $\mu_2(d) = 0.8$. It can be proved that

$$(\varphi(\eta \cdot \mu))(\langle a, d \rangle) \neq (\varphi(\eta) \cdot \varphi(\mu)(\langle a, d \rangle).$$

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić

Algebras of Fuzzy Sets

Algebras with fuzzy equalities

Proposition

Let \mathcal{L} be a complete residuated lattice, \mathcal{A} a universal algebra, and \approx the similarity relation defined on $\mathcal{F}(A) = L^A$ by $(\eta \approx \mu) = \wedge \{\eta(x) \leftrightarrow \mu(x) \mid x \in A\}$. Then the structures $\langle \mathcal{F}^{\wedge}(\mathcal{A}), \approx \rangle$ and $\langle \mathcal{F}^{\otimes}(\mathcal{A}), \approx \rangle$ are algebras with fuzzy equality.

University of Novi Sad

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets

Algebras with fuzzy equalities

Proposition

Let \mathcal{L} be a complete residuated lattice, \mathcal{A} a universal algebra, and \approx the similarity relation defined on $\mathcal{F}(A) = L^A$ by $(\eta \approx \mu) = \wedge \{\eta(x) \leftrightarrow \mu(x) \mid x \in A\}$. Then the structures $\langle \mathcal{F}^{\wedge}(\mathcal{A}), \approx \rangle$ and $\langle \mathcal{F}^{\otimes}(\mathcal{A}), \approx \rangle$ are algebras with fuzzy equality.

Definition (Belohlavek)

Let \mathcal{L} be a complete residuated lattice, $\langle A, \Omega \rangle$ be a universal algebra, and \approx an fuzzy equality on A. Then the structure $\mathcal{A} = \langle A, \Omega, \approx \rangle$ is an \mathcal{L} -algebra with fuzzy equality if each operation $f \in \Omega$ is compatible with \approx , i.e. for any *n*-ary $f \in \Omega$, for all $a_1, \ldots, a_n, b_1, \ldots, b_n \in A$ we have $(a_1 \approx b_1) \otimes \cdots \otimes (a_n \approx b_n) \leq f(a_1, \ldots, a_n) \approx f(b_1, \ldots, b_n)$.

(日)

Fuzzy (sub)algebras and equalities

Definition (B. Šešelja, A. Tepavčević)

Let \mathcal{A} be a universal algeba of type Ω , L a complete lattice, $\mu : A \to L$ a fuzzy (sub)algebra of \mathcal{A} . A μ -fuzzy equality is any binary fuzzy relation $E : A^2 \to L$ such that:

•
$$E(x, y) < \mu(x) = E(x, x)$$
, for all different $x, y \in A$,

•
$$E(x, y) = E(y, x)$$
, for all $x, y \in A$,

• $E(x, y) \wedge E(y, z) \leq E(x, z)$, for all $x, y, z \in A$,

•
$$E(a_1, b_1) \wedge E(a_2, b_2) \wedge \cdots \wedge E(a_n, b_n) \leq E(f(a_1, \ldots, a_n), f(b_1, \ldots, b_n))$$
, for all...

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić

Algebras of Fuzzy Sets
Fuzzy (sub)algebras and equalities

Definition (B. Šešelja, A. Tepavčević)

Let \mathcal{A} be a universal algeba of type Ω , L a complete lattice, $\mu : A \to L$ a fuzzy (sub)algebra of \mathcal{A} . A μ -fuzzy equality is any binary fuzzy relation $E : A^2 \to L$ such that:

•
$$E(x, y) < \mu(x) = E(x, x)$$
, for all different $x, y \in A$,

•
$$E(x, y) = E(y, x)$$
, for all $x, y \in A$,

•
$$E(x, y) \wedge E(y, z) \leq E(x, z)$$
, for all $x, y, z \in A$,

•
$$E(a_1, b_1) \wedge E(a_2, b_2) \wedge \cdots \wedge E(a_n, b_n) \leq E(f(a_1, \ldots, a_n), f(b_1, \ldots, b_n))$$
, for all...

Let \mathcal{A} be a universal algeba of type Ω , L a complete lattice. Then $\mu : A \to L$ is a *fuzzy* (*sub*)*algebra* of \mathcal{A} if for all...

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić

Algebras of Fuzzy Sets

• algebras with fuzzy equality : variety theorem (Belohlavek)

<ロト</p>

University of Novi Sad

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić

Algebras of Fuzzy Sets

- algebras with fuzzy equality : variety theorem (Belohlavek)
- fuzzy (sub)algebras with fuzzy equality: one direction of variety theorem

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić

Algebras of Fuzzy Sets

- algebras with fuzzy equality : variety theorem (Belohlavek)
- fuzzy (sub)algebras with fuzzy equality: one direction of variety theorem
- Question: How to modify the definition of μ -equality, such that we can get the other direction of the HSP theorem?

- algebras with fuzzy equality : variety theorem (Belohlavek)
- fuzzy (sub)algebras with fuzzy equality: one direction of variety theorem
- Question: How to modify the definition of μ -equality, such that we can get the other direction of the HSP theorem?
- Milanka Bradić (PhD student): a new definition of μ-equality...

- algebras with fuzzy equality : variety theorem (Belohlavek)
- fuzzy (sub)algebras with fuzzy equality: one direction of variety theorem
- Question: How to modify the definition of μ -equality, such that we can get the other direction of the HSP theorem?
- Milanka Bradić (PhD student): a new definition of μ-equality...

Definition

Let \mathcal{M} be a universal algebra of, \mathcal{L} a residuated lattice, $r \in L$, and $\mu : M \longrightarrow L$. The **right** (μ, r) **relation** is the fuzzy relation $\approx^{\mathcal{M}}: M \times M \longrightarrow L$ defined in the following way:

$$(a \approx^{\mathcal{M}} b) =_{def} \begin{cases} \mathbf{1}, & a = b\\ (\mu(a) \lor \mu(b)) \to r, & a \neq b \end{cases}$$
(3)

Example

Let **N** be the set of positive integers, and $\mathcal{M} = \langle N, +, \cdot \rangle$, r = 1/3, \mathcal{L} standard lattice on [0, 1] (Lukasiewicz or product structure - Gödel is trivial in this case!),

$$\mu(n) =_{def} \min\left(\frac{1}{3} + \frac{1}{n}, 1\right). \tag{4}$$

If $\approx: N \times N \longrightarrow L$ is the right (μ, r) relation:

$$m \approx n =_{def} \begin{cases} 1, & m = n \\ (\mu(m) \lor \mu(n)) \to \frac{1}{3} & m \neq n. \end{cases}$$
(5)

Then:

Right similarity with Lukasiewicz structure

a	b	$\mu(a)$	$\mu(b)$	$a \approx b$
60000	90000	0,33335	0,33334	0,99997
60000	b > 60000	0,33335	$\mu(b)$	0,99997
500	60000	0,33533	0,33335	0,998
500	b > 500	0,33533	$\mu(b)$	0,998
5	30000	0,53333	0,33337	0,8
5	b > 5	0,53333	$\mu(b)$	0,8
3	5	0,66667	0,53333	0,66667
3	b > 3	0,66667	$\mu(b)$	0,66667
2	b > 2	0,83333	$\mu(b)$	0,5
1	b > 1	1	$\mu(b)$	$\frac{1}{3}$

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić

Algebras of Fuzzy Sets

Right similarity with the product structure

a	b	$\mu(a)$	$\mu(b)$	$a \approx b$
60000	90000	0,33335	0,33334	0,99995
60000	b > 60000	0,33335	$\mu(b)$	0,99995
500	60000	0,33533	0,33335	0,99404
500	b > 500	0,33533	$\mu(b)$	0,99404
5	30000	0,53333	0,33337	0,625
5	b > 5	0,53333	$\mu(b)$	0,5
3	5	0,66667	0,53333	0,5
3	b > 3	0,66667	$\mu(b)$	0,4
2	b > 2	0,83333	$\mu(b)$	0,5
1	b > 1	1	$\mu(b)$	$\frac{1}{3}$

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić

Algebras of Fuzzy Sets

Let \mathcal{M} be a universal algebra of type Ω , \mathcal{L} a residuated lattice, $r \in L$, $\mu : M \longrightarrow L$, and $\approx^{\mathcal{M}} : M \times M \longrightarrow L$ the right (μ, r) relation. Suppose that $r < \mu(m)$ for all $m \in M$ and for all $f \in \Omega_n$, $n \ge 1$, it holds

$$\mu(f^{\mathcal{M}}(m_1,\ldots,m_n)) \leqslant \bigwedge_{i=1}^n \mu(m_i), \text{ for all } m_1,\ldots,m_n \in M, \qquad (6)$$

Then $\langle M, \Omega, \approx^{\mathcal{M}} \rangle$ is an \mathcal{L} -algebra with fuzzy equality.

Let \mathcal{M} be a universal algebra of type Ω , \mathcal{L} a residuated lattice, $r \in L$, $\mu : M \longrightarrow L$, and $\approx^{\mathcal{M}} : M \times M \longrightarrow L$ the right (μ, r) relation. Suppose that $r < \mu(m)$ for all $m \in M$ and for all $f \in \Omega_n$, $n \ge 1$, it holds

$$\mu(f^{\mathcal{M}}(m_1,\ldots,m_n)) \leqslant \bigwedge_{i=1}^n \mu(m_i), \text{ for all } m_1,\ldots,m_n \in M, \qquad (6)$$

Then $\langle M, \Omega, \approx^{\mathcal{M}} \rangle$ is an \mathcal{L} -algebra with fuzzy equality.

RESULTS:

- right (µ, r) identity,
- right (μ, r) equational class of algebras $(r \text{ is fixed}, \mu \text{ not})$
- Birkhoff-like theorems! (HSP stability and equational classes)

Left (μ, s) relation

Definition

Let \mathcal{M} be a universal algebra of, \mathcal{L} a residuated lattice, $s \in L$, and $\mu : M \longrightarrow L$. The **left** (μ, s) **relation** is the fuzzy relation $\approx^{\mathcal{M}}: M \times M \longrightarrow L$ defined in the following way:

$$(a \approx^{\mathcal{M}} b) =_{def} \begin{cases} \mathbf{1}, & a = b \\ (s \to (\mu(a) \lor \mu(b))), & a \neq b \end{cases}$$
(7)

< □ > < 同

Example: financial mathematics (money, debt, credits, creditworthiness, solvency,...)

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić Algebras of Fuzzy Sets

Let \mathcal{M} be a universal algebra of type Ω , \mathcal{L} a residuated lattice, $s \in L$, $\mu : M \longrightarrow L$, and $\approx^{\mathcal{M}} : M \times M \longrightarrow L$ the left (μ, s) relation. Suppose that $\mu(m) < s$ for all $m \in M$ and for all $f \in \Omega_n$, $n \ge 1$, it holds

$$\bigvee_{i=1}^{n} \mu(m_i) \leq \mu(f^{\mathcal{M}}(m_1, \ldots, m_n) \text{ for all } m_1, \ldots, m_n \in M,$$

Then $\langle M, \Omega, \approx^{\mathcal{M}} \rangle$ is an \mathcal{L} -algebra with fuzzy equality.

Let \mathcal{M} be a universal algebra of type Ω , \mathcal{L} a residuated lattice, $s \in L$, $\mu : \mathcal{M} \longrightarrow L$, and $\approx^{\mathcal{M}} : \mathcal{M} \times \mathcal{M} \longrightarrow L$ the left (μ, s) relation. Suppose that $\mu(m) < s$ for all $m \in \mathcal{M}$ and for all $f \in \Omega_n$, $n \ge 1$, it holds

$$\bigvee_{i=1}^{n} \mu(m_i) \leq \mu(f^{\mathcal{M}}(m_1, \ldots, m_n) \text{ for all } m_1, \ldots, m_n \in M,$$

Then $\langle M, \Omega, \approx^{\mathcal{M}} \rangle$ is an \mathcal{L} -algebra with fuzzy equality.

RESULTS:

- left (µ, s) identity,
- left (μ, s) equational class of algebras (r is fixed, μ not)
- Birkhoff-like theorems! (HSP stability and equational classes)

Further directions

- properties of special equational classes
- back to groupoids!
- structure of truth values as parameter! (how this impact the results)
- applications?

Thank you for your attention!

R. Madarasz, I Bošnjak, G. Vojvodić, M. Bradić

Algebras of Fuzzy Sets