Specificity measures and cardinalities of interval-valued fuzzy sets

Pavol Kráľ, Magdaléna Renčová Matej Bel University, Banská Bystrica

> FSTA 2012, Liptovský Ján January 30 – February 3, 2012

Interval-valued fuzzy set (IVFS)

We define $\mathcal{L}^{I} = (L^{I}, \leq_{L^{I}})$ by

$$L^{I} = \{ [x_{1}, x_{2}] \mid (x_{1}, x_{2}) \in [0, 1]^{2} \text{ and } x_{1} \leq x_{2} \}, \\ [x_{1}, x_{2}] \leq_{L^{I}} [y_{1}, y_{2}] \iff (x_{1} \leq y_{1} \text{ and } x_{2} \leq y_{2}), \\ \text{for all } [x_{1}, x_{2}], [y_{1}, y_{2}] \in L^{I}. \end{cases}$$

An interval-valued fuzzy set on U is a mapping $A: U \to L^I$.

$$\begin{split} \bar{L}^I &= \{ [x_1, x_2] \mid (x_1, x_2) \in \mathbb{R}^2 \text{ and } x_1 \leq x_2 \}, \\ \bar{L}^I_+ &= \{ [x_1, x_2] \mid (x_1, x_2) \in [0, +\infty[^2 \text{ and } x_1 \leq x_2 \}, \end{split}$$

Operations on \overline{L}^I , \overline{L}^I_+ and $\overline{L}^I_{+,0}$: For all $a, b \in \overline{L}^I$, $c, d \in \overline{L}^I_+$ and $e, f \in \overline{L}^I_{+,0}$

$$a + b = [a_1 + b_1, a_2 + b_2]$$

$$c \cdot d = [c_1d_1, c_2d_2],$$

$$\frac{e}{f} = \left[\frac{e_1}{f_2}, \frac{e_2}{f_1}\right],$$

T-norms and related operations on \mathcal{L}^{I} (Deschrijver)

- A t-norm on \mathcal{L}^{I} is a commutative, associative mapping $\mathcal{T}: (L^{I})^{2} \to L^{I}$ which is increasing in both arguments and which satisfies $\mathcal{T}(1_{\mathcal{L}^{I}}, x) = x$, for all $x \in L^{I}$.
- A t-conorm on \mathcal{L}^{I} is a commutative, associative mapping $\mathcal{S}: (L^{I})^{2} \to L^{I}$ which is increasing in both arguments and which satisfies $\mathcal{S}(0_{\mathcal{L}^{I}}, x) = x$, for all $x \in L^{I}$.
- A negation on \mathcal{L}^{I} is a decreasing mapping $\mathcal{N}: L^{I} \to L^{I}$ which satisfies $\mathcal{N}(0_{\mathcal{L}^{I}}) = 1_{\mathcal{L}^{I}}$ and $\mathcal{N}(1_{\mathcal{L}^{I}}) = 0_{\mathcal{L}^{I}}$. If $\mathcal{N}(\mathcal{N}(x)) = x$, for all $x \in L^{I}$, then \mathcal{N} is called involutive.

Intersection, union, complement and inclusion The generalized intersection $\cap_{\mathcal{T}}$, union $\cup_{\mathcal{S}}$ and complement $\operatorname{co}_{\mathcal{N}}$ of interval-valued fuzzy sets are defined as follows: for all $A, B \in \mathcal{F}_{\mathcal{L}^{I}}(U)$ and for all $u \in U$,

$$A \cap_{\mathcal{T}} B(u) = \mathcal{T}(A(u), B(u)),$$

$$A \cup_{\mathcal{S}} B(u) = \mathcal{S}(A(u), B(u)),$$

$$co_{\mathcal{N}} A(u) = \mathcal{N}(A(u)),$$

$$A \subseteq_{L^{I}} B \iff A(u) \leq_{L^{I}} B(u)$$

Scalar cardinalities

Human counting procedures in vague collections (Wygralak 2003, 2007, 2010)

- Wygralak, M.: Cardinalities of Fuzzy Sets, Springer, 2003
- a more or less subjective process which may lead to different numerical results,
- one needs to decide which elements are counted and what are their degrees of participation,
- using a single threshold \rightarrow scalar cardinalities,

Deschrijver G., Král', P.: On the cardinalities of interval-valued fuzzy sets, FSS 158 (2007)

Scalar cardinalities of IVFS A mapping $\operatorname{card}_I : \mathcal{F}^F_{\mathcal{L}^I}(U) \to \overline{L}^I_+$ is called a scalar cardinality of interval-valued fuzzy sets if the following conditions hold:

1 coincidence: for all $u \in U$,

 $\operatorname{card}_I(1_{\mathcal{L}^I}/u) = 1_{\mathcal{L}^I};$

2 monotonicity: for all $a, b \in L^I$ and $u, v \in U$,

 $a \leq_{L^{I}} b \implies \operatorname{card}_{I}(a/u) \leq_{L^{I}} \operatorname{card}_{I}(b/v);$

3 additivity: for all $A, B \in \mathcal{F}_{\mathcal{L}^{I}}^{F}(U)$,

 $\operatorname{supp}(A) \cap \operatorname{supp}(B) = \emptyset \implies$ $\implies \operatorname{card}_I(A \cup B) = \operatorname{card}_I(A) + \operatorname{card}_I(B).$

Representation theorem

A mapping $\operatorname{card}_I : \mathcal{F}_{\mathcal{L}^I}^F(U) \to \overline{L}_+^I$ is a scalar cardinality iff there exists a mapping $f_I : L^I \to L^I$ (called scalar cardinality pattern) fulfilling the following conditions:

1)
$$f_I(0_{\mathcal{L}^I}) = 0_{\mathcal{L}^I}, f_I(1_{\mathcal{L}^I}) = 1_{\mathcal{L}^I},$$

2 $f_I(a) \leq_{L^I} f_I(b)$ whenever $a \leq_{L^I} b$,

such that

$$\operatorname{card}_{I}(A) = \sum_{u \in \operatorname{supp}(A)} f_{I}(A(u)),$$

for each $A \in \mathcal{F}_{\mathcal{L}^{I}}^{F}(U)$.

1-semirepresentable cardinality patterns

 Let t ∈ D \ {0_{L^I}} and f be a cardinality pattern of fuzzy sets. Define

$$f_{I,1_t}(a) = \begin{cases} [f(a_1), f(a_2)], & \text{if } a \ge_{L^I} t, \\ [0,0], & \text{otherwise}, \end{cases}$$

for all $a \in L^{I}$. 2 Let $p \in [0, 1]$, $\lambda \in [0, 1[$. Define

$$f_{I,1_{p,\lambda}}(a) = \begin{cases} [1,1], & \text{if } a = 1_{\mathcal{L}^{I}}, \\ [0,0], & \text{if } a = 0_{\mathcal{L}^{I}}, \\ [a_{1}^{p}, \max\{a_{1}^{p}, \lambda\}], & \text{otherwise}, \end{cases}$$

for all $a \in L^I$.

2-semirepresentable cardinality patterns

 Let t ∈ D \ {1_{L^I}} and f be a cardinality pattern of fuzzy sets. Define

$$f_{I,2_t}(a) = \begin{cases} [0,0], & \text{if } a \leq_{L^I} t, \\ [f(a_1), f(a_2)], & \text{otherwise}, \end{cases}$$

for all $a \in L^{I}$. 2 Let $p \in [0, 1]$, $\lambda \in [0, 1[$. Define

$$f_{I,2_{p,\lambda}}(a) = \begin{cases} [1,1], & \text{if } a = 1_{\mathcal{L}^{I}}, \\ [0,0], & \text{if } a = 0_{\mathcal{L}^{I}}, \\ [\min\{a_{2}^{p},\lambda\},a_{2}^{p}], & \text{otherwise}, \end{cases}$$

for all $\overline{a \in L^I}$.

Non-representable cardinality patterns

1 The largest cardinality pattern f_I^{**} :

$$f_{I}^{**}(a) = \begin{cases} [1,1], & \text{if } a \neq 0_{\mathcal{L}^{I}}, \\ [0,0], & \text{otherwise}, \end{cases}$$

for all $a \in L^I$.

2 The smallest cardinality pattern $f_{I_{**}}$:

$$f_{I_{**}}(a) = \begin{cases} [1,1], & \text{if } a = 1_{\mathcal{L}^I}, \\ [0,0], & \text{otherwise}, \end{cases}$$

for all $a \in L^I$.

3 Define

 $f_{I\frac{1}{2}}(a) = [0.5, 0.5], \text{ where } a \in L^{I} \setminus \{0_{\mathcal{L}^{I}}, 1_{\mathcal{L}^{I}}\}.$

Specificity, non-specificity

Measures of the amount of information contained in a fuzzy subset

Hartley measure (1928)

 $\mathbf{H}(A) = \log_2(|A|)$

- decision making, performance of knowledge-based systems
 - a measure of the tranquility of making a decision the more specific the set of choices, the less anxiety provoking the decision (Yager, 1982),
 - specificity-correctness trade-off (Yager, 1982, 1984)
- approximate reasoning
 - minimal specificity principle (Dubois, Prade, 1987, 1995)

Specificity for FS (Yager, 1981, 1982)

Let *U* be a universe. A specificity for fuzzy sets is a mapping $SP : \mathcal{F}_{[0,1]}^F(U) \to [0,1]$ such that, for all *A*, $B \in \mathcal{F}_{[0,1]}^F(U)$:

- (S1) SP(A) = 1 if A is a singleton,
- (S2) SP(A) = 0 if A is an empty set,
- (S3) For normal fuzzy sets A, B it holds: $A \subseteq B$ then $SP(A) \ge SP(B)$.

$$Sp(A) = \sum_{i=1}^{n} \frac{\mu_A(x_i) - \mu_A(x_{i+1})}{i}$$

Non-specificity for FS (Higashi, Klir, 1983) Let *U* be a universe. A non-specificity for fuzzy sets is a mapping $NS : \mathcal{F}_{[0,1]}^F(U) \rightarrow [0, +\infty]$ such that, for all *A*, $B \in \mathcal{F}_{[0,1]}^F(U)$: (NS1) NS(A) = 1 if *A* is a singleton, (NS2) $A \subseteq B$ then $NS(A) \leq NS(B)$.

$$NS(A) = \sum_{i=1}^{n} (\mu_A(x_i) - \mu_A(x_{i+1})) \log_2 i$$

Interval-valued non-specificity for IVFS Let *U* be a universe. A non-specificity for fuzzy sets is a mapping $NSI : \mathcal{F}_{[0,1]}^F(U) \to \overline{L}_+^I$ such that, for all *A*, $B \in \mathcal{F}_{[0,1]}^F(U)$: (NSI1) NSI(A) = 1 if *A* is a singleton, (NSI2) $A \subseteq_{L^I} B$ then $NSI(A) \leq_{L^I} NSI(B)$.

Scalar cardinalities are non-specificities for IVFS.

Specificity for IVFS

(González-del-Campo, Garmendia, 2009)

Normal IVFS

An interval-valued fuzzy set A on a universe U is normal if there exists an element $u \in U$ such that $A(u) = 1_{\mathcal{L}^I}$.

Weak specificity

Let U be a universe. A weak specificity for interval-valued fuzzy sets is a mapping $SI : \mathcal{F}_{\mathcal{L}^{I}}^{F}(U) \to [0, 1]$ such that, for all $A, B \in \mathcal{F}_{\mathcal{L}^{I}}^{F}(U)$:

(SI1) SI(A) = 1 if A is a singleton,

(SI2) SI(A) = 0 if A is an empty set,

(SI3) If *A*, *B* are normal interval-valued fuzzy sets such that $A \subseteq_{L^{I}} B$, then $SI(A) \ge SI(B)$.

Specificity for IVFS

(González-del-Campo, Garmendia, Yager, 2010)

Transformation operator

An operator $f: [0,1]^2 \rightarrow [0,1]$ with $x \le y$ is called transformation operator if it is continuous, increasing and verifies

1
$$f(1,1) = 1$$

2
$$f(0,0) = 0$$

3
$$f(0,x) > 0$$
 for all $x \in (0,1]$,

• f(x,1) < 1 for all $x \in [0,1)$.

Example

 $f(x,y)=\frac{x+y}{2},$ $f(x,y)=\frac{x^2+y^2}{2},$ $f(x,y)=\alpha\cdot x+\beta\cdot y,$ where $\alpha+\beta=1,$ $\alpha>0,\beta>0.$

f-list

Let *U* be a universe. Let *A* be an interval-valued fuzzy set on *U* and let $\{[x_{1_q}, x_{2_q}]\}$, where $q \in \{1, ..., n\}$, be its membership intervals. Let *f* be a transformation operator. An *f*-list of *A* is the set of all membership intervals of elements belonging to $\operatorname{supp}(A)$ ordered decreasingly with respect to the operator *f*, i.e $[x_1, x_2] \leq_f [y_1, y_2] \iff f(x_1, x_2) \leq f(y_1, y_2).$

f-specificity

Let *U* be a universe. Let *f* be a transformation operator. Let $\{[x_{1_q}, x_{2_q}]\}$, where $q \in \{1, ..., n\}$, be an *f*-list of *A*. An *f*-specificity for interval-valued fuzzy sets is a mapping $SI_f : \mathcal{F}_{\mathcal{L}^I}^F(U) \to [0, 1]$ such that, for all $A, B \in \mathcal{F}_{\mathcal{L}^I}^F(U)$:

- (SIF1) $SI_f(A) = 1$ if A is a singleton,
- (SIF2) $SI_f(A) = 0$ if A is an empty set,
- (SIF3) If $[x_{1_1}, x_{2_1}]$ increases (according to \leq_{L^I}) then $SI_f(A)$ increases,
- (SIF4) If $[x_{1_q}, x_{2_q}]$ increases (according to \leq_{L^I}), for all $q \in \{2, \ldots, n\}$, then $SI_f(A)$ decreases.

$$\operatorname{SI}_{\mathbf{f}}(A) = Q_F(a_i) - \frac{1}{n-1} \sum_{\forall k \neq i} Q_F(a_k),$$

where $a_i = [x_{1_i}, x_{2_i}]$ maximizes Q_F and $x_1 \le Q_F \le x_2$

Interval-valued specificity for IVFS

Let U be a universe. An interval-valued specificity for interval-valued fuzzy sets is a mapping $SI : \mathcal{F}_{\mathcal{L}^{I}}^{F}(U) \to L^{U}$ such that, for all $A, B \in \mathcal{F}_{\mathcal{L}^{I}}^{F}(U)$:

- (SI1) $SI(A) = 1_{\mathcal{L}^I}$ if A is a singleton,
- (SI2) $SI(A) = 0_{\mathcal{L}^I}$ if A is an empty set,
- (SI3) If $A_2 = B_2 = 1$ and interval-valued fuzzy sets $A \subseteq_{L^I} B$, then $SI(A) \ge_{L^I} SI(B)$.

Non-representable specificities

● The most restrictive specificity SI_{*}:

$$\mathrm{SI}_*(A) = egin{cases} 1_{\mathcal{L}^I}, & ext{if } A ext{ is a singleton}, \ 0_{\mathcal{L}^I}, & ext{otherwise}, \end{cases}$$

for all $A \in \mathcal{F}_{\mathcal{L}^{I}}^{F}(U)$.

2 The least restrictive specificity

$$SI^*(A) = \begin{cases} 0_{\mathcal{L}^I}, & \text{if } A \text{ is an empty set,} \\ 1_{\mathcal{L}^I}, & \text{otherwise,} \end{cases}$$

for all $A \in \mathcal{F}_{\mathcal{L}^{I}}^{F}(U)$.

$$\operatorname{SI}_{C}(A) = \begin{cases} \frac{1_{\mathcal{L}^{I}}}{\operatorname{card}(A)}, & \text{if } A_{1} > 0, \\ 0_{\mathcal{L}^{I}}, & \text{otherwise.} \end{cases}$$

