On completion of Archimedean atomic lattice effect algebras

Martin Kalina Dept. of Mathematics, STU Bratislava

Liptovský Ján, 30 January – 3 February 2012

Definition

(E; ⊕, 0, 1) is an effect algebra if ⊕ is a partially defined operation s.t. for all p, q, r ∈ E:
(E1) p ⊕ q = q ⊕ p.
(E2) p ⊕ (q ⊕ r) = (p ⊕ q) ⊕ r.
(E3) For every p ∈ E there exists a unique q ∈ E such that p ⊕ q = 1.
(E4) If p ⊕ 1 is defined then p = 0.

Definition

(E; ⊕, 0, 1) is an effect algebra if ⊕ is a partially defined operation s.t. for all p, q, r ∈ E:
(E1) p ⊕ q = q ⊕ p.
(E2) p ⊕ (q ⊕ r) = (p ⊕ q) ⊕ r.
(E3) For every p ∈ E there exists a unique q ∈ E such that p ⊕ q = 1.
(E4) If p ⊕ 1 is defined then p = 0.

Definition

Let $a, b \in E$. $a \leq b$ if there is a $c \in E$ such that $a \oplus c = b$. If (E, \leq) is a lattice then E is a lattice effect algebra. Assume that E is an effect algebra.

An element $a \in E$ is called *atom* if for all $0 \neq b \in E$, $b \leq a$ implies b = a.

L is called *atomic* if for each element $0 \neq b \in E$ there exists an atom *a* such that $a \leq b$.

Assume that E is an effect algebra.

An element $a \in E$ is called *atom* if for all $0 \neq b \in E$, $b \leq a$ implies b = a.

L is called *atomic* if for each element $0 \neq b \in E$ there exists an atom *a* such that $a \leq b$.

To each $a \in E$ we define its isotropic index, ord(a) as the maximal positive integer n such that

$$na = \underbrace{a \oplus a \oplus \dots \oplus a}_{n-\text{times}}.$$

E is said to be Archimedean if for each $a \in E$, ord(a) is finite.

Further notions

An element $a \in E$ is sharp if

$$a \wedge a' = \mathbf{0}$$

Elements $a, b \in E$ are compatible if

$$a \lor b = a \oplus (b \ominus (b \land a))$$

A subset $B \subset E$ is called a block of E if it is a maximal set of pairwise compatible elements. A block is an MV-effect algebra.

Further notions

An element $a \in E$ is sharp if

$$a \wedge a' = \mathbf{0}$$

Elements $a, b \in E$ are compatible if

$$a \lor b = a \oplus (b \ominus (b \land a))$$

A subset $B \subset E$ is called a block of E if it is a maximal set of pairwise compatible elements. A block is an MV-effect algebra.

Let E be an atomic Archimedean lattice effect algebra. Then $e \leq f'$ if

① there exists an atomic block $B \subset E$ such that $e, f \in B$,

② for an arbitrary atom $a \in B$ if $c_e a \le e$ and $c_f a \le f$, then $c_e + c_f \le ord(a)$. ■

There are atomic bounded lattices which can be equipped with several effect-algebraic operations

There are atomic bounded lattices which can be equipped with several effect-algebraic operations

There are atomic bounded lattices which can be equipped with several effect-algebraic operations

 $\mathbf{1}_k = a_k \oplus b_k \ (a_k, b_k \text{ are compatible}),$

There are atomic bounded lattices which can be equipped with several effect-algebraic operations

 $\mathbf{1}_k = a_k \oplus b_k \ (a_k, b_k \text{ are compatible}),$

 $\mathbf{1}_k = 2a_k = 2b_k \ (a_k, b_k \text{ are non-compatible}).$

Assume that $(E, \oplus, \mathbf{0}, \mathbf{1})$ is an atomic Archimedean lattice effect algebra such that an effect-algebraic operation $\tilde{\oplus}$ exists onto $\mathcal{MC}(E)$ (the MacNeille completion of E). Does there exist an effect-algebraic operation $\hat{\oplus}$ onto $\mathcal{MC}(E)$ that extends the operation \oplus ? The MacNeille completion \hat{E} of an effect algebra E is complete lattice into which E can be embedded preserving operations \lor, \land , such that $\forall c \in \hat{E}$ there exist sequences $\{e_i\}_{i=1}^{\infty}, \{f_i\}_{i=1}^{\infty}$ of elements from E for which

$$\bigvee_i e_i = \bigwedge_i f_i = c$$

Moreover we assume that the partial operation \oplus can be extended to $\hat{E}.$

Strongly *D*-continuous effect algebras: Riečanová, MacNeille completions of D-posets and effect algebras, IJTP 39 (2000), 859–869.

Notation:

$$\begin{split} & \emptyset \neq U \subset E, \ \underline{\mathbf{U}} = \{q \in E; (\forall u \in U)(q \leq u)\}, \\ & \emptyset \neq V \subset \underline{\mathbf{U}}, \ \bar{V} = \{\bar{q} \in E; (\forall v \in V)(\bar{q} \geq v)\}, \\ & D(U, V) = \{u \ominus v; u \in U, \ v \in V\} \end{split}$$

Strongly *D*-continuous effect algebras: Riečanová, MacNeille completions of D-posets and effect algebras, IJTP 39 (2000), 859–869.

Notation:

$$\begin{split} & \emptyset \neq U \subset E, \ \underline{\mathbf{U}} = \{q \in E; (\forall u \in U)(q \leq u)\}, \\ & \emptyset \neq V \subset \underline{\mathbf{U}}, \ \bar{V} = \{\bar{q} \in E; (\forall v \in V)(\bar{q} \geq v)\}, \\ & D(U, V) = \{u \ominus v; u \in U, \ v \in V\} \end{split}$$

Definition

An effect algebra $(E,\oplus,{\bf 0},{\bf 1})$ is called strongly D-continuous if for all $U,\,V$

(SDC) $\wedge D(U, V) = \mathbf{0} \iff (\forall \bar{v} \in \bar{V})(\forall \underline{u} \in \underline{U})(\bar{v} \ge \underline{u}).$

Strongly *D*-continuous effect algebras: Riečanová, MacNeille completions of D-posets and effect algebras, IJTP 39 (2000), 859–869.

Notation:

$$\begin{split} & \emptyset \neq U \subset E, \ \underline{\mathbf{U}} = \{q \in E; (\forall u \in U)(q \leq u)\}, \\ & \emptyset \neq V \subset \underline{\mathbf{U}}, \ \bar{V} = \{\bar{q} \in E; (\forall v \in V)(\bar{q} \geq v)\}, \\ & D(U, V) = \{u \ominus v; u \in U, \ v \in V\} \end{split}$$

Definition

An effect algebra $(E,\oplus,{\bf 0},{\bf 1})$ is called strongly D-continuous if for all $U,\,V$

(SDC) $\wedge D(U, V) = \mathbf{0} \quad \Leftrightarrow \quad (\forall \overline{v} \in \overline{V})(\forall \underline{u} \in \underline{U})(\overline{v} \ge \underline{u}).$

Theorem

An arbitrary effect algebra $(E, \oplus, \mathbf{0}, \mathbf{1})$ has a MacNeille completion iff E has the property (SDC).

$(\mathsf{SDC}) \quad \wedge D(U, V) = \mathbf{0} \quad \Leftrightarrow \quad \bar{V} \ge \underline{\mathsf{U}}$

Theorem

Let E an atomic Archimedean LEA. Then E has the property (SDC).

$$(\mathsf{SDC}) \quad \wedge D(U, V) = \mathbf{0} \quad \Leftrightarrow \quad \bar{V} \ge \underline{\mathsf{U}}$$

Let E an atomic Archimedean LEA. Then E has the property (SDC).

"
$$\Rightarrow$$
" Let $(\exists a \in \mathcal{A}, n \in \mathbf{N})(n \cdot a \in \underline{U})$
 $\underset{\wedge D(U,V)=0}{\Rightarrow} (\exists v \in V)(n \cdot a \leq v)$

$$(\mathsf{SDC}) \quad \wedge D(U, V) = \mathbf{0} \quad \Leftrightarrow \quad \bar{V} \ge \underline{\mathsf{U}}$$

Let E an atomic Archimedean LEA. Then E has the property (SDC).

$$\begin{array}{ccc} "\Rightarrow" \ {\sf Let} \ (\exists a \in {\cal A}, n \in {\bf N})(n \cdot a \in \underline{{\sf U}}) \\ \underset{\wedge D(U,V)=0}{\Rightarrow} (\exists v \in V)(n \cdot a \leq v) \ \Rightarrow \quad \bar{V} \geq \underline{{\sf U}} \end{array}$$

$$(\mathsf{SDC}) \quad \wedge D(U, V) = \mathbf{0} \quad \Leftrightarrow \quad \bar{V} \ge \underline{\mathsf{U}}$$

Let E an atomic Archimedean LEA. Then E has the property (SDC).

"
$$\Rightarrow \text{"Let } (\exists a \in \mathcal{A}, n \in \mathbf{N})(n \cdot a \in \underline{U})$$

$$\Rightarrow \quad (\exists v \in V)(n \cdot a \leq v) \Rightarrow \quad \overline{V} \geq \underline{U}$$

$$\wedge D(U, V) = 0$$
"
$$\text{"Assume } \wedge D(U, V) \neq 0$$

$$\text{Then } (\exists a \in \mathcal{A}, n \in \mathbf{N})(n \cdot a \in \underline{U})\& (\nexists v \in V)(n \cdot a \leq v)$$

$$(\mathsf{SDC}) \quad \wedge D(U, V) = \mathbf{0} \quad \Leftrightarrow \quad \bar{V} \ge \underline{\mathsf{U}}$$

Let E an atomic Archimedean LEA. Then E has the property (SDC).

"
$$\begin{array}{c} \text{"}\Rightarrow\text{"} \ \text{Let} \ (\exists a \in \mathcal{A}, n \in \mathbf{N})(n \cdot a \in \underline{U}) \\ & \underset{\wedge D(U,V)=0}{\Rightarrow} \quad (\exists v \in V)(n \cdot a \leq v) \Rightarrow \quad \bar{V} \geq \underline{U} \\ \\ \text{"}\Leftarrow\text{"} \ \text{Assume} \ \wedge D(U,V) \neq 0 \\ & \text{Then} \ (\exists a \in \mathcal{A}, n \in \mathbf{N})(n \cdot a \in \underline{U})\& (\nexists v \in V)(n \cdot a \leq v) \\ & \text{This implies} \ \bar{V} \not\geq \underline{U} \end{array}$$

$$(\mathsf{SDC}) \quad \wedge D(U, V) = \mathbf{0} \quad \Leftrightarrow \quad \bar{V} \ge \underline{\mathsf{U}}$$

Let E an atomic Archimedean LEA. Then E has the property (SDC).

Idea of the proof. \mathcal{A} – the set of all atoms.

"
$$\Rightarrow \text{"Let } (\exists a \in \mathcal{A}, n \in \mathbf{N})(n \cdot a \in \underline{U}) \\ \underset{\wedge D(U,V)=0}{\Rightarrow} (\exists v \in V)(n \cdot a \leq v) \Rightarrow \overline{V} \geq \underline{U} \\ \text{``Assume } \wedge D(U, V) \neq 0 \\ \text{Then } (\exists a \in \mathcal{A}, n \in \mathbf{N})(n \cdot a \in \underline{U})\& (\nexists v \in V)(n \cdot a \leq v) \\ \text{This implies } \overline{V} \neq U$$

Corollary

Let E an atomic Archimedean LEA. Then E has $\mathcal{MC}(E)$.