Aggregation functions and ultramodularity

Erich Peter Klement1 \quad Radko Mesiar2

1JKU Linz, Austria
2STU Bratislava, Slovakia

FSTA 2012, Liptovský Ján
Contents

1. Introduction
2. Modular, supermodular, and ultramodular aggregation functions
3. Some constructions
4. Structure of ultramodular aggregation functions
Let I be a subinterval of \mathbb{R} and $f : I \to \mathbb{R}$ be a real function.

(i) f is said to be **convex** if, for all $x, y \in I$ and for all $\lambda \in [0, 1]$,

$$\lambda \cdot f(x) + (1 - \lambda) \cdot f(y) \geq f(\lambda \cdot x + (1 - \lambda) \cdot y); \quad (1)$$

(ii) f is said to be **Jensen convex** if, for all $x, y \in I$,

$$\frac{f(x) + f(y)}{2} \geq f\left(\frac{x + y}{2}\right). \quad (2)$$
Let I be a subinterval of \mathbb{R} and $f : I \to \mathbb{R}$ be a real function. Then we have:

(i) f is convex if and only if, for all $x, y \in I$ and for all $\varepsilon > 0$ such that $x < y$ and $y + \varepsilon \in I$,

$$f(y + \varepsilon) - f(y) \geq f(x + \varepsilon) - f(x).$$

(ii) If f is a continuous function then f is convex if and only if it is Jensen convex.

(iii) If f is a monotone function then f is convex if and only if it is Jensen convex.

(iv) If f is a bounded function then f is convex if and only if it is Jensen convex.
Let \((L, \land, \lor)\) be a lattice.

(i) A function \(f: L \to \mathbb{R}\) is called **modular** if, for all \(x, y \in L\),

\[
f(x \lor y) + f(x \land y) = f(x) + f(y).
\]

(ii) A function \(f: L \to \mathbb{R}\) is called **supermodular** if, for all \(x, y \in L\),

\[
f(x \lor y) + f(x \land y) \geq f(x) + f(y).
\]
Proposition

An n-ary aggregation function $A: [0, 1]^n \rightarrow [0, 1]$ is modular if and only if there are non-decreasing functions $f_1, f_2, \ldots, f_n: [0, 1] \rightarrow [0, 1]$ with

$$\sum_{i=1}^n f_i(0) = 0 \text{ and } \sum_{i=1}^n f_i(1) = 1$$

such that, for all $(x_1, \ldots, x_n) \in [0, 1]^n$,

$$A(x_1, \ldots, x_n) = \sum_{i=1}^n f_i(x_i).$$
For non-decreasing functions $f: [0, 1]^2 \rightarrow [0, 1]$, supermodularity can be reformulated as

$$f(x^*, y^*) - f(x^*, y) - f(x, y^*) + f(x, y) \geq 0$$ \hspace{1cm} (6)$$

for all $x, x^*, y, y^* \in [0, 1]$ with $x \leq x^*$ and $y \leq y^*$.

Proposition

An n-ary function $f: [0, 1]^n \rightarrow [0, 1]$ is supermodular if and only if each of its two-dimensional sections is supermodular, i.e., for each $x \in [0, 1]^n$ and all $i, j \in \{1, 2, \ldots, n\}$ with $i \neq j$, the function $f_{x, i, j}: [0, 1]^2 \rightarrow [0, 1]$ given by $f_{x, i, j}(u, v) = f(y)$, where $y_i = u$, $y_j = v$ and $y_k = x_k$ for $k \in \{1, 2, \ldots, n\} \setminus \{i, j\}$, is supermodular.
For non-decreasing functions $f : [0, 1]^2 \rightarrow [0, 1]$, supermodularity can be reformulated as

$$f(x^*, y^*) - f(x^*, y) - f(x, y^*) + f(x, y) \geq 0$$

(6)

for all $x, x^*, y, y^* \in [0, 1]$ with $x \leq x^*$ and $y \leq y^*$.

Proposition

An n-ary function $f : [0, 1]^n \rightarrow [0, 1]$ is supermodular if and only if each of its two-dimensional sections is supermodular, i.e., for each $x \in [0, 1]^n$ and all $i, j \in \{1, 2, \ldots, n\}$ with $i \neq j$, the function $f_{x,i,j} : [0, 1]^2 \rightarrow [0, 1]$ given by $f_{x,i,j}(u, v) = f(y)$, where $y_i = u$, $y_j = v$ and $y_k = x_k$ for $k \in \{1, 2, \ldots, n\} \setminus \{i, j\}$, is supermodular.
The supermodularity of a function $f: [0, 1]^n \rightarrow [0, 1]$ is preserved if the arguments are distorted, i.e., if $g_1, \ldots, g_n: [0, 1] \rightarrow [0, 1]$ are non-decreasing functions, then the function $h: [0, 1]^n \rightarrow [0, 1]$ given by $h(\mathbf{x}) = f(g_1(x_1), \ldots, g_n(x_n))$ is supermodular (if f is a supermodular aggregation function with $f(g_1(0), \ldots, g_n(0)) = 0$ and $f(g_1(1), \ldots, g_n(1)) = 1$ then h is also a supermodular aggregation function).
Definition

An aggregation function $C : [0, 1]^2 \rightarrow [0, 1]$ is called a 2-\textit{copula} (or, briefly, a \textit{copula}) if it is supermodular and has 1 as neutral element, i.e., if $C(x, 1) = C(1, x) = x$ for all $x \in [0, 1]$.
Proposition

An aggregation function $A: [0, 1]^2 \rightarrow [0, 1]$ is supermodular if and only if there are non-decreasing functions $g_1, g_2, g_3, g_4: [0, 1] \rightarrow [0, 1]$ with $g_i(0) = 0$ and $g_i(1) = 1$ for $i \in \{1, 2, 3, 4\}$, a copula $C: [0, 1]^2 \rightarrow [0, 1]$, and numbers $a, b, c \in [0, 1]$ with $a + b + c = 1$ such that, for all $(x, y) \in [0, 1]^2$,

$$A(x, y) = a \cdot g_1(x) + b \cdot g_2(y) + c \cdot C(g_3(x), g_4(y)).$$ (7)
Definition

An n-ary aggregation function $A: [0, 1]^n \rightarrow [0, 1]$ is called ultramodular if, for all $x, y, z \in [0, 1]^n$ with $x + y + z \in [0, 1]^n$,

$$A(x + y + z) - A(x + y) \geq A(x + z) - A(x).$$ \hspace{1cm} (8)

In the case of one-dimensional aggregation functions, ultramodularity is just standard convexity. Therefore, ultramodularity can also be seen as an extension of one-dimensional convexity.
Definition

An \(n \)-ary aggregation function \(A: [0, 1]^n \rightarrow [0, 1] \) is called *ultramodular* if, for all \(\mathbf{x}, \mathbf{y}, \mathbf{z} \in [0, 1]^n \) with \(\mathbf{x} + \mathbf{y} + \mathbf{z} \in [0, 1]^n \),

\[
A(\mathbf{x} + \mathbf{y} + \mathbf{z}) - A(\mathbf{x} + \mathbf{y}) \geq A(\mathbf{x} + \mathbf{z}) - A(\mathbf{x}). \tag{8}
\]

In the case of one-dimensional aggregation functions, ultramodularity is just standard convexity. Therefore, ultramodularity can also be seen as an extension of one-dimensional convexity.
Proposition

A function $f : [0, 1]^n \rightarrow [0, 1]$ is ultramodular if and only if f is supermodular and each of its one-dimensional sections is convex, i.e., for each $x \in [0, 1]^n$ and each $i \in \{1, \ldots, n\}$ the function $f_{x,i} : [0, 1] \rightarrow [0, 1]$ given by $f_{x,i}(u) = f(y)$, where $y_i = u$ and $y_j = x_j$ whenever $j \neq i$, is convex.

Corollary

Let $n \geq 2$ and assume that all partial derivatives of order 2 of the function $f : [0, 1]^n \rightarrow [0, 1]$ exist. Then f is ultramodular if and only if all partial derivatives of order 2 are non-negative.
Proposition

A function $f : [0, 1]^n \rightarrow [0, 1]$ is ultramodular if and only if f is supermodular and each of its one-dimensional sections is convex, i.e., for each $x \in [0, 1]^n$ and each $i \in \{1, \ldots, n\}$ the function $f_{x,i} : [0, 1] \rightarrow [0, 1]$ given by $f_{x,i}(u) = f(y)$, where $y_i = u$ and $y_j = x_j$ whenever $j \neq i$, is convex.

Corollary

Let $n \geq 2$ and assume that all partial derivatives of order 2 of the function $f : [0, 1]^n \rightarrow [0, 1]$ exist. Then f is ultramodular if and only if all partial derivatives of order 2 are non-negative.
For an n-ary aggregation function $A : [0, 1]^n \rightarrow [0, 1]$ the following are equivalent:

(a) A is ultramodular;
(b) each two-dimensional section of A is ultramodular;
(c) each two-dimensional section of A is supermodular and each one-dimensional section of A is convex.
Another equivalent condition to the ultramodularity (8) of an \(n \)-ary aggregation function \(A: [0, 1]^n \rightarrow [0, 1] \) is the validity of

\[
A(x + u) + A(x - u) \geq A(x + v) + A(x - v)
\]

for all \(x, u \in [0, 1]^n, v \in \mathbb{R}^n \) with \(|v| \leq u \) and \(x + u, x - u, x + v, x - v \in [0, 1]^n \) (indeed, it is sufficient to put \(y = u + v \) and \(z = u - v \)). Relaxing the requirement \(u \in [0, 1]^n \) and \(|v| \leq u \) into \(u \in \mathbb{R}^n \) and \(|v| \leq |u| \) we get the definition of \textit{symmetrically monotone functions}. Note that symmetrically monotone aggregation functions \(A: [0, 1]^n \rightarrow [0, 1] \) are exactly ultramodular aggregation functions which are modular, i.e., \(A(x) = \sum_{i=1}^{n} f_i(x_i) \) with \(f_i: [0, 1] \rightarrow [0, 1] \) being convex for each \(i \in \{1, \ldots, n\} \).
For $n = 2$, the ultramodularity (8) of an aggregation function $A: [0, 1]^2 \rightarrow [0, 1]$ is equivalent to A being P-increasing, i.e., to

$$A(u_1, v_1) + A(u_4, v_4) \geq \max (A(u_2, v_2) + A(u_3, v_3), A(u_3, v_2) + A(u_2, v_3))$$

for all $u_1, u_2, u_3, u_4, v_1, v_2, v_3, v_4 \in [0, 1]$ satisfying

$u_1 \leq u_2 \land u_3 \leq u_2 \lor u_3 \leq u_4, \ v_1 \leq v_2 \land v_3 \leq v_2 \lor v_3 \leq v_4,$

$u_1 + u_4 \geq u_2 + u_3,$ and $v_1 + v_4 \geq v_2 + v_3.$
Fix two non-decreasing functions $f, g : [0, 1] \to [0, 1]$ with $f(0) = g(0) = 0$ and $f(1) = g(1) = 1$. Then the smallest supermodular aggregation function $A_* : [0, 1]^2 \to [0, 1]$ satisfying $A_*(x, 1) = f(x)$ and $A_*(1, y) = g(y)$ for all $x, y \in [0, 1]$ is given by $A_*(x, y) = \max(f(x) + g(y) - 1, 0)$. Observe that A_* is ultramodular (and, subsequently, the smallest ultramodular aggregation function with fixed margins f and g) if and only if both f and g are convex. In particular, if $f = g = \text{id}_{[0,1]}$ then $A_* = W$, the smallest binary copula. On the other hand, the greatest supermodular aggregation function $A^* : [0, 1]^2 \to [0, 1]$ satisfying $A^*(x, 1) = f(x)$ and $A^*(1, y) = g(y)$ for all $x, y \in [0, 1]$ is given by $A^*(x, y) = \min(f(x), g(y))$. However, A^* is ultramodular only if $f = g = 1 \{1\}$, i.e., if A^* coincides with the smallest binary aggregation function $1 \{(1,1)\}$.
Given a copula $C : [0, 1]^2 \to [0, 1]$, for each $c \in [0, 1]$ the horizontal section $h_c : [0, 1] \to [0, 1]$ given by $h_c(x) = C(x, c)$ obviously satisfies $h_c(0) = 0$ and $h_c(1) = c$. Then the greatest possible convex horizontal section h_c is given by $h_c(x) = c \cdot x$, corresponding to the product copula Π (hence we have $C(x, c) \leq c \cdot x = \Pi(x, c)$). It is easy to verify that Π is an ultramodular copula, and hence Π is the greatest ultramodular copula. From a statistical point of view, ultramodular copulas describe the dependence structure of stochastically decreasing random vectors (X, Y), and thus each ultramodular copula is *Negative Quadrant Dependent* (NQD).
Figure: Modularity (left), supermodularity (center), and ultramodularity of a function $f : [0, 1]^2 \rightarrow [0, 1]$
Theorem

Let $A: [0, 1]^n \rightarrow [0, 1]$ be an aggregation function and $k \geq 2$. Then the following are equivalent:

(i) A is ultramodular.

(ii) If $B_1, \ldots, B_n: [0, 1]^k \rightarrow [0, 1]$ are non-decreasing supermodular functions then the composite $D: [0, 1]^k \rightarrow [0, 1]$ given by $D(x) = A(B_1(x), \ldots, B_n(x))$ is a supermodular function.
Theorem

Let $A: [0, 1]^n \to [0, 1]$ and $B_1, \ldots, B_n: [0, 1]^k \to [0, 1]$ be ultramodular aggregation functions. Then the composite function $D: [0, 1]^k \to [0, 1]$ given by $D(x) = A(B_1(x), \ldots, B_n(x))$ is also an ultramodular aggregation function.
Corollary

Let $A_1, \ldots, A_j: [0, 1]^n \to [0, 1]$ be n-ary ultramodular aggregation functions and $f: [0, 1] \to [0, 1]$ a non-decreasing function with $f(0) = 0$ and $f(1) = 1$. Then we have:

(i) Each convex combination of A_1, \ldots, A_j is an n-ary ultramodular aggregation function.

(ii) The product of A_1, \ldots, A_j is an n-ary ultramodular aggregation function.

(iii) If $A: [0, 1]^n \to [0, 1]$ is an n-ary ultramodular aggregation function and f is convex then the composition $f \circ A$ is an n-ary ultramodular aggregation function.
Corollary - continue

(iv) If $A : [0, 1]^2 \rightarrow [0, 1]$ is a binary associative ultramodular aggregation function (i.e., $A(x, A(y, z)) = A(A(x, y), z)$ for all $x, y, z \in [0, 1]$) then, for each $k > 2$, the k-ary extension of A to $[0, 1]^k$ defined by

$$A(x_1, x_2 \ldots, x_k) = A(x_1, A(x_2, \ldots, A(x_{k-1}, x_k) \ldots))$$

is a k-ary ultramodular aggregation function.
Proposition

Let $Ch_m : [0, 1]^n \to [0, 1]$ be a Choquet integral-based aggregation function based on a capacity m on $X = \{1, \ldots, n\}$. Then we have:

(i) Ch_m is superadditive, i.e., for all $x, y \in [0, 1]^n$ with $x + y \in [0, 1]^n$ we have

$$Ch_m(x + y) \geq Ch_m(x) + Ch_m(y),$$

if and only if the capacity m is supermodular.

(ii) Ch_m is ultramodular if and only if the capacity m is modular, i.e., Ch_m is a weighted arithmetic mean.
Lemma

An n-ary ultramodular aggregation function $A: [0, 1]^n \rightarrow [0, 1]$ is continuous if and only if $\sup\{A(x) \mid x \in [0, 1]^n\} = 1$.

Proposition

Each function $A \in \mathcal{U}_n$ can be written as a convex combination $A = \lambda A^* + (1 - \lambda)A^{**}$ where $\lambda = \sup\{A(x) \mid x \in [0, 1]^n\}$, $A^* \in \mathcal{U}_n$ is continuous and A^{**} is an n-ary aggregation function with $A^{**}(x) = 0$ for all $x \in [0, 1]^n$.
Lemma

An n-ary ultramodular aggregation function \(A : [0, 1]^n \rightarrow [0, 1] \) is continuous if and only if \(\sup \{ A(x) \mid x \in [0, 1]^n \} = 1 \).

Proposition

Each function \(A \in \mathcal{U}_n \) can be written as a convex combination \(A = \lambda A^* + (1 - \lambda) A^{**} \) where \(\lambda = \sup \{ A(x) \mid x \in [0, 1]^n \} \), \(A^* \in \mathcal{U}_n \) is continuous and \(A^{**} \) is an n-ary aggregation function with \(A^{**}(x) = 0 \) for all \(x \in [0, 1]^n \).
Theorem

Let $A: [0, 1]^n \rightarrow [0, 1]$ be an aggregation function with $A(x) = 0$ for all $x \in [0, 1]^n$. Then A is ultramodular if and only if the following hold:

(i) all $(n - 1)$-dimensional sections $B_i = A|_{E_i}$ of A, $i \in \{1, \ldots, n\}$, are ultramodular, where $E_i = E_{e_i;e_1,e_2,\ldots,e_i-1,e_i+1,\ldots,e_n}$.

(ii) for all $i, j \in \{1, \ldots, n\}$ with $i \neq j$ and all $x \in E_i \cap E_j$ we have

$$A(x) \geq \sup\{B_i(y) \mid y \in E_i, y < x\} + \sup\{B_j(z) \mid z \in E_j, z < x\}.$$
Proposition

A function $A: [0, 1]^2 \rightarrow [0, 1]$ is a maximal continuous ultramodular aggregation function (i.e., there is no continuous ultramodular aggregation function $B: [0, 1]^2 \rightarrow [0, 1]$ with $B(x, y) \geq A(x, y)$ for all $(x, y) \in [0, 1]^2$ and $B(x_0, y_0) > A(x_0, y_0)$ for some $(x_0, y_0) \in [0, 1]^2$) if and only if A is a weighted arithmetic mean, i.e., $A(x, y) = \lambda \cdot x + (1 - \lambda) \cdot y$ for some $\lambda \in [0, 1]$.
Corollary

If $A \in \mathcal{U}_2$ then we have

$$A = \lambda \cdot A_1 + (1 - \lambda) \cdot A_2,$$

where A_1 is a modular element of \mathcal{U}_2, A_2 is a supermodular binary aggregation function with annihilator 0, and

$\lambda = 1 - A(1, 0) - A(0, 1) \in [0, 1]$.

Recall that a binary aggregation function $C : [0, 1]^2 \rightarrow [0, 1]$ is an Archimedean copula if and only if there is a continuous, strictly decreasing convex function $t : [0, 1] \rightarrow [0, \infty]$ with $t(1) = 0$ such that for all $(x, y) \in [0, 1]$

$$C(x, y) = t^{-1}(\min(t(x) + t(y), t(0))). \; \; \; (10)$$

The function t is called an additive generator of C.

Theorem

Let $C : [0, 1]^2 \rightarrow [0, 1]$ be an Archimedean copula with a two times differentiable additive generator $t : [0, 1] \rightarrow [0, \infty]$. Then C is ultramodular if and only if $\frac{1}{t'}$ is a convex function.
Recall that a binary aggregation function $C : [0, 1]^2 \rightarrow [0, 1]$ is an Archimedean copula if and only if there is a continuous, strictly decreasing convex function $t : [0, 1] \rightarrow [0, \infty]$ with $t(1) = 0$ such that for all $(x, y) \in [0, 1]$

$$C(x, y) = t^{-1}(\min(t(x) + t(y), t(0))).$$ \hspace{1cm} (10)$$

The function t is called an additive generator of C.

Theorem

Let $C : [0, 1]^2 \rightarrow [0, 1]$ be an Archimedean copula with a two times differentiable additive generator $t : [0, 1] \rightarrow [0, \infty]$. Then C is ultramodular if and only if $\frac{1}{t'}$ is a convex function.
For each continuous, convex and strictly decreasing function $f : [0, 1] \to [0, \infty]$ with $f(1) = 0$ (i.e., for each additive generator of an Archimedean copula define the function $C_f : [0, 1]^2 \to [0, 1]$ by

$$C_f(x, y) = \begin{cases} 0 & \text{if } x = 0, \\ x \cdot f^{-1}(\min\left(\frac{f(y)}{x}, f(0)\right)) & \text{otherwise.} \end{cases} \quad (11)$$

and

$$C_f(x, y) = \begin{cases} 0 & \text{if } y = 0, \\ y \cdot f^{-1}(\min\left(\frac{f(x)}{y}, f(0)\right)) & \text{otherwise.} \end{cases} \quad (12)$$

are copulas.
Theorem

Let $f : [0, 1] \to [0, \infty]$ be a two times differentiable horizontal or vertical generator. If $\frac{1}{f'}$ is a convex function then C_f and C_f^r are ultramodular.

However, previous Theorem provides only a sufficient condition for the ultramodularity of copulas: indeed, if $f : [0, 1] \to [0, 1]$ is given by $f(x) = \frac{1}{x} - 1$, then f is two times differentiable and the copulas C_f and C_f^r, given by

$$C_f(x, y) = \frac{x^2y}{1 - y + xy}, \quad C_f^r(x, y) = \frac{xy^2}{1 - x + xy},$$

are both ultramodular, but $\frac{1}{f'}$ is not convex (in fact, it is concave).
Theorem

Let \(f : [0, 1] \rightarrow [0, \infty] \) be a two times differentiable horizontal or vertical generator. If \(\frac{1}{f'} \) is a convex function then \(C_f \) and \(C^f \) are ultramodular.

However, previous Theorem provides only a sufficient condition for the ultramodularity of copulas: indeed, if \(f : [0, 1] \rightarrow [0, 1] \) is given by \(f(x) = \frac{1}{x} - 1 \), then \(f \) is two times differentiable and the copulas \(C_f \) and \(C^f \), given by

\[
C_f(x, y) = \frac{x^2 y}{1 - y + xy}, \quad C^f(x, y) = \frac{xy^2}{1 - x + xy},
\]

are both ultramodular, but \(\frac{1}{f'} \) is not convex (in fact, it is concave).
Theorem

Let $A: [0, 1]^n \rightarrow [0, 1]$ be a continuous ultramodular aggregation function. Let $C_1, \ldots, C_n: [0, 1]^2 \rightarrow [0, 1]$ be copulas and assume that the continuous non-decreasing functions $f_1, \ldots, f_n, g_1, \ldots, g_n: [0, 1] \rightarrow [0, 1]$ satisfy $f_i(1) = g_i(1) = 1$ for each $i \in \{1, \ldots, n\}$ and $A(f_1(0), \ldots, f_n(0)) = A(g_1(0), \ldots, g_n(0)) = 0$. Define $\xi, \eta: [0, 1] \rightarrow [0, 1]$ by

\[
\xi(x) = \sup\{u \in [0, 1] \mid A(f_1(u), \ldots, f_n(u)) \leq x\}, \\
\eta(x) = \sup\{u \in [0, 1] \mid A(g_1(u), \ldots, g_n(u)) \leq x\}.
\]

Then the function $C: [0, 1]^2 \rightarrow [0, 1]$ given by

\[
C(x, y) = A(C_1(f_1 \circ \xi(x), g_1 \circ \eta(y)), \ldots, C_n(f_n \circ \xi(x), g_n \circ \eta(y)))
\]

is a copula.
If we put \(n = 2 \), \(A = C_1 = \prod \) and define, for \(\alpha, \beta \in [0, 1] \), the functions \(f_1, f_2, g_1, g_2 \) by \(f_1(x) = x^{1-\alpha} \), \(f_2(x) = x^\alpha \), \(g_1(x) = x^{1-\beta} \), and \(g_2(x) = x^\beta \), then for each copula \(C_2 \) the construction in (13) yields the copula \(C_{\alpha,\beta} \) given by

\[
C_{\alpha,\beta} = x^{1-\alpha} \cdot y^{1-\beta} \cdot C_2(x^\alpha, y^\beta).
\]
If we put $n = 2$, $A = W$, $C_1 = C_2 = M$ defined by $M(x, y) = \min(x, y)$ and define the functions f_1, f_2, g_1, g_2 by $f_1(x) = g_2(x) = \frac{x+2}{3}$ and $f_2(x) = g_1(x) = \frac{2x+1}{3}$, then the construction in (13) yields the copula C given by

$$C(x, y) = \frac{1}{3} \cdot \max(\min(x + 1, 2y) + \min(2x, y + 1) - 1, 0).$$
Copulas with dimension > 2?

stronger forms of ultramodularity are necessary

recall Archimedean copulas and their additive generators!
Thanks for your attention