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Introduction

Fixed finite space X = {1, . . . ,n}, functions from X to [0,1]
we identify with vectors x = (x1, . . . , xn)
integral on X is special aggregation function

U : [0,1]n → [0,1]

1) construction based on capacity (measure)
m : 2X → [0,1], U = I (m, •)
2) axiomatic approach
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Lebesgue integral

1) additive capacity = probability

m(A) =
∑
i∈A

wi , I (m,x) = U(x) =
n∑

i=1

wi xi

2) U is additive
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A capacity on X m : 2X → [0,1] which is non-decreasing, i.e., we
have m(E) ≤ m(F ) whenever E ⊆ F ⊆ X , m(∅) = 0 and m(X ) = 1.
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Choquet integral

Ch(m,x) =

∫ 1

0
m({i | xi ≥ t}) dt =

=
n∑

i=1

xπi · (m({πi , . . . , πn})−m({πi+1, . . . , πn})),

for some permutation (π1, π2, . . . , πn) of {1, . . . ,n} satisfying
xπ1 ≤ xπ2 ≤ · · · ≤ xπn

Sugeno integral

Su(m,x) =
1∨

t=0

(t ∧m({i | xi ≥ t}) =
n∨

i=1

(xπi ∧m({πi , . . . , πn})).
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Let x,y ∈ [0,1]n. Then x and y are said to be comonotone if, for all
i , j ∈ {1,2, . . . ,n}, we have (xi − xj ) · (yi − yj ) ≥ 0.

In other words, for comonotone x,y ∈ [0,1]n it is impossible to have
xi > xj and yi < yj .
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(i) An (n-dimensional) aggregation function is a function
A : [0,1]n → [0,1] which is non-decreasing in each component
and satisfies the boundary conditions A(0, . . . ,0) = 0 and
A(1, . . . ,1) = 1.

(ii) An aggregation function A : [0,1]n → [0,1] is said to be
comonotone additive if, for all x,y ∈ [0,1]n which are
comonotone and satisfy x + y ∈ [0,1]n, we have

U(x + y) = U(x) + U(y).
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Proposition

(Schmeidler 1986) Let U : [0,1]n → [0,1] be an n-ary aggregation
function. Then the following are equivalent:

(i) There is a capacity m : 2X → [0,1] such that U(·) = Ch(m, ·).
(ii) U is comonotone additive.
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Proposition

(Marichal 2001) Let U : [0,1]n → [0,1] be an n-ary aggregation
function. Then the following are equivalent:

(i) There is a capacity m : 2X → [0,1] such that U(·) = Su(m, ·).
(ii) U is ∧-homogeneous and comonotone maxitive, i.e., for each

c ∈ [0,1], the constant score vector c = (c, . . . , c) and all
comonotone x,y ∈ [0,1]n we have

U(c ∧ x) = c ∧ U(x),

U(x ∨ y) = U(x) ∨ U(y).
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A semicopula is two-dimensional aggregation function
� : [0,1]2 → [0,1] with neutral element 1.

Let � : [0,1]2 → [0,1] be a semicopula and let m : 2X → [0,1] be a
capacity on X . A discrete universal integral (based on �) is an
aggregation function I�,m : [0,1]n → [0,1] such that

(i) for all c ∈ [0,1] and all E ⊆ X we have I�,m(c · 1E ) = c �m(E);
(ii) for all x,y ∈ [0,1]n with m({i ∈ X | xi ≥ t}) = m({j ∈ X | yj ≥ t})

for all t ∈ [0,1] we have I�,m(x) = I�,m(y).
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Observe that if a capacity m assumes values in {0,1} only then all
discrete universal integrals are independent of the semicopula �, and
they correspond to lattice polynomials.
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A (binary) copula C : [0,1]2 → [0,1] is a semicopula which is
supermodular, i.e., for all x,y ∈ [0,1]2

C(x ∨ y) + C(x ∧ y) ≥ C(x) + C(y).

Proposition

Let C : [0,1]2 → [0,1] be a copula and m : 2X → [0,1] a capacity, and
define KC(m, ·) : [0,1]n → [0,1] by

KC(m,x) =
n∑

i=1

(C(xπi ,m({πi , . . . , πn})− C(xπi−1 ,m({πi , . . . , πn})),

putting x(0) = 0, by convention. Then KC is a discrete universal
integral.
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Figure: Copula-based universal integral KC
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KC(m,x) = C(xπ1 ,1)− C(xπ1 ,m({π2, π3})) + C(xπ2 ,m({π2, π3}))−

− C(xπ2 ,m({π3})) + C(xπ3 ,m({π3}))

KC(m,x) =
n∑

i=1

(C(xπi ,m({πi , . . . , πn}))− C(xπi ,m({πi+1, . . . , πn})))

for the product copula Π, Π(x , y) = x · y

KΠ(m,x) =
n∑

i=1

xπi · (m({πi , . . . , πn})−m({πi+1, . . . , πn}))

KΠ coincides with the Choquet integral

KM is just the Sugeno integral
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For a given capacity m : 2X → [0,1], I�,m : [0,1]n → [0,1] given by

I�,m(x) =
n∨

i=1

xi �m({j ∈ X | xj ≥ xi}) =
n∨

i=1

xπi �m({πi , . . . , πn}).

is the smallest universal integral linked to �

IM,m(·) = KM(m, ·) is the Sugeno integral
IΠ,m is known as the Shilkret integral
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Proposition

Let C be a copula and m a capacity on X. Then KC(m, ·) is a
comonotone modular aggregation function, i.e., for all comonotone
x,y ∈ [0,1]n

KC(m,x ∨ y) + KC(m,x ∧ y) = KC(m,x) + KC(m,y).

Define U : [0,1]2 → [0,1] by U(x , y) = (x ∧ 1
2 ) + ((y − 1

2 )∨ 0). Then U
is an idempotent modular, but there is no copula C so that

U = KC (m, •)
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Theorem

Let U : [0,1]n → [0,1] be an aggregation function. Then the following
are equivalent:

(i) there is a copula C and a capacity m on X such that
U(·) = KC(m, ·);

(ii) U is idempotent and comonotone modular, and for all E ,F ⊆ X
and all (u, v) ∈ [0,1]2 we have

U(1E ) = U(1F )⇒ U(u · 1E ) = U(u · 1F )

u ≤ v and U(1E ) ≤ U(1F )⇒

U(u · 1F )− U(u · 1E ) ≤ U(v · 1F )− U(v · 1E )



Introduction Choquet and Sugeno integrals Some classes of fuzzy integrals Axiomatic approach

Symmetry of an aggregation function U : [0,1]n → [0,1] means that
we have U(x1, . . . , xn) = U(xπ1 , . . . , xπn ) for each permutation
(π1, . . . , πn). Symmetry of a capacity means that we have
m(E) = m({πi | i ∈ E}) for each E ⊆ X and for each permutation
(π1, . . . , πn), i.e., m(E) = m(F ) whenever E ,F ⊆ X have the same
cardinality.

Theorem

Let U : [0,1]n → [0,1] be a symmetric aggregation function. Then the
following are equivalent:

(i) there is a copula C and a symmetric capacity m on X such that
U(·) = KC(m, ·);

(ii) U is idempotent and comonotone modular.
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(i) 2011 Mesiar, Zemánková: Ordered Modular Averages (OMA
operators)

(ii) 1988 Yager OWA operators, KΠ(m, ·) with respect to a symmetric
capacity m is characterized up to symmetry by the comonotone
additivity

(iii) KM(m, ·) with respect to a symmetric capacity m is an Ordered
Weighted Maximum (OWMax operator) - 1991 Dubois, Prade. It
is characterized by symmetry, comonotone maxitivity and
∧-homogeneity.
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Theorem

Let U : [0,1]n → [0,1] be an idempotent aggregation function. Then
the following are equivalent:

(i) there is a capacity m : 2X → [0,1] and a semicopula
� : [0,1]2 → [0,1] such that U = I�,m;

(ii) U is comonotone maxitive and for all E ,F ⊆ X with
U(1E ) ≤ U(1F ) and for each each t ∈ ]0,1[ we have
U(t · 1E ) ≤ U(t · 1F ).
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Note that we cannot omit the condition that U(1E ) = U(1F ) implies
U(t · 1E ) = U(t · 1F ). Define U : [0,1]2 → [0,1] by
U(x , y) = ∧(x , y) ∨ (∨(x , y))2. Then U is a symmetric, idempotent
and comonotone maxitive aggregation function. If we define
m : 2X → [0,1] by m(E) = U(1E ) we see that m(E) = 1 whenever
E 6= ∅. However, then for each semicopula � : [0,1]2 → [0,1] we get
I�,m = ∨ 6= U.
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Thanks for your attention
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