Aggregation functions and ultramodularity

Erich Peter Klement¹ Radko Mesiar²

¹JKU Linz, Austria ²STU Bratislava, Slovakia

FSTA 2012, Liptovský Ján

イロト イヨト イヨト イヨト

크

Contents

1 Introduction

- 2 Modular, supermodular, and ultramodular aggregation functions
- 3 Some constructions
- 4 Structure of ultramodular aggregation functions

Let *I* be a subinterval of \mathbb{R} and $f: I \to \mathbb{R}$ be a real function.

(i) *f* is said to be *convex* if, for all $x, y \in I$ and for all $\lambda \in [0, 1]$,

$$\lambda \cdot f(x) + (1 - \lambda) \cdot f(y) \ge f(\lambda \cdot x + (1 - \lambda) \cdot y);$$
 (1)

(ii) *f* is said to be *Jensen convex* if, for all $x, y \in I$,

$$\frac{f(x)+f(y)}{2} \ge f\left(\frac{x+y}{2}\right). \tag{2}$$

Let *I* be a subinterval of \mathbb{R} and $f: I \to \mathbb{R}$ be a real function. Then we have:

(i) *f* is convex if and only if, for all $x, y \in I$ and for all $\varepsilon > 0$ such that x < y and $y + \varepsilon \in I$,

$$f(y + \varepsilon) - f(y) \ge f(x + \varepsilon) - f(x).$$
 (3)

- (ii) If *f* is a continuous function then *f* is convex if and only if it is Jensen convex.
- (iii) If *f* is a monotone function then *f* is convex if and only if it is Jensen convex.
- (iv) If *f* is a bounded function then *f* is convex if and only if it is Jensen convex.

Let (L, \wedge, \vee) be a lattice. (i) A function $f: L \to \mathbb{R}$ is called *modular* if, for all $x, y \in L$, $f(x \lor y) + f(x \land y) = f(x) + f(y)$. (4) (ii) A function $f: L \to \mathbb{R}$ is called *supermodular* if, for all $x, y \in L$, $f(x \lor y) + f(x \land y) \ge f(x) + f(y)$. (5)

Proposition

An n-ary aggregation function A: $[0, 1]^n \rightarrow [0, 1]$ is modular if and only if there are non-decreasing functions f_1, f_2, \ldots, f_n : $[0, 1] \rightarrow [0, 1]$ with $\sum_{i=1}^n f_i(0) = 0$ and $\sum_{i=1}^n f_i(1) = 1$ such that, for all $(x_1, \ldots, x_n) \in [0, 1]^n$,

$$A(x_1,\ldots,x_n)=\sum_{i=1}^n f_i(x_i).$$

(日) (同) (目) (日) (日)

2

For non-decreasing functions $f: [0, 1]^2 \rightarrow [0, 1]$, supermodularity can be reformulated as

$$f(x^*, y^*) - f(x^*, y) - f(x, y^*) + f(x, y) \ge 0$$
(6)

for all $x, x^*, y, y^* \in [0, 1]$ with $x \le x^*$ and $y \le y^*$.

Proposition

An n-ary function $f: [0,1]^n \to [0,1]$ is supermodular if and only if each of its two-dimensional sections is supermodular, i.e., for each $\mathbf{x} \in [0,1]^n$ and all $i, j \in \{1, 2, ..., n\}$ with $i \neq j$, the function $f_{\mathbf{x},i,j}: [0,1]^2 \to [0,1]$ given by $f_{\mathbf{x},i,j}(u,v) = f(\mathbf{y})$, where $y_i = u$, $y_j = v$ and $y_k = x_k$ for $k \in \{1, 2, ..., n\} \setminus \{i, j\}$, is supermodular. For non-decreasing functions $f: [0, 1]^2 \rightarrow [0, 1]$, supermodularity can be reformulated as

$$f(x^*, y^*) - f(x^*, y) - f(x, y^*) + f(x, y) \ge 0$$
(6)

for all $x, x^*, y, y^* \in [0, 1]$ with $x \le x^*$ and $y \le y^*$.

Proposition

An n-ary function $f: [0,1]^n \to [0,1]$ is supermodular if and only if each of its two-dimensional sections is supermodular, i.e., for each $\mathbf{x} \in [0,1]^n$ and all $i, j \in \{1, 2, ..., n\}$ with $i \neq j$, the function $f_{\mathbf{x},i,j}: [0,1]^2 \to [0,1]$ given by $f_{\mathbf{x},i,j}(u, v) = f(\mathbf{y})$, where $y_i = u$, $y_j = v$ and $y_k = x_k$ for $k \in \{1, 2, ..., n\} \setminus \{i, j\}$, is supermodular.

The supermodularity of a function $f: [0, 1]^n \rightarrow [0, 1]$ is preserved if the arguments are distorted, i.e., if $g_1, \ldots, g_n: [0, 1] \rightarrow [0, 1]$ are non-decreasing functions, then the function $h: [0, 1]^n \rightarrow [0, 1]$ given by $h(\mathbf{x}) = f(g_1(x_1), \ldots, g_n(x_n))$ is supermodular (if *f* is a supermodular aggregation function with $f(g_1(0), \ldots, g_n(0)) = 0$ and $f(g_1(1), \ldots, g_n(1)) = 1$ then *h* is also a supermodular aggregation function).

Definition

An aggregation function $C: [0, 1]^2 \rightarrow [0, 1]$ is called a 2-*copula* (or, briefly, a *copula*) if it is supermodular and has 1 as neutral element, i.e., if C(x, 1) = C(1, x) = x for all $x \in [0, 1]$.

イロト イヨト イヨト イヨト

3

Proposition

An aggregation function $A: [0,1]^2 \rightarrow [0,1]$ is supermodular if and only if there are non-decreasing functions $g_1, g_2, g_3, g_4: [0,1] \rightarrow [0,1]$ with $g_i(0) = 0$ and $g_i(1) = 1$ for $i \in \{1,2,3,4\}$, a copula $C: [0,1]^2 \rightarrow [0,1]$, and numbers $a, b, c \in [0,1]$ with a + b + c = 1 such that, for all $(x,y) \in [0,1]^2$,

$$A(x,y) = a \cdot g_1(x) + b \cdot g_2(y) + c \cdot C(g_3(x), g_4(y)).$$
(7)

Definition

An *n*-ary aggregation function $A: [0, 1]^n \rightarrow [0, 1]$ is called *ultramodular* if, for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in [0, 1]^n$ with $\mathbf{x} + \mathbf{y} + \mathbf{z} \in [0, 1]^n$,

$$A(\mathbf{x} + \mathbf{y} + \mathbf{z}) - A(\mathbf{x} + \mathbf{y}) \ge A(\mathbf{x} + \mathbf{z}) - A(\mathbf{x}).$$
(8)

In the case of one-dimensional aggregation functions, ultramodularity is just standard convexity. Therefore, ultramodularity can also be seen as an extension of one-dimensional convexity.

Definition

An *n*-ary aggregation function $A: [0, 1]^n \rightarrow [0, 1]$ is called *ultramodular* if, for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in [0, 1]^n$ with $\mathbf{x} + \mathbf{y} + \mathbf{z} \in [0, 1]^n$,

$$A(\mathbf{x} + \mathbf{y} + \mathbf{z}) - A(\mathbf{x} + \mathbf{y}) \ge A(\mathbf{x} + \mathbf{z}) - A(\mathbf{x}).$$
(8)

In the case of one-dimensional aggregation functions, ultramodularity is just standard convexity. Therefore, ultramodularity can also be seen as an extension of one-dimensional convexity.

Proposition

A function $f: [0, 1]^n \to [0, 1]$ is ultramodular if and only if f is supermodular and each of its one-dimensional sections is convex, *i.e.*, for each $\mathbf{x} \in [0, 1]^n$ and each $i \in \{1, ..., n\}$ the function $f_{\mathbf{x},i}: [0, 1] \to [0, 1]$ given by $f_{\mathbf{x},i}(u) = f(\mathbf{y})$, where $y_i = u$ and $y_j = x_j$ whenever $j \neq i$, is convex.

Corollary

Let $n \ge 2$ and assume that all partial derivatives of order 2 of the function $f: [0,1]^n \rightarrow [0,1]$ exist. Then f is ultramodular if and only if all partial derivatives of order 2 are non-negative.

Proposition

A function $f: [0, 1]^n \to [0, 1]$ is ultramodular if and only if f is supermodular and each of its one-dimensional sections is convex, *i.e.*, for each $\mathbf{x} \in [0, 1]^n$ and each $i \in \{1, ..., n\}$ the function $f_{\mathbf{x},i}: [0, 1] \to [0, 1]$ given by $f_{\mathbf{x},i}(u) = f(\mathbf{y})$, where $y_i = u$ and $y_j = x_j$ whenever $j \neq i$, is convex.

Corollary

Let $n \ge 2$ and assume that all partial derivatives of order 2 of the function $f: [0,1]^n \rightarrow [0,1]$ exist. Then f is ultramodular if and only if all partial derivatives of order 2 are non-negative.

For an n-ary aggregation function $A: [0, 1]^n \rightarrow [0, 1]$ the following are equivalent:

- (a) A is ultramodular;
- (b) each two-dimensional section of A is ultramodular;
- (c) each two-dimensional section of *A* is supermodular and each one-dimensional section of *A* is convex.

Another equivalent condition to the ultramodularity (8) of an *n*-ary aggregation function $A: [0, 1]^n \rightarrow [0, 1]$ is the validity of

$$A(\mathbf{x} + \mathbf{u}) + A(\mathbf{x} - \mathbf{u}) \ge A(\mathbf{x} + \mathbf{v}) + A(\mathbf{x} - \mathbf{v})$$

for all $\mathbf{x}, \mathbf{u} \in [0, 1]^n$, $\mathbf{v} \in \mathbb{R}^n$ with $|\mathbf{v}| \le \mathbf{u}$ and $\mathbf{x} + \mathbf{u}, \mathbf{x} - \mathbf{u}, \mathbf{x} + \mathbf{v}, \mathbf{x} - \mathbf{v} \in [0, 1]^n$ (indeed, it is sufficient to put $\mathbf{y} = \mathbf{u} + \mathbf{v}$ and $\mathbf{z} = \mathbf{u} - \mathbf{v}$). Relaxing the requirement $\mathbf{u} \in [0, 1]^n$ and $|\mathbf{v}| \le \mathbf{u}$ into $\mathbf{u} \in \mathbb{R}^n$ and $|\mathbf{v}| \le |\mathbf{u}|$ we get the definition of *symmetrically monotone functions*. Note that symmetrically monotone aggregation functions $A: [0, 1]^n \to [0, 1]$ are exactly ultramodular aggregation functions which are modular, i.e., $A(\mathbf{x}) = \sum_{i=1}^n f_i(x_i)$ with $f_i: [0, 1] \to [0, 1]$ being convex for each $i \in \{1, ..., n\}$. For n = 2, the ultramodularity (8) of an aggregation function $A: [0, 1]^2 \rightarrow [0, 1]$ is equivalent to A being *P*-increasing, i.e., to

 $A(u_1, v_1) + A(u_4, v_4) \ge \max(A(u_2, v_2) + A(u_3, v_3), A(u_3, v_2) + A(u_2, v_3))$

for all $u_1, u_2, u_3, u_4, v_1, v_2, v_3, v_4 \in [0, 1]$ satisfying $u_1 \le u_2 \land u_3 \le u_2 \lor u_3 \le u_4, v_1 \le v_2 \land v_3 \le v_2 \lor v_3 \le v_4,$ $u_1 + u_4 \ge u_2 + u_3$, and $v_1 + v_4 \ge v_2 + v_3$. Fix two non-decrasing functions $f, g: [0, 1] \rightarrow [0, 1]$ with f(0) = g(0) = 0 and f(1) = g(1) = 1. Then the smallest supermodular aggregation function $A_*: [0, 1]^2 \rightarrow [0, 1]$ satisfying $A_*(x, 1) = f(x)$ and $A_*(1, y) = g(y)$ for all $x, y \in [0, 1]$ is given by $A_*(x, y) = \max(f(x) + g(y) - 1, 0)$. Observe that A_* is ultramodular (and, subsequently, the smallest ultramodular aggregation function with fixed margins f and g) if and only if both f and g are convex. In particular, if $f = g = id_{[0,1]}$ then $A_* = W$, the smallest binary copula. On the other hand, the greatest supermodular aggregation function $A^*: [0,1]^2 \to [0,1]$ satisfying $A^*(x,1) = f(x)$ and $A^*(1,y) = g(y)$ for all $x, y \in [0, 1]$ is given by $A^*(x, y) = \min(f(x), g(y))$. However, A^* is ultramodular only if $f = g = \mathbf{1}_{\{1\}}$, i.e., if A^* coincides with the smallest binary aggregation function $\mathbf{1}_{\{(1,1)\}}$.

Given a copula $C: [0,1]^2 \rightarrow [0,1]$, for each $c \in [0,1]$ the horizontal section $h_c: [0,1] \rightarrow [0,1]$ given by $h_c(x) = C(x,c)$ obviously satisfies $h_c(0) = 0$ and $h_c(1) = c$. Then the greatest possible convex horizontal section h_c is given by $h_c(x) = c \cdot x$, corresponding to the product copula Π (hence we have $C(x,c) \leq c \cdot x = \Pi(x,c)$). It is easy to verify that Π is an ultramodular copula, and hence Π is the greatest ultramodular copula. From a statistical point of view, ultamodular copulas describe the dependence structure of stochastically decreasing random vectors (X, Y), and thus each ultramodular copula is *Negative Quadrant Dependent* (NQD).

Figure: Modularity (left), supermodularity (center), and ultramodularity of a function $f: [0, 1]^2 \rightarrow [0, 1]$

Let A: $[0,1]^n \rightarrow [0,1]$ be an aggregation function and $k \ge 2$. Then the following are equivalent:

- (i) A is ultramodular.
- (ii) If B₁,..., B_n: [0,1]^k → [0,1] are non-decreasing supermodular functions then the composite D: [0,1]^k → [0,1] given by D(**x**) = A(B₁(**x**),..., B_n(**x**)) is a supermodular function.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Let $A: [0,1]^n \to [0,1]$ and $B_1, \ldots, B_n: [0,1]^k \to [0,1]$ be ultramodular aggregation functions. Then the composite function $D: [0,1]^k \to [0,1]$ given by $D(\mathbf{x}) = A(B_1(\mathbf{x}), \ldots, B_n(\mathbf{x}))$ is also an ultramodular aggregation function.

イロン イヨン イヨン ・

3

Corollary

Let $A_1, \ldots, A_j : [0, 1]^n \to [0, 1]$ be *n*-ary ultramodular aggregation functions and $f : [0, 1] \to [0, 1]$ a non-decreasing function with f(0) = 0 and f(1) = 1. Then we have:

- (i) Each convex combination of *A*₁,..., *A_j* is an *n*-ary ultramodular aggregation function.
- (ii) The product of A₁,..., A_j is an *n*-ary ultramodular aggregation function.
- (iii) If $A: [0, 1]^n \rightarrow [0, 1]$ is an *n*-ary ultramodular aggregation function and *f* is convex then the composition $f \circ A$ is an *n*-ary ultramodular aggregation function.

Corollary - continue

(iv) If $A: [0, 1]^2 \rightarrow [0, 1]$ is a binary associative ultramodular aggregation function (i.e., A(x, A(y, z)) = A(A(x, y), z) for all $x, y, z \in [0, 1]$) then, for each k > 2, the *k*-ary extension of *A* to $[0, 1]^k$ defined by

$$A(x_1, x_2..., x_k) = A(x_1, A(x_2, ..., A(x_{k-1}, x_k)...))$$

is a k-ary ultramodular aggregation function.

Proposition

Let Ch_m : $[0,1]^n \rightarrow [0,1]$ be a Choquet integral-based aggregation function based on a capacity *m* on $X = \{1, ..., n\}$. Then we have:

(i) Ch_m is superadditive, i.e., for all $\mathbf{x}, \mathbf{y} \in [0, 1]^n$ with $\mathbf{x} + \mathbf{y} \in [0, 1]^n$ we have

$$\operatorname{Ch}_m(\mathbf{x} + \mathbf{y}) \geq \operatorname{Ch}_m(\mathbf{x}) + \operatorname{Ch}_m(\mathbf{y}),$$

if and only if the capacity m is supermodular.

(ii) Ch_m is ultramodular if and only if the capacity *m* is modular, i.e., Ch_m is a weighted arithmetic mean.

Lemma

An *n*-ary ultramodular aggregation function $A: [0,1]^n \rightarrow [0,1]$ is continuous if and only if sup{ $A(\mathbf{x}) | \mathbf{x} \in [0,1[^n] = 1$.

Proposition

Each function $A \in U_n$ can be written as a convex combination $A = \lambda A^* + (1 - \lambda)A^{**}$ where $\lambda = \sup\{A(\mathbf{x}) \mid \mathbf{x} \in [0, 1[^n], A^* \in U_n \text{ is }$ continuous and A^{**} is an n-ary aggregation function with $A^{**}(\mathbf{x}) = 0$ for all $\mathbf{x} \in [0, 1[^n]$.

Lemma

An *n*-ary ultramodular aggregation function $A: [0,1]^n \rightarrow [0,1]$ is continuous if and only if sup{ $A(\mathbf{x}) | \mathbf{x} \in [0,1[^n] = 1$.

Proposition

Each function $A \in U_n$ can be written as a convex combination $A = \lambda A^* + (1 - \lambda)A^{**}$ where $\lambda = \sup\{A(\mathbf{x}) \mid \mathbf{x} \in [0, 1[^n]\}, A^* \in U_n \text{ is }$ continuous and A^{**} is an n-ary aggregation function with $A^{**}(\mathbf{x}) = 0$ for all $\mathbf{x} \in [0, 1[^n]$.

Let $A: [0,1]^n \to [0,1]$ be an aggregation function with $A(\mathbf{x}) = 0$ for all $\mathbf{x} \in [0,1[^n]$. Then A is ultramodular if and only if the following hold:

- (i) all (n − 1)-dimensional sections B_i = A|_{Ei} of A, i ∈ {1,...,n}, are ultramodular, where E_i = E_{ei;e1,...,ei+1,...,en}.
- (ii) for all $i, j \in \{1, ..., n\}$ with $i \neq j$ and all $\mathbf{x} \in E_i \cap E_j$ we have

 $A(\mathbf{x}) \geq \sup\{B_i(\mathbf{y}) \mid \mathbf{y} \in E_i, \mathbf{y} < \mathbf{x}\} + \sup\{B_j(\mathbf{z}) \mid \mathbf{z} \in E_j, \mathbf{z} < \mathbf{x}\}.$

Proposition

A function $A: [0, 1]^2 \rightarrow [0, 1]$ is a maximal continuous ultramodular aggregation function (i.e., there is no continuous ultramodular aggregation function $B: [0, 1]^2 \rightarrow [0, 1]$ with $B(x, y) \ge A(x, y)$ for all $(x, y) \in [0, 1]^2$ and $B(x_0, y_0) > A(x_0, y_0)$ for some $(x_0, y_0) \in [0, 1]^2$) if and only if A is a weighted arithmetic mean, i.e., $A(x, y) = \lambda \cdot x + (1 - \lambda) \cdot y$ for some $\lambda \in [0, 1]$.

Corollary

If $A \in \mathcal{U}_2$ then we have

$$\boldsymbol{A} = \lambda \cdot \boldsymbol{A}_1 + (1 - \lambda) \cdot \boldsymbol{A}_2, \tag{9}$$

・ロン ・四 と ・ 臣 と ・ 臣 と …

2

where A_1 is a modular element of U_2 , A_2 is a supermodular binary aggregation function with annihilator 0, and $\lambda = 1 - A(1,0) - A(0,1) \in [0,1]$.

Recall that a binary aggregation function $C: [0, 1]^2 \rightarrow [0, 1]$ is an Archimedean copula if and only if there is a continuous, strictly decreasing convex function $t: [0, 1] \rightarrow [0, \infty]$ with t(1) = 0 such that for all $(x, y) \in [0, 1]$

$$C(x,y) = t^{-1}(\min(t(x) + t(y), t(0))).$$
(10)

The function *t* is called an additive generator of *C*.

Theorem

Let $C: [0, 1]^2 \rightarrow [0, 1]$ be an Archimedean copula with a two times differentiable additive generator $t: [0, 1] \rightarrow [0, \infty]$. Then *C* is ultramodular if and only if $\frac{1}{t'}$ is a convex function.

Recall that a binary aggregation function $C: [0, 1]^2 \rightarrow [0, 1]$ is an Archimedean copula if and only if there is a continuous, strictly decreasing convex function $t: [0, 1] \rightarrow [0, \infty]$ with t(1) = 0 such that for all $(x, y) \in [0, 1]$

$$C(x,y) = t^{-1}(\min(t(x) + t(y), t(0))).$$
(10)

The function *t* is called an additive generator of *C*.

Theorem

Let $C: [0,1]^2 \rightarrow [0,1]$ be an Archimedean copula with a two times differentiable additive generator $t: [0,1] \rightarrow [0,\infty]$. Then C is ultramodular if and only if $\frac{1}{t'}$ is a convex function.

For each continuous, convex and strictly decreasing function $f: [0, 1] \rightarrow [0, \infty]$ with f(1) = 0 (i.e., for each additive generator of an Archimedean copula define the function $C_f: [0, 1]^2 \rightarrow [0, 1]$ by

$$C_f(x,y) = \begin{cases} 0 & \text{if } x = 0, \\ x \cdot f^{-1}\left(\min\left(\frac{f(y)}{x}, f(0)\right)\right) & \text{otherwise.} \end{cases}$$
(11)

and

$$C^{f}(x,y) = \begin{cases} 0 & \text{if } y = 0, \\ y \cdot f^{-1}\left(\min\left(\frac{f(x)}{y}, f(0)\right)\right) & \text{otherwise.} \end{cases}$$
(12)

are copulas.

Let $f: [0, 1] \rightarrow [0, \infty]$ be a two times differentiable horizontal or vertical generator. If $\frac{1}{f'}$ is a convex function then C_f and C^f are ultramodular.

However, previous Theorem provides only a sufficient condition for the ultramodularity of copulas: indeed, if $f: [0, 1] \rightarrow [0, 1]$ is given by $f(x) = \frac{1}{x} - 1$, then *f* is two times differentiable and the copulas C_f and C^f , given by

$$C_f(x,y) = \frac{x^2y}{1-y+xy}, \qquad C^f(x,y) = \frac{xy^2}{1-x+xy},$$

are both ultramodular, but $\frac{1}{f'}$ is not convex (in fact, it is concave).

Let $f: [0, 1] \rightarrow [0, \infty]$ be a two times differentiable horizontal or vertical generator. If $\frac{1}{f'}$ is a convex function then C_f and C^f are ultramodular.

However, previous Theorem provides only a sufficient condition for the ultramodularity of copulas: indeed, if $f: [0, 1] \rightarrow [0, 1]$ is given by $f(x) = \frac{1}{x} - 1$, then *f* is two times differentiable and the copulas C_f and C^f , given by

$$C_f(x,y)=rac{x^2y}{1-y+xy},\qquad C^f(x,y)=rac{xy^2}{1-x+xy},$$

are both ultramodular, but $\frac{1}{f'}$ is not convex (in fact, it is concave).

Let A: $[0,1]^n \rightarrow [0,1]$ be a continuous ultramodular aggregation function. Let C_1, \ldots, C_n : $[0,1]^2 \rightarrow [0,1]$ be copulas and assume that the continuous non-decreasing functions $f_1, \ldots, f_n, g_1, \ldots, g_n$: $[0,1] \rightarrow [0,1]$ satisfy $f_i(1) = g_i(1) = 1$ for each $i \in \{1, \ldots, n\}$ and $A(f_1(0), \ldots, f_n(0)) = A(g_1(0), \ldots, g_n(0)) = 0$. Define $\xi, \eta : [0,1] \rightarrow [0,1]$ by

$$\begin{aligned} \xi(x) &= \sup\{u \in [0,1] \mid A(f_1(u), \dots, f_n(u)) \le x\}, \\ \eta(x) &= \sup\{u \in [0,1] \mid A(g_1(u), \dots, g_n(u)) \le x\}. \end{aligned}$$

Then the function $C \colon [0,1]^2 \to [0,1]$ given by

 $C(x, y) = A(C_1(f_1 \circ \xi(x), g_1 \circ \eta(y)), \dots, C_n(f_n \circ \xi(x), g_n \circ \eta(y)))$ (13) is a copula. If we put n = 2, $A = C_1 = \Pi$ and define, for $\alpha, \beta \in [0, 1]$, the functions f_1, f_2, g_1, g_2 by $f_1(x) = x^{1-\alpha}$, $f_2(x) = x^{\alpha}$, $g_1(x) = x^{1-\beta}$, and $g_2(x) = x^{\beta}$, then for each copula C_2 the construction in (13) yields the copula $C_{\alpha,\beta}$ given by

$$C_{\alpha,\beta} = x^{1-\alpha} \cdot y^{1-\beta} \cdot C_2(x^{\alpha}, y^{\beta}).$$

If we put n = 2, A = W, $C_1 = C_2 = M$ defined by $M(x, y) = \min(x, y)$ and define the functions f_1, f_2, g_1, g_2 by $f_1(x) = g_2(x) = \frac{x+2}{3}$ and $f_2(x) = g_1(x) = \frac{2x+1}{3}$, then the construction in (13) yields the copula *C* given by

$$C(x,y) = \frac{1}{3} \cdot \max(\min(x+1,2y) + \min(2x,y+1) - 1,0).$$

Copulas with dimension > 2?

stronger forms of ultramodularity are necessary

recall Archimedean copulas and their additive generators!

Thanks for your attention

イロト イヨト イヨト イヨト

크