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From graphs to ortholattices
I Take a loopless, undirected graph G = (V ,E).

I N : V → 2V is the neighbourhood map:

N(a) = {b : there is an edge (a,b) ∈ E}.

I Make a natural extension N : 2V → 2V

N(A) =
⋂
a∈A

N(a).

I N is antitone.
I No loops: N(A) ∩ A = ∅, N(∅) = V , N(V ) = ∅.
I Define:

N(2V ) = {N(A) : A ⊆ V}
are the closed sets.

I Fact: N3 = N, so N is an antitone involution on the poset of
closed sets.

I L(G) = (N(2V ),∩,∨,N) is an ortholattice,
A ∨ B = N2(A ∪ B).
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From ortholattices to graphs

I Take an ortholattice L.
I Pick a subset T ⊆ L such that every element of L is a join

of some elements from T .
I Construct a graph G(L,T ):

I the vertices are T ,
I the edges are {(a,b) ∈ T × T : a ≤ b′}.

I Then we have L(G(L,T )) ' L.
I Moreover, if G is a graph such that L(G) ' L, then the

neighbourhood retract of G is isomorphic to some G(L,T ).
I For an OML, we can take atoms.
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From ortholattices to topological spaces

I Take an ortholattice L.
I Remove the top and bottom, denote the resulting poset by

L̂.
I Replace every n-chain in L̂ by an n-simplex and glue the

simplices together so that subchains correspond to faces.
I We obtain a topological space ∆(L̂), called the order

complex of L̂.
I The orthocomplementation on L̂ can be transferred to a

free action of Z2 on ∆(L̂).


