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Let I be a subinterval of R and f : I → R be a real function.
(i) f is said to be convex if, for all x , y ∈ I and for all λ ∈ [0,1],

λ · f (x) + (1− λ) · f (y) ≥ f (λ · x + (1− λ) · y); (1)

(ii) f is said to be Jensen convex if, for all x , y ∈ I,

f (x) + f (y)

2
≥ f
(x + y

2

)
. (2)
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Let I be a subinterval of R and f : I → R be a real function. Then we
have:

(i) f is convex if and only if, for all x , y ∈ I and for all ε > 0 such that
x < y and y + ε ∈ I,

f (y + ε)− f (y) ≥ f (x + ε)− f (x). (3)

(ii) If f is a continuous function then f is convex if and only if it is
Jensen convex.

(iii) If f is a monotone function then f is convex if and only if it is
Jensen convex.

(iv) If f is a bounded function then f is convex if and only if it is
Jensen convex.
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Let (L,∧,∨) be a lattice.
(i) A function f : L→ R is called modular if, for all x , y ∈ L,

f (x ∨ y) + f (x ∧ y) = f (x) + f (y). (4)

(ii) A function f : L→ R is called supermodular if, for all x , y ∈ L,

f (x ∨ y) + f (x ∧ y) ≥ f (x) + f (y). (5)
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Proposition

An n-ary aggregation function A : [0,1]n → [0,1] is modular if and only
if there are non-decreasing functions f1, f2, . . . , fn : [0,1]→ [0,1] with∑n

i=1 fi (0) = 0 and
∑n

i=1 fi (1) = 1 such that, for all
(x1, . . . , xn) ∈ [0,1]n,

A(x1, . . . , xn) =
n∑

i=1

fi (xi ).
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For non-decreasing functions f : [0,1]2 → [0,1], supermodularity can
be reformulated as

f (x∗, y∗)− f (x∗, y)− f (x , y∗) + f (x , y) ≥ 0 (6)

for all x , x∗, y , y∗ ∈ [0,1] with x ≤ x∗ and y ≤ y∗.

Proposition

An n-ary function f : [0,1]n → [0,1] is supermodular if and only if each
of its two-dimensional sections is supermodular, i.e., for each
x ∈ [0,1]n and all i , j ∈ {1,2, . . . ,n} with i 6= j , the function
fx,i,j : [0,1]2 → [0,1] given by fx,i,j (u, v) = f (y), where yi = u, yj = v
and yk = xk for k ∈ {1,2, . . . ,n} \ {i , j}, is supermodular.
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The supermodularity of a function f : [0,1]n → [0,1] is preserved if the
arguments are distorted, i.e., if g1, . . . ,gn : [0,1]→ [0,1] are
non-decreasing functions, then the function h : [0,1]n → [0,1] given
by h(x) = f (g1(x1), . . . ,gn(xn)) is supermodular (if f is a
supermodular aggregation function with f (g1(0), . . . ,gn(0)) = 0 and
f (g1(1), . . . ,gn(1)) = 1 then h is also a supermodular aggregation
function).
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Definition

An aggregation function C : [0,1]2 → [0,1] is called a 2-copula (or, briefly,
a copula) if it is supermodular and has 1 as neutral element, i.e., if
C(x ,1) = C(1, x) = x for all x ∈ [0,1].
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Proposition

An aggregation function A : [0,1]2 → [0,1] is supermodular if and only
if there are non-decreasing functions g1,g2,g3,g4 : [0,1]→ [0,1] with
gi (0) = 0 and gi (1) = 1 for i ∈ {1,2,3,4}, a copula C : [0,1]2 → [0,1],
and numbers a,b, c ∈ [0,1] with a + b + c = 1 such that, for all
(x , y) ∈ [0,1]2,

A(x , y) = a · g1(x) + b · g2(y) + c · C(g3(x),g4(y)). (7)
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Definition

An n-ary aggregation function A : [0,1]n → [0,1] is called ultramodular if,
for all x,y, z ∈ [0,1]n with x + y + z ∈ [0,1]n,

A(x + y + z)− A(x + y) ≥ A(x + z)− A(x). (8)

In the case of one-dimensional aggregation functions, ultramodularity
is just standard convexity. Therefore, ultramodularity can also be
seen as an extension of one-dimensional convexity.
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Proposition

A function f : [0,1]n → [0,1] is ultramodular if and only if f is
supermodular and each of its one-dimensional sections is convex,
i.e., for each x ∈ [0,1]n and each i ∈ {1, . . . ,n} the function
fx,i : [0,1]→ [0,1] given by fx,i (u) = f (y), where yi = u and yj = xj
whenever j 6= i , is convex.

Corollary

Let n ≥ 2 and assume that all partial derivatives of order 2 of the
function f : [0,1]n → [0,1] exist. Then f is ultramodular if and only if all
partial derivatives of order 2 are non-negative.
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For an n-ary aggregation function A : [0,1]n → [0,1] the following are
equivalent:
(a) A is ultramodular;
(b) each two-dimensional section of A is ultramodular;
(c) each two-dimensional section of A is supermodular and each

one-dimensional section of A is convex.
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Another equivalent condition to the ultramodularity (8) of an n-ary
aggregation function A : [0,1]n → [0,1] is the validity of

A(x + u) + A(x− u) ≥ A(x + v) + A(x− v)

for all x,u ∈ [0,1]n, v ∈ Rn with |v| ≤ u and
x + u,x− u,x + v,x− v ∈ [0,1]n (indeed, it is sufficient to put
y = u + v and z = u− v). Relaxing the requirement u ∈ [0,1]n and
|v| ≤ u into u ∈ Rn and |v| ≤ |u| we get the definition of symmetrically
monotone functions. Note that symmetrically monotone aggregation
functions A : [0,1]n → [0,1] are exactly ultramodular aggregation
functions which are modular, i.e., A(x) =

∑n
i=1 fi (xi ) with

fi : [0,1]→ [0,1] being convex for each i ∈ {1, . . . ,n}.
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For n = 2, the ultramodularity (8) of an aggregation function
A : [0,1]2 → [0,1] is equivalent to A being P-increasing, i.e., to

A(u1, v1) + A(u4, v4) ≥ max
(
A(u2, v2) + A(u3, v3),A(u3, v2) + A(u2, v3)

)
for all u1,u2,u3,u4, v1, v2, v3, v4 ∈ [0,1] satisfying
u1 ≤ u2 ∧ u3 ≤ u2 ∨ u3 ≤ u4, v1 ≤ v2 ∧ v3 ≤ v2 ∨ v3 ≤ v4,
u1 + u4 ≥ u2 + u3, and v1 + v4 ≥ v2 + v3.
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Fix two non-decrasing functions f ,g : [0,1]→ [0,1] with
f (0) = g(0) = 0 and f (1) = g(1) = 1. Then the smallest
supermodular aggregation function A∗ : [0,1]2 → [0,1] satisfying
A∗(x ,1) = f (x) and A∗(1, y) = g(y) for all x , y ∈ [0,1] is given by
A∗(x , y) = max(f (x) + g(y)− 1,0). Observe that A∗ is ultramodular
(and, subsequently, the smallest ultramodular aggregation function
with fixed margins f and g) if and only if both f and g are convex. In
particular, if f = g = id[0,1] then A∗ = W , the smallest binary copula.
On the other hand, the greatest supermodular aggregation function
A∗ : [0,1]2 → [0,1] satisfying A∗(x ,1) = f (x) and A∗(1, y) = g(y) for
all x , y ∈ [0,1] is given by A∗(x , y) = min(f (x),g(y)). However, A∗ is
ultramodular only if f = g = 1{1}, i.e., if A∗ coincides with the smallest
binary aggregation function 1{(1,1)}.
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Given a copula C : [0,1]2 → [0,1], for each c ∈ [0,1] the horizontal
section hc : [0,1]→ [0,1] given by hc(x) = C(x , c) obviously satisfies
hc(0) = 0 and hc(1) = c. Then the greatest possible convex
horizontal section hc is given by hc(x) = c · x , corresponding to the
product copula Π (hence we have C(x , c) ≤ c · x = Π(x , c)). It is easy
to verify that Π is an ultramodular copula, and hence Π is the greatest
ultramodular copula. From a statistical point of view, ultamodular
copulas describe the dependence structure of stochastically
decreasing random vectors (X ,Y ), and thus each ultramodular
copula is Negative Quadrant Dependent (NQD).
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Figure: Modularity (left), supermodularity (center), and ultramodularity of a
function f : [0, 1]2 → [0, 1]
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Theorem

Let A : [0,1]n → [0,1] be an aggregation function and k ≥ 2. Then the
following are equivalent:

(i) A is ultramodular.
(ii) If B1, . . . ,Bn : [0,1]k → [0,1] are non-decreasing supermodular

functions then the composite D : [0,1]k → [0,1] given by
D(x) = A(B1(x), . . . ,Bn(x)) is a supermodular function.
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Theorem

Let A : [0,1]n → [0,1] and B1, . . . ,Bn : [0,1]k → [0,1] be ultramodular
aggregation functions. Then the composite function D : [0,1]k → [0,1]
given by D(x) = A(B1(x), . . . ,Bn(x)) is also an ultramodular
aggregation function.
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Corollary

Let A1, . . . ,Aj : [0,1]n → [0,1] be n-ary ultramodular aggregation
functions and f : [0,1]→ [0,1] a non-decreasing function with
f (0) = 0 and f (1) = 1. Then we have:

(i) Each convex combination of A1, . . . ,Aj is an n-ary ultramodular
aggregation function.

(ii) The product of A1, . . . ,Aj is an n-ary ultramodular aggregation
function.

(iii) If A : [0,1]n → [0,1] is an n-ary ultramodular aggregation function
and f is convex then the composition f ◦ A is an n-ary
ultramodular aggregation function.
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Corollary - continue

(iv) If A : [0,1]2 → [0,1] is a binary associative ultramodular
aggregation function (i.e., A(x ,A(y , z)) = A(A(x , y), z) for all
x , y , z ∈ [0,1]) then, for each k > 2, the k -ary extension of A to
[0,1]k defined by

A(x1, x2 . . . , xk ) = A(x1,A(x2, . . . ,A(xk−1, xk ) . . . ))

is a k -ary ultramodular aggregation function.
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Proposition

Let Chm : [0,1]n → [0,1] be a Choquet integral-based aggregation
function based on a capacity m on X = {1, . . . ,n}. Then we have:

(i) Chm is superadditive, i.e., for all x,y ∈ [0,1]n with x + y ∈ [0,1]n

we have
Chm(x + y) ≥ Chm(x) + Chm(y),

if and only if the capacity m is supermodular.
(ii) Chm is ultramodular if and only if the capacity m is modular, i.e.,

Chm is a weighted arithmetic mean.
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Lemma

An n-ary ultramodular aggregation function A : [0,1]n → [0,1] is
continuous if and only if sup{A(x) | x ∈ [0,1[n} = 1.

Proposition

Each function A ∈ Un can be written as a convex combination
A = λA∗ + (1− λ)A∗∗ where λ = sup{A(x) | x ∈ [0,1[n}, A∗ ∈ Un is
continuous and A∗∗ is an n-ary aggregation function with A∗∗(x) = 0
for all x ∈ [0,1[n.
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Theorem

Let A : [0,1]n → [0,1] be an aggregation function with A(x) = 0 for all
x ∈ [0,1[n. Then A is ultramodular if and only if the following hold:

(i) all (n − 1)-dimensional sections Bi = A|Ei of A, i ∈ {1, . . . ,n}, are
ultramodular, where Ei = Eei ;e1,...,ei−1,ei+1,...,en .

(ii) for all i , j ∈ {1, . . . ,n} with i 6= j and all x ∈ Ei ∩ Ej we have

A(x) ≥ sup{Bi (y) | y ∈ Ei ,y < x}+ sup{Bj (z) | z ∈ Ej , z < x}.
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Proposition

A function A : [0,1]2 → [0,1] is a maximal continuous ultramodular
aggregation function (i.e., there is no continuous ultramodular
aggregation function B : [0,1]2 → [0,1] with B(x , y) ≥ A(x , y) for all
(x , y) ∈ [0,1]2 and B(x0, y0) > A(x0, y0) for some (x0, y0) ∈ [0,1]2) if
and only if A is a weighted arithmetic mean, i.e.,
A(x , y) = λ · x + (1− λ) · y for some λ ∈ [0,1].
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Corollary

If A ∈ U2 then we have

A = λ · A1 + (1− λ) · A2, (9)

where A1 is a modular element of U2, A2 is a supermodular binary
aggregation function with annihilator 0, and
λ = 1− A(1,0)− A(0,1) ∈ [0,1].
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Recall that a binary aggregation function C : [0,1]2 → [0,1] is an
Archimedean copula if and only if there is a continuous, strictly
decreasing convex function t : [0,1]→ [0,∞] with t(1) = 0 such that
for all (x , y) ∈ [0,1]

C(x , y) = t−1(min(t(x) + t(y), t(0))). (10)

The function t is called an additive generator of C.

Theorem

Let C : [0,1]2 → [0,1] be an Archimedean copula with a two times
differentiable additive generator t : [0,1]→ [0,∞]. Then C is
ultramodular if and only if 1

t′ is a convex function.
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For each continuous, convex and strictly decreasing function
f : [0,1]→ [0,∞] with f (1) = 0 (i.e., for each additive generator of an
Archimedean copula define the function Cf : [0,1]2 → [0,1] by

Cf (x , y) =

{
0 if x = 0,
x · f−1

(
min

( f (y)
x , f (0)

))
otherwise.

(11)

and

C f (x , y) =

{
0 if y = 0,
y · f−1

(
min

( f (x)
y , f (0)

))
otherwise.

(12)

are copulas.
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Theorem

Let f : [0,1]→ [0,∞] be a two times differentiable horizontal or
vertical generator. If 1

f ′ is a convex function then Cf and C f are
ultramodular.

However, previous Theorem provides only a sufficient condition for
the ultramodularity of copulas: indeed, if f : [0,1]→ [0,1] is given by
f (x) = 1

x − 1, then f is two times differentiable and the copulas Cf and
C f , given by

Cf (x , y) =
x2y

1− y + xy
, C f (x , y) =

xy2

1− x + xy
,

are both ultramodular, but 1
f ′ is not convex (in fact, it is concave).
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Theorem

Let A : [0,1]n → [0,1] be a continuous ultramodular aggregation
function. Let C1, . . . ,Cn : [0,1]2 → [0,1] be copulas and assume that
the continuous non-decreasing functions
f1, . . . , fn,g1, . . . ,gn : [0,1]→ [0,1] satisfy fi (1) = gi (1) = 1 for each
i ∈ {1, . . . ,n} and A(f1(0), . . . , fn(0)) = A(g1(0), . . . ,gn(0)) = 0.
Define ξ, η : [0,1]→ [0,1] by

ξ(x) = sup{u ∈ [0,1] | A(f1(u), . . . , fn(u)) ≤ x},
η(x) = sup{u ∈ [0,1] | A(g1(u), . . . ,gn(u)) ≤ x}.

Then the function C : [0,1]2 → [0,1] given by

C(x , y) = A
(
C1(f1 ◦ ξ(x),g1 ◦ η(y)), . . . ,Cn(fn ◦ ξ(x),gn ◦ η(y))

)
(13)

is a copula.
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If we put n = 2, A = C1 = Π and define, for α, β ∈ [0,1], the functions
f1, f2,g1,g2 by f1(x) = x1−α, f2(x) = xα, g1(x) = x1−β , and
g2(x) = xβ , then for each copula C2 the construction in (13) yields the
copula Cα,β given by

Cα,β = x1−α · y1−β · C2(xα, yβ).
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If we put n = 2, A = W , C1 = C2 = M defined by M(x , y) = min(x , y)
and define the functions f1, f2,g1,g2 by f1(x) = g2(x) = x+2

3 and
f2(x) = g1(x) = 2x+1

3 , then the construction in (13) yields the copula
C given by

C(x , y) =
1
3
·max(min(x + 1,2y) + min(2x , y + 1)− 1,0).



Introduction Modular, supermodular, and ultramodular aggregation functions Some constructions Structure of ultramodular aggregation functions

Copulas with dimension > 2?

stronger forms of ultramodularity are necessary

recall Archimedean copulas and their additive generators!
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Thanks for your attention
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