Ortholattices from graphs

G. Jenča

Department of Mathematics and Descriptive Geometry
Slovak Technical University

FSTA 2012
This is an expository talk about results of other people.
The Papers

From graphs to ortholattices

- Take a loopless, undirected graph $G = (V, E)$.

- $N: V \rightarrow 2^V$ is the neighbourhood map: $N(a) = \{ b : \text{there is an edge } (a, b) \in E \}$.

- Make a natural extension $N: 2^V \rightarrow 2^V$ $N(A) = \bigcap_{a \in A} N(a)$.

- N is antitone.

- No loops: $N(A) \cap A = \emptyset$, $N(\emptyset) = V$, $N(V) = \emptyset$.

- Define: $N(2^V) = \{ N(A) : A \subseteq V \}$ are the closed sets.

- Fact: $N^3 = N$, so N is an antitone involution on the poset of closed sets.

- $L(G) = (N(2^V), \cap, \lor, N)$ is an ortholattice, $A \lor B = N(2^V \cup A \cup B)$.

From graphs to ortholattices

- Take a loopless, undirected graph \(G = (V, E) \).
- \(N : V \to 2^V \) is the *neighbourhood map*:
 \[
 N(a) = \{ b : \text{there is an edge } (a, b) \in E \}.
 \]
From graphs to ortholattices

- Take a loopless, undirected graph $G = (V, E)$.
- $N : V \to 2^V$ is the *neighbourhood map*:
 \[N(a) = \{ b : \text{there is an edge } (a, b) \in E \}. \]

- Make a natural extension $N : 2^V \to 2^V$
 \[N(A) = \bigcap_{a \in A} N(a). \]
From graphs to ortholattices

- Take a loopless, undirected graph $G = (V, E)$.
- $N : V \to 2^V$ is the *neighbourhood map*:
 \[
 N(a) = \{ b : \text{there is an edge } (a, b) \in E \}.
 \]
- Make a natural extension $N : 2^V \to 2^V$
 \[
 N(A) = \bigcap_{a \in A} N(a).
 \]
- N is antitone.
From graphs to ortholattices

- Take a loopless, undirected graph $G = (V, E)$.
- $N : V \to 2^V$ is the *neighbourhood map*:
 \[
 N(a) = \{b : \text{there is an edge } (a, b) \in E\}.
 \]

- Make a natural extension $N : 2^V \to 2^V$
 \[
 N(A) = \bigcap_{a \in A} N(a).
 \]
- N is antitone.
- No loops: $N(A) \cap A = \emptyset$, $N(\emptyset) = V$, $N(V) = \emptyset$.

From graphs to ortholattices

- Take a loopless, undirected graph \(G = (V, E) \).
- \(N : V \to 2^V \) is the *neighbourhood map*:
 \[
 N(a) = \{ b : \text{there is an edge } (a, b) \in E \}.
 \]

- Make a natural extension \(N : 2^V \to 2^V \)
 \[
 N(A) = \bigcap_{a \in A} N(a).
 \]

- \(N \) is antitone.
- No loops: \(N(A) \cap A = \emptyset, N(\emptyset) = V, N(V) = \emptyset \).
- Define:
 \[
 N(2^V) = \{ N(A) : A \subseteq V \}
 \]
 are the *closed sets*.

Fact: \(N^3 = N \), so \(N \) is an antitone involution on the poset of closed sets.

\[
L(G) = (N(2^V), \cap, \vee, N)
\]
is an ortholattice,
\[
A \vee B = N(2^V) \]

From graphs to ortholattices

- Take a loopless, undirected graph $G = (V, E)$.
- $N : V \rightarrow 2^V$ is the **neighbourhood map**:
 \[N(a) = \{ b : \text{there is an edge } (a, b) \in E \} . \]

- Make a natural extension $N : 2^V \rightarrow 2^V$
 \[N(A) = \bigcap_{a \in A} N(a) . \]

- N is antitone.
- No loops: $N(A) \cap A = \emptyset$, $N(\emptyset) = V$, $N(V) = \emptyset$.
- Define:
 \[N(2^V) = \{ N(A) : A \subseteq V \} \]
 are the closed sets.
- Fact: $N^3 = N$, so N is an antitone involution on the poset of closed sets.
From graphs to ortholattices

- Take a loopless, undirected graph $G = (V, E)$.
- $N : V \to 2^V$ is the \textit{neighbourhood map}:
 $$N(a) = \{ b : \text{there is an edge } (a, b) \in E \}.$$

- Make a natural extension $N : 2^V \to 2^V$
 $$N(A) = \bigcap_{a \in A} N(a).$$

- N is antitone.
- No loops: $N(A) \cap A = \emptyset$, $N(\emptyset) = V$, $N(V) = \emptyset$.
- Define:
 $$N(2^V) = \{ N(A) : A \subseteq V \}$$
 are the \textit{closed sets}.

- Fact: $N^3 = N$, so N is an antitone involution on the poset of closed sets.
- $L(G) = (N(2^V), \cap, \lor, N)$ is an ortholattice,
 $$A \lor B = N^2(A \cup B).$$
From ortholattices to graphs

- Take an ortholattice L.
- Pick a subset $T \subseteq L$ such that every element of L is a join of some elements from T.
- Construct a graph $G(L, T)$:
 - the vertices are T,
 - the edges are $\{(a, b) \in T \times T : a \leq b'\}$.
- Then we have $L(G(L, T)) \simeq L$.
- Moreover, if G is a graph such that $L(G) \simeq L$, then the neighbourhood retract of G is isomorphic to some $G(L, T)$.
- For an OML, we can take atoms.
From ortholattices to graphs

- Take an ortholattice L.
From ortholattices to graphs

- Take an ortholattice L.
- Pick a subset $T \subseteq L$ such that every element of L is a join of some elements from T.

$G(L, T)$:
- the vertices are T,
- the edges are $\{(a, b) \in T \times T : a \leq b\}$.

Then we have $L(G(L, T)) \cong L$.

Moreover, if G is a graph such that $L(G) \cong L$, then the neighbourhood retract of G is isomorphic to some $G(L, T)$.

For an OML, we can take atoms.
From ortholattices to graphs

- Take an ortholattice L.
- Pick a subset $T \subseteq L$ such that every element of L is a join of some elements from T.
- Construct a graph $G(L, T)$:
From ortholattices to graphs

- Take an ortholattice L.
- Pick a subset $T \subseteq L$ such that every element of L is a join of some elements from T.
- Construct a graph $G(L, T)$:
 - the vertices are T,

Then we have $L(G(L, T)) \equiv L$. Moreover, if G is a graph such that $L(G) \equiv L$, then the neighbourhood retract of G is isomorphic to some $G(L, T)$. For an OML, we can take atoms.
From ortholattices to graphs

- Take an ortholattice L.
- Pick a subset $T \subseteq L$ such that every element of L is a join of some elements from T.
- Construct a graph $G(L, T)$:
 - the vertices are T,
 - the edges are $\{(a, b) \in T \times T : a \leq b'\}$.
From ortholattices to graphs

- Take an ortholattice L.
- Pick a subset $T \subseteq L$ such that every element of L is a join of some elements from T.
- Construct a graph $G(L, T)$:
 - the vertices are T,
 - the edges are $\{(a, b) \in T \times T : a \leq b'\}$.
- Then we have $\mathcal{L}(G(L, T)) \simeq L$.
From ortholattices to graphs

- Take an ortholattice L.
- Pick a subset $T \subseteq L$ such that every element of L is a join of some elements from T.
- Construct a graph $G(L, T)$:
 - the vertices are T,
 - the edges are $\{(a, b) \in T \times T : a \leq b'\}$.
- Then we have $\mathcal{L}(G(L, T)) \simeq L$.
- Moreover, if G is a graph such that $\mathcal{L}(G) \simeq L$, then the neighbourhood retract of G is isomorphic to some $G(L, T)$.
From ortholattices to graphs

- Take an ortholattice L.
- Pick a subset $T \subseteq L$ such that every element of L is a join of some elements from T.
- Construct a graph $\mathcal{G}(L, T)$:
 - the vertices are T,
 - the edges are $\{(a, b) \in T \times T : a \leq b'\}$.
- Then we have $\mathcal{L}(\mathcal{G}(L, T)) \simeq L$.
- Moreover, if G is a graph such that $\mathcal{L}(G) \simeq L$, then the neighbourhood retract of G is isomorphic to some $\mathcal{G}(L, T)$.
- For an OML, we can take atoms.
From ortholattices to topological spaces

- Take an ortholattice L.
- Remove the top and bottom, denote the resulting poset by \hat{L}.
- Replace every n-chain in \hat{L} by an n-simplex and glue the simplices together so that subchains correspond to faces.
- We obtain a topological space $\Delta(\hat{L})$, called the order complex of \hat{L}.
- The orthocomplementation on \hat{L} can be transferred to a free action of \mathbb{Z}_2 on $\Delta(\hat{L})$.