Equations and Inequalities Defined by Residuated Functions

Jelena Ignjatović

> Department of Computer Science
> Faculty of Sciences and Mathematics
> University of Niš, Serbia, jelena.ignjatovic@pmf.edu.rs
> joint work with
> Miroslav Ćirić, Bernard De Beats

Eleventh International Conference on Fuzzy Set Theory and Applications January 30-February 3, 2012, Liptovský Ján, Slovak Republic

The theory of ordered sets Equations and inequalities . . .

Functions

Composition of functions

U - non-empty set; I_{U} - the identity function on U
U, V, W - non-empty sets; $f: U \rightarrow V, g: V \rightarrow W$ - given functions
$f \circ g: U \rightarrow W$ - the composition of f and g defined by $f \circ g(x)=g(f(x))$, for every $x \in U$
Blyth (2005) and Roman (2008) - the composition is defined in a different way

Direct and inverse images

$f: U \rightarrow V$ - function;
$>f(S)=\{f(x) \mid x \in S\}$ - the direct image of $S \subseteq U$ under f;
$>f^{-1}(T)=\{x \in U \mid f(x) \in T\}$ - the inverse image of $T \subseteq V$ under f

The theory of ordered sets Equations and inequalities . . .

Ordered sets

Partially ordered set (ordered set)

$(P, \leqslant)-P$ is a non-empty set, \leqslant is an order on P;
$\geqslant-$ the dual order of \leqslant

The bottom and the top element of a subset

P - ordered set; $H \subseteq P$;
TH - the greatest element (top element) of H, if it exists;
$\perp H$ - the smallest element (bottom element) of H, if it exists

Pointwise order of functions

$U \neq \emptyset ; P$ - ordered set; $f, g: U \rightarrow P ;$
$f \leqslant g-f(x) \leqslant g(x), x \in U$

The theory of ordered sets Equations and inequalities . . .

Ordered sets (cont.)

Definition:

P, Q - ordered sets; $f: P \rightarrow Q$ - function;
f - isotone or order-preserving if $x \leqslant y$ implies $f(x) \leqslant f(y), x, y \in P$;
f - antitone or order-inverting if $x \leqslant y$ implies $f(x) \geqslant f(y), x, y \in P$

Down-sets and up-sets

P - ordered set; $D, U \subseteq P$
D - a down-set if $x \in D$ and $y \in P$ such that $y \leqslant x$ implies $y \in D$;
$\emptyset \subseteq P$ - a down-set.
$\downarrow x=\{y \in P \mid y \leqslant x\}$ - the principal down-set generated by x
U - an up-set if $x \in U$ and $y \in P$ such that $y \geqslant x$ implies $y \in U$;
$\uparrow x=\{y \in P \mid y \geqslant x\}$ - the principal up-set generated by x

The theory of ordered sets Equations and inequalities . . . Important examples

Ordered sets (cont.)

The directedness and completeness

$\emptyset \neq D \subseteq P$
D - an upward directed if for $a, b \in D$ there is $c \in D$ such that $a \leqslant c$ and $b \leqslant c$.
P - an upward complete ordered set if it has a least element and if every upward directed subset of P has a join.
A downward directed subset and a downward complete ordered set are defined dually.

Remark

D is an upward directed subset of P if and only if every finite subset of D has an upper bound in D.

The adjective complete - a different meaning applied to posets than applied to lattices.

The theory of ordered sets Equations and inequalities . . . Important examples

Fixed points

Theorem 1. [Blyth(2005)]

P, Q - ordered sets; $f: P \rightarrow Q$ - a function;
The following conditions are equivalent:
(i) f is isotone;
(ii) the inverse image under f of every principal down-set of Q is a down-set of P;
(iii) the inverse image under f of every principal up-set of Q is an up-set of P.

Fixed points

P - an ordered set; $f: P \rightarrow P$ - an isotone function

$$
\begin{aligned}
a \in P & - \text { fixed point of } f & & f(a)=a \\
& \text { - pre-fixed point of } f & & f(a) \leqslant a \\
& \text { - post-fixed point of } f & & a \leqslant f(a)
\end{aligned}
$$

The theory of ordered sets Equations and inequalities Important examples

Fixed points (cont.)

Notations

- Fix (f) - the set of all fixed points;
- Post (f) - the set of all post-fixed points;

Knaster-Tarski fixed point theorem

P - a complete lattice; $f: P \rightarrow P$ - an isotone function;
Post (f) is a complete join-subsemilattice of P.
$\operatorname{Pre}(f)$ is a complete meet-subsemilattice of P.
$\operatorname{Fix}(f)$ is a complete lattice, $\operatorname{TFix}(f)=\operatorname{TPost}(f)$ and $\perp \operatorname{Fix}(f)=\perp \operatorname{Pre}(f)$.

Remark

The Knaster-Tarski fixed point theorem establishes existence of the least and the greatest fixed points, but it does not give an effective procedure for their computing.

The theory of ordered sets Equations and inequalities Important examples

Fixed points (cont.)

Notations

- Fix (f) - the set of all fixed points;
- Post (f) - the set of all post-fixed points;
- Pre (f) - the set of all pre-fixed points.

Knaster-Tarski fixed point theorem

P - a complete lattice; $f: P \rightarrow P$ - an isotone function;
Post (f) is a complete join-subsemilattice of P.
$\operatorname{Pre}(f)$ is a complete meet-subsemilattice of P.
$\operatorname{Fix}(f)$ is a complete lattice, $\operatorname{TFix}(f)=\operatorname{TPost}(f)$ and $\perp \operatorname{Fix}(f)=\perp \operatorname{Pre}(f)$.

Remark

The Knaster-Tarski fixed point theorem establishes existence of the least and the greatest fixed points, but it does not give an effective procedure for their computing.

The theory of ordered sets Equations and inequalities Important examples

Fixed points (cont.)

Notations

- Fix (f) - the set of all fixed points;
- Post (f) - the set of all post-fixed points;
- Pre (f) - the set of all pre-fixed points.

Knaster-Tarski fixed point theorem

P - a complete lattice; $f: P \rightarrow P$ - an isotone function;
Post (f) is a complete join-subsemilattice of P.
$\operatorname{Pre}(f)$ is a complete meet-subsemilattice of P.
$\operatorname{Fix}(f)$ is a complete lattice, $\operatorname{TFix}(f)=\operatorname{TPost}(f)$ and $\perp \operatorname{Fix}(f)=\perp \operatorname{Pre}(f)$.

Remark

The Knaster-Tarski fixed point theorem establishes existence of the least and the greatest fixed points, but it does not give an effective procedure for their computing.

The theory of ordered sets Equations and inequalities . . .

Fixed points (cont.)

The greatest fixed point

f - a meet-continuous function (which preserves all lower-directed meets);
Computing the least and greatest fixed points - based on the Kleene fixed point theorem. The greatest fixed point of f can be "computed" as the meet of the descending Kleene chain of f defined as follows:

$$
a_{1}=1, a_{k+1}=f\left(a_{k}\right), k \in \mathbb{N} .
$$

1 - the greatest element

Remark

Tha above equality enables either to effectively compute (if the sequence stabilizes at some a_{k}) or to approximate the greatest fixed point of f.

The theory of ordered sets Equations and inequalities Important examples

The greatest fixed point (cont.)

f - an isotone function (without meet-continuity);

$$
\bar{a} \leqslant \bigwedge_{k \in \mathbb{N}} a_{k},
$$

$\bar{a}-$ the greatest fixed point of f

Examples

\gg In a finite lattice P the sequence $\left\{a_{k}\right\}_{k \in \mathbb{N}}$ must be finite, and its least element is equal to \bar{a}.
\gg the equality is provided in the above inequality when we deal with relations on a finite set or subsets of a finite set

Questions

Under what conditions the inverse image under $f: P \rightarrow Q$ (P, Q-ordered sets) of a principal down-set is also a principal down-set, and the inverse image under f of a principal up-set is also a principal up-set?

The theory of ordered sets Equations and inequalities Important examples

Residuated and residual functions

Theorem 2. [Blyth (2005)]

P, Q - ordered sets; $f: P \rightarrow Q$ - a function
The following conditions are equivalent:
(i) f is isotone and there exists an isotone function $g: Q \rightarrow P$ such that

$$
I_{P} \leqslant f \circ g, \quad g \circ f \leqslant I_{Q} ;
$$

(ii) there exists a function $g: Q \rightarrow P$ such that

$$
f(x) \leqslant y \Leftrightarrow x \leqslant g(y), \quad x \in P, y \in Q ;
$$

(iii) the inverse image under f of every principal down-set of Q is a principal down-set of P;
(iv) f is isotone and the set $\{x \in P \mid f(x) \leqslant y\}$ has the greatest element, for every $y \in Q$. Furthermore, if there is a function g which satisfies any of conditions (i) or (ii) it is unique.

The theory of ordered sets Equations and inequalities . . . Important examples

Residuated and residual functions (cont.)

Residuated and residual functions

A function f that satisfies either of the equivalent conditions of the above theorem is called a residuated function.
The unique function g that satisfies the condition (i) or (ii) of Theorem 2. is called the residual of f denoted by f^{\sharp}.

$$
f^{\sharp}(y)=T\{x \in P \mid f(x) \leqslant y\}, \quad y \in Q
$$

The theory of ordered sets Equations and inequalities . . . Important examples

Residuated and residual functions (cont.)

Theorem 3.

P, Q - ordered sets; $f: P \rightarrow Q$ - a function
The following conditions are equivalent:
(i) f is isotone and there exists an isotone function $g: Q \rightarrow P$ such that

$$
I_{Q} \leqslant g \circ f, \quad f \circ g \leqslant I_{P} ;
$$

(ii) there exists a function $g: Q \rightarrow P$ such that

$$
f(x) \geqslant y \Leftrightarrow x \geqslant g(y), \quad x \in P, y \in Q
$$

(iii) the inverse image under f of every principal up-set of Q is a principal up-set of P;
(iv) f is isotone and the set $\{x \in P \mid f(x) \geqslant y\}$ has the least element, for every $y \in Q$.

Furthermore, if there is a function g which satisfies any of conditions (i) or (ii) it is unique.

The theory of ordered sets Equations and inequalities Important examples

Residuated and residual functions (cont.)

Dually residuated (residual) functions

A function f that satisfies either of the equivalent conditions of Theorem 3. is called a dually residuated function, or simpler a residual function.
The unique function g that satisfies the condition (i) or (ii) of Theorem 3. is denoted by f^{b}.

$$
f^{b}(y)=\perp\{x \in P \mid f(x) \geqslant y\}, \quad y \in Q .
$$

Remark

If f is a residuated function, then f^{\sharp} is a residual function and $\left(f^{\sharp}\right)^{b}=f$.
If f is a residual function, then f^{b} is a residuated function and $\left(f^{b}\right)^{\sharp}=f$.
The composition of residuated functions is a residuated function.
The composition of residual functions is a residual function.

The theory of ordered sets Equations and inequalities . . .

Residuated semigroups

Ordered semigroups

(S, \otimes) - a semigroup; (S, \leqslant) - an ordered set;
(S, \otimes, \leqslant) - an ordered semigroup

$$
a \leqslant b \quad \Rightarrow \quad x \otimes a \leqslant x \otimes b \text { and } a \otimes y \leqslant b \otimes y, a, b, x, y \in S
$$

Translations on a semigroup (S, \otimes)

$\lambda_{a}, a \in S$ - the left translation on S determined by a defined by

$$
\lambda_{a}(x)=a \otimes x, \quad x \in S
$$

@a, $a \in S$ - the right translation on S determined by a defined by

$$
\varrho_{a}(x)=x \otimes a, \quad x \in S
$$

The theory of ordered sets Equations and inequalities . . . Important examples

Residuated semigroups (cont.)

Residuated semigroups

(S, \otimes, \leqslant) - an ordered semigroup;
S - right residuated if λ_{a} is a residuated function, for each $a \in S$;
$a \backslash b=\lambda_{a}^{\sharp}(b)=\mathrm{T}\{x \in S \mid a \otimes x \leqslant b\}, a, b \in S-$ the right residual of b by $a ;$
S - left residuated if ϱ_{a} is a residuated function, for each $a \in S$;
$b / a=\varrho_{a}^{\sharp}(b)=\mathrm{T}\{x \in S \mid x \otimes a \leqslant b\}, a, b \in S$ - the left residual of b by $a ;$
S - residuated semigroup if it is both right and left residuated;

$$
a \otimes b \leqslant c \quad \Leftrightarrow \quad a \leqslant c / b \quad \Leftrightarrow \quad b \leqslant a \backslash c .
$$

Equations and inequalities defined by residuated and residual functions

Inequalities defined by residuated and residual functions

P, Q - ordered sets; $c \in Q$ - an arbitrary fixed element;
x - an unknown taking values in P;
$f: P \rightarrow Q$ - a residuated function, $f(x) \leqslant c$ has the greatest solution $f^{\sharp}(c)$;
$f: P \rightarrow Q$ - a residual function, $c \leqslant f(x)$ has the least solution $f^{b}(c)$

Theorem 4. [Cuninghame-Green, Cechlárová (1995)]

An equation $f(x)=c$ is solvable if and only if $c=f\left(f^{\sharp}(c)\right)$, and $f^{\sharp}(c)$ is also the greatest solution to this equation.

Theorem 5.

An equation $c=f(x)$ is solvable if and only if $c=f\left(f^{b}(c)\right.$, and in this case $f^{b}(c)$ is the least solution to this equation.

$f(x) \leqslant g(x)$

Two-sided inequality

P, Q - complete lattices, $f, g: P \rightarrow Q$ - functions;

$$
\begin{equation*}
f(x) \leqslant g(x) \tag{1}
\end{equation*}
$$

x is an unknown taking values in P

Theorem 6.

P, Q - complete lattices; $f, g: P \rightarrow Q$ - isotone functions
(a) If f is a residuated function, then the set of all solutions to inequality (1) is equal to Post $\left(g \circ f^{\sharp}\right)$, and it is a complete join-subsemilattice of P. Consequently, inequality (1) has the greatest solution TPost $\left(g \circ f^{\sharp}\right)$.
(b) If g is a residual function, then the set of all solutions to inequality (1) is equal to $\operatorname{Pre}\left(f \circ g^{b}\right)$, and it is a complete meet-subsemilattice of P. Consequently, inequality (1) has the least solution $\perp \operatorname{Pre}\left(f \circ g^{b}\right)$.

The theory of ordered sets Equations and inequalities . . . Important examples

One-sided inequalities and equations Two-sided inequalities and equations Special types of two-sided inequalities and equations Two-sided inequalities and equations with two unknowns

$f(x) \leqslant g(x)$ (cont.)

Corollary 1.

P, Q - complete lattices; $f, g: P \rightarrow Q-f$ is a residuated and g is a residual function The set of all solutions to inequality $f(x) \leqslant g(x)$ is equal to Post $\left(g \circ f^{\sharp}\right)=\operatorname{Pre}\left(f \circ g^{b}\right)$, and it is a complete sublattice of P.
Consequently, inequality $f(x) \leqslant g(x)$ has the greatest solution TPost $\left(g \circ f^{\sharp}\right)$ and the least solution $\perp \operatorname{Pre}\left(f \circ g^{b}\right)$.

$$
f(x)=g(x)
$$

Two-sided equation

P, Q - complete lattices, $f, g: P \rightarrow Q$ - functions

$$
\begin{equation*}
f(x)=g(x) \tag{2}
\end{equation*}
$$

x is an unknown taking values in P

Theorem 7.

P, Q - complete lattices; $f, g: P \rightarrow Q$ - isotone functions
(a) If f and g are residuated functions, then the set of all solutions to equation (2) is equal to Post $\left(g \circ f^{\sharp} \wedge f \circ g^{\sharp}\right)$, and it is a complete join-subsemilattice of P, so inequality (1) has the greatest solution TPost $\left(g \circ f^{\sharp} \wedge f \circ g^{\sharp}\right)$.
(b) If f and g are residual functions, then then the set of all solutions to equation (2) is equal to $\operatorname{Pre}\left(f \circ g^{b} \wedge g \circ f^{b}\right)$, and it is a complete meet-subsemilattice of P, so inequality (1) has the least solution $\perp \operatorname{Pre}\left(f \circ g^{b} \wedge g \circ f^{b}\right)$.

$$
f(x) \leqslant x ; x \leqslant f(x) ; f(x)=x
$$

Special cases of two-sided inequalities and equations

P - a complete lattice, $f: P \rightarrow P$ - a function

$$
\begin{align*}
& f(x) \leqslant x \tag{3}\\
& x \leqslant f(x) \tag{4}\\
& f(x)=x \tag{5}
\end{align*}
$$

x is an unknown taking values in P

Remarks

f - an isotone function;
The sets of solutions to (3), (4) and (5), as well as the corresponding greatest and least solutions - completely characterized by the Knaster-Tarski fixed point theorem.
As the identity function is both residuated and residual, then the following results are obtained as direct consequences of Theorems 6. and 7.

$$
f(x) \leqslant x ; x \leqslant f(x) ; f(x)=x \text { (cont.) }
$$

Corollary 2.

P, Q - complete lattices; $f: P \rightarrow Q$ - a residuated function
(a) The set of all solutions to inequality $f(x) \leqslant x$ is equal to Post $\left(f^{\sharp}\right)=\operatorname{Pre}(f)$, and it is a complete sublattice of P.
Consequently, inequality $f(x) \leqslant x$ has the greatest solution TPost $\left(f^{\sharp}\right)$ and the least solution $\perp \operatorname{Pre}(f)$.
(b) The set of all solutions to equation $f(x)=x$ is equal to Post $\left(f \wedge f^{\sharp}\right)$, and it is a complete join-subsemilattice of P.
Consequently, equation $f(x)=x$ has the greatest solution TPost $\left(f \wedge f^{\sharp}\right)$.

$$
f(x) \leqslant x ; x \leqslant f(x) ; f(x)=x \text { (cont.) }
$$

Corollary 3.

P, Q - complete lattices; $f: P \rightarrow Q$ - a residual function;
(a) The set of all solutions to inequality $x \leqslant f(x)$ is equal to Post $(f)=\operatorname{Pre}\left(f^{b}\right)$, and it is a complete sublattice of P.
Consequently, inequality $x \leqslant f(x)$ has the greatest solution TPost (f) and the least solution $\perp \operatorname{Pre}\left(f^{b}\right)$.
(b) The set of all solutions to equation $f(x)=x$ is equal to $\operatorname{Pre}\left(f \wedge f^{b}\right)$, and it is a complete meet-subsemilattice of P.
Consequently, equation $f(x)=x$ has the least solution $\perp \operatorname{Pre}\left(f \wedge f^{b}\right)$.

$$
f(x)=g(y)
$$

Two-sided equality with two unknowns

P, Q, R - complete lattices; $f: P \rightarrow R, g: Q \rightarrow R$ - functions

$$
\begin{equation*}
f(x)=g(y) \tag{6}
\end{equation*}
$$

unknowns x and y taking values in P and Q
solution - any pair $(a, b) \in P \times Q$ such that $f(a)=g(b)$

Theorem 8.

P, Q, R - complete lattices; $f: P \rightarrow R, g: Q \rightarrow R$ - residuated functions
The equation $f(x)=g(y)$ is equivalent to inequality

$$
z \leqslant \phi(z)
$$

where z is an unknown taking values in $P \times Q$ and $\phi: P \times Q \rightarrow R \times R$ is an isotone function defined by

$$
\phi(a, b)=\left(\left(g \circ f^{\sharp}\right)(b),\left(f \circ g^{\sharp}\right)(a)\right), \quad a \in P, b \in Q .
$$

Consequently, the set of all solutions to equation $f(x)=g(y)$ is equal to Post (ϕ), and TPost (ϕ) is the greatest solution to $f(x)=g(y)$.

$f(x)=g(y)$ (cont.)

Theorem 9.

P, Q, R - complete lattices; $f: P \rightarrow R, g: Q \rightarrow R$ - residual functions
The equation $f(x)=g(y)$ is equivalent to

$$
\psi(z) \leqslant z
$$

where z is an unknown taking values in $P \times Q$ and $\psi: P \times Q \rightarrow R \times R$ is an isotone function defined by

$$
\psi(a, b)=\left(\left(g \circ f^{b}\right)(b),\left(f \circ g^{b}\right)(a)\right), \quad a \in P, b \in Q .
$$

Consequently, the set of all solutions to equation $f(x)=g(y)$ is equal to $\operatorname{Pre}(\psi)$, and $\perp \operatorname{Pre}(\psi)$ is the least solution to $f(x)=g(y)$.

$f(x)=g(y)$ (cont.)

Theorem 10.

P, Q, R - complete lattices; $f: P \rightarrow R, g: Q \rightarrow R$ - arbitrary functions
The equation $f(x)=g(y)$ is equivalent to

$$
\alpha(z)=\beta(z),
$$

where z is an unknown taking values in $P \times Q$ and $\alpha, \beta: P \times Q \rightarrow R \times R$ are isotone functions defined by

$$
\alpha(a, b)=((f(a), g(b)), \quad \beta(a, b)=(g(b), f(a)), \quad a \in P, b \in Q .
$$

If f and g are residuated, resp. residual functions, then α and β are also residuated, resp. residual functions.

The theory of ordered sets Equations and inequalities Important examples

Equatuions and inequalities with unknown fuzzy relations Equatuions and inequalities with unknown fuzzy sets Equatuions and inequalities with given fuzzy sets... Moore-Penrose equations

Residuals of a fuzzy relation by a fuzzy relation

Residuals of a fuzzy relation by a fuzzy relation

U, V, W - non-empty sets; $A \in \mathcal{R}(U, V), B \in \mathcal{R}(V, W)$ - given fuzzy relations;
$\lambda_{A}: \mathcal{R}(V, W) \rightarrow \mathcal{R}(U, W)$ defined by $\lambda_{A}(X)=A \circ X-$ a residuated function;
$\lambda_{A}^{\#}: \mathcal{R}(U, W) \rightarrow \mathcal{R}(V, W)$ given by $\lambda_{A}^{\#}(Y)=A \backslash Y$ - the right residual of Y by $A ;$

$$
(A \backslash Y)(v, w)=\bigwedge_{u \in U} A(u, v) \rightarrow Y(u, w), v \in V, w \in W
$$

$\varrho_{B}: \mathcal{R}(U, V) \rightarrow \mathcal{R}(U, W)$ defined by $\varrho_{B}(X)=X \circ B-$ a residuated function;
$\varrho_{B}^{\#}: \mathcal{R}(U, W) \rightarrow \mathcal{R}(U, V)$ given by $\varrho_{B}^{\sharp}(Y)=Y / B$ - the left residual of Y by B;

$$
(Y / B)(u, v)=\bigwedge_{w \in W} B(v, w) \rightarrow Y(u, w), \quad u \in U, v \in V
$$

The theory of ordered sets Equations and inequalities Important examples

Equatuions and inequalities with unknown fuzzy relations Equatuions and inequalities with unknown fuzzy sets Equatuions and inequalities with given fuzzy sets... Moore-Penrose equations

Equatuions and inequalities with unknown fuzzy relations

Remark

$\iota: X \mapsto X$ and $\tau: X \mapsto X^{-1}$ - both residuated and residual functions;

Notation

A, B, C, etc. - given fuzzy relations;
X, Y, etc. - unknown fuzzy relations;
$\bowtie-$ a joker sign which replaces anyone of the signs \leqslant, \geqslant or $=$.

The theory of ordered sets Equations and inequalities Important examples

Equatuions and inequalities with unknown fuzzy relations Equatuions and inequalities with unknown fuzzy sets Equatuions and inequalities with given fuzzy sets... Moore-Penrose equations

Equations and inequalities with given and unknown fuzzy relations, defined by residuated functions

	Equation/inequality	Given fuzzy relations	Unknown fuzzy relations	Written by residuated functions
1.	$A \circ X \bowtie B$	$A \in \mathcal{R}(U, V), B \in \mathcal{R}(U, W)$	$X: \in \mathcal{R}(V, W)$	$\lambda_{A}(X) \bowtie B$
2.	$X \circ A \bowtie B$	$A \in \mathcal{R}(V, W), B \in \mathcal{R}(U, W)$	$X \in \mathcal{R}(U, V)$	$\varrho_{A}(X) \bowtie B$
3.	$A \circ X \bowtie X$	$A \in \mathcal{R}(U, U)$	$X \in \mathcal{R}(U, V)$	$\lambda_{A}(X) \bowtie \iota(X)$
4.	$X \circ A \bowtie X$	$A \in \mathcal{R}(V, V)$	$X \in \mathcal{R}(U, V)$	$\varrho_{A}(X) \bowtie \iota(X)$
5.	$A \circ X \bowtie X \circ A$	$A \in \mathcal{R}(U, U)$	$X \in \mathcal{R}(U, U)$	$\lambda_{A}(X) \bowtie \varrho_{A}(X)$
6.	$A \circ X^{-1} \bowtie X^{-1} \circ A$	$A \in \mathcal{R}(U, U)$	$X \in \mathcal{R}(U, U)$	$\tau \circ \lambda_{A}(X) \bowtie \tau \circ \varrho_{A}(X)$
7.	$A \circ X \bowtie X \circ B$	$A, B \in \mathcal{R}(U, U)$	$X \in \mathcal{R}(U, U)$	$\lambda_{A}(X) \bowtie \varrho_{B}(X)$
8.	$A \circ X^{-1} \bowtie X^{-1} \circ B$	$A, B \in \mathcal{R}(U, U)$	$X \in \mathcal{R}(U, U)$	$\tau \circ \lambda_{A}(X) \bowtie \tau \circ \varrho_{B}(X)$
9.	$A \circ X \bowtie X \circ B$	$A \in \mathcal{R}(U, U), B \in \mathcal{R}(V, V)$	$X \in \mathcal{R}(U, V)$	$\lambda_{A}(X) \bowtie \varrho_{B}(X)$
10.	$X^{-1} \circ A \bowtie B \circ X^{-1}$	$A \in \mathcal{R}(U, U), B \in \mathcal{R}(V, V)$	$X \in \mathcal{R}(U, V)$	$\tau \circ \varrho_{A}(X) \bowtie \tau \circ \lambda_{B}(X)$
11.	$A \circ X \bowtie B \circ X$	$A, B \in \mathcal{R}(U, V)$	$X \in \mathcal{R}(V, W)$	$\lambda_{A}(X) \bowtie \lambda_{B}(X)$
12.	$X \circ A \bowtie X \circ B$	$A, B \in \mathcal{R}(V, W)$	$X \in \mathcal{R}(U, V)$	$\varrho_{A}(X) \bowtie \varrho_{B}(X)$
13.	$A \circ X=A \circ Y$	$A \in \mathcal{R}(U, V)$	$X, Y \in \mathcal{R}(V, W)$	$\lambda_{A}(X)=\lambda_{A}(Y)$
14.	$X \circ A=Y \circ A$	$A \in \mathcal{R}(V, W)$	$X, Y \in \mathcal{R}(U, V)$	$\varrho_{A}(X)=\varrho_{A}(Y)$
15.	$X \circ A=A \circ Y$	$A \in \mathcal{R}(U, V)$	$X \in \mathcal{R}(U, U), Y \in \mathcal{R}(V, V)$	$\varrho_{A}(X)=\lambda_{A}(Y)$
16.	$A \circ X=B \circ Y$	$A \in \mathcal{R}(U, V), B \in \mathcal{R}(U, W)$	$X \in \mathcal{R}(V, Z), Y \in \mathcal{R}(W, Z)$	$\lambda_{A}(X)=\lambda_{B}(Y)$
17.	$X \circ A=Y \circ B$	$A \in \mathcal{R}(V, Z), B \in \mathcal{R}(W, Z)$	$X \in \mathcal{R}(U, V), Y \in \mathcal{R}(U, W)$	$\varrho_{A}(X)=\varrho_{B}(Y)$
18.	$X \circ A=B \circ Y$	$A \in \mathcal{R}(V, Z), B \in \mathcal{R}(U, W)$	$X \in \mathcal{R}(U, V), Y \in \mathcal{R}(W, Z)$	$\varrho_{A}(X)=\lambda_{B}(Y)$

The theory of ordered sets Equations and inequalities Important examples

Equatuions and inequalities with unknown fuzzy relations Equatuions and inequalities with unknown fuzzy sets Equatuions and inequalities with given fuzzy sets... Moore-Penrose equations

Equatuions and inequalities with unknown fuzzy relations (cont.)

Classification of equations and inequalities with given and unknown fuzzy relations:

1. and 2. - studied by Sanchez $(1974,1976,1978)$;

Cuninghame-Green and Cechlárová (1995) - a more general form through residuated functions
5. and 6. - homogeneous weakly linear inequalities and equations [Ignjatović, Ćirić, Bogdanović (2010)]
9. and 10. - heterogeneous weakly linear inequalities and equations [Ignjatović, Ćirić, Damljanović, Jančić (2011)]
15. - studied by Stanković, Ignjatović, Ćirić (2011), in the crisp case

Applications

Equations of the form 15 can be applied to the analysis of data represented by Boolean and fuzzy data tables (analysis of two-mode social networks, i.e. of actor-event social networks represented by bipartite graphs).

The theory of ordered sets Equations and inequalities

Residuals of a fuzzy set by a fuzzy relation

Residuals of a fuzzy set by a fuzzy relation

U, V - non-empty sets; $A \in \mathcal{R}(U, V)$ - a given fuzzy relation
$\varrho_{A}: \mathcal{F}(U) \rightarrow \mathcal{F}(V)$ defined by $\varrho_{A}(\mathbf{x})=\mathbf{x} \circ A-$ a residuated function, where

$$
(\mathbf{x} \circ A)(v)=\bigvee_{u \in U} \mathbf{x}(u) \otimes A(u, v), \quad \mathbf{x} \in \mathcal{F}(U), v \in V
$$

$\varrho_{A}^{\sharp}: \mathcal{F}(V) \rightarrow \mathcal{F}(U)$ defined by $\varrho_{A}^{\sharp}(\mathbf{y})=\mathbf{y} / A-$ a residual function, where

$$
(\mathbf{y} / A)(u)=\bigwedge_{v \in V} A(u, v) \rightarrow \mathbf{y}(v), \quad \mathbf{y} \in \mathcal{F}(V), u \in U
$$

$\lambda_{A}: \mathcal{F}(V) \rightarrow \mathcal{F}(U)$ defined by $\lambda_{A}(\mathbf{y})=A \circ \mathbf{y}-$ a residuated function, where

$$
(A \circ \mathbf{y})(u)=\bigvee_{v \in V} A(u, v) \otimes \mathbf{y}(v), \quad \mathbf{y} \in \mathcal{F}(V), u \in U
$$

$\lambda_{A}^{\#}: \mathcal{F}(U) \rightarrow \mathcal{F}(V)$ defined by $\lambda_{A}^{\sharp}(\mathbf{x})=A \backslash \mathbf{x}-$ a residual function, where

$$
(A \backslash \mathbf{x})(v)=\bigwedge_{u \in U} A(u, v) \rightarrow \mathbf{x}(u), \mathbf{x} \in \mathcal{F}(U), v \in V
$$

The theory of ordered sets Equations and inequalities Important examples

Equatuions and inequalities with unknown fuzzy relations Equatuions and inequalities with unknown fuzzy sets Equatuions and inequalities with given fuzzy sets... Moore-Penrose equations

Equations and inequalities with given fuzzy relations/sets and unknown fuzzy sets, defined by residuated functions

	Equation/inequality	Given fuzzy relations/sets	Unknown fuzzy relations	Written by residuated functions
1.	$A \circ \mathbf{x} \bowtie \mathbf{b}$	$A \in \mathcal{R}(U, V), \mathbf{b} \in \mathcal{F}(U)$	$\mathbf{x} \in \mathcal{F}(V)$	$\lambda_{A}(\mathbf{x}) \bowtie \mathbf{b}$
2.	$\mathbf{x} \circ A \bowtie \mathbf{b}$	$A \in \mathcal{R}(U, V), \mathbf{b} \in \mathcal{F}(V)$	$\mathbf{x} \in \mathcal{F}(U)$	$\varrho_{A}(\mathbf{x}) \bowtie \mathbf{b}$
3.	$A \circ \mathbf{x} \bowtie \mathbf{x}$	$A \in \mathcal{R}(U, U)$	$\mathbf{x} \in \mathcal{F}(U)$	$\lambda_{A}(\mathbf{x}) \bowtie l(\mathbf{x})$
4.	$\mathbf{x} \circ A \bowtie \mathbf{x}$	$A \in \mathcal{R}(U, U)$	$\mathbf{x} \in \mathcal{F}(U)$	$\varrho_{A}(\mathbf{x}) \bowtie l(\mathbf{x})$
5.	$A \circ \mathbf{x} \bowtie B \circ \mathbf{x}$	$A, B \in \mathcal{R}(U, V)$	$\mathbf{x} \in \mathcal{F}(V)$	$\lambda_{A}(\mathbf{x}) \bowtie \lambda_{B}(\mathbf{x})$
6.	$\mathbf{x} \circ A \bowtie \mathbf{x} \circ B$	$A, B \in \mathcal{R}(U, V)$	$\mathbf{x} \in \mathcal{F}(U)$	$\varrho_{A}(\mathbf{x}) \bowtie \varrho_{B}(\mathbf{x})$
7.	$\mathbf{x} \circ A \bowtie B \circ \mathbf{x}$	$A \in \mathcal{R}(U, V), B \in \mathcal{R}(V, U)$	$\mathbf{x} \in \mathcal{F}(U)$	$\varrho_{A}(\mathbf{x}) \bowtie \lambda_{B}(\mathbf{x})$
8.	$\mathbf{x} \circ A \bowtie A \circ \mathbf{x}$	$A \in \mathcal{R}(U, U)$	$\mathbf{x} \in \mathcal{F}(U)$	$\varrho_{A}(\mathbf{x}) \bowtie \lambda_{A}(\mathbf{x})$
9.	$\mathbf{x} \circ A=\mathbf{y} \circ A$	$A \in \mathcal{R}(U, V)$	$\mathbf{x}, \mathbf{y} \in \mathcal{F}(U)$	$\varrho_{A}(\mathbf{x})=\varrho_{A}(\mathbf{y})$
10.	$A \circ \mathbf{x}=A \circ \mathbf{y}$	$A \in \mathcal{R}(U, V)$	$\mathbf{x}, \mathbf{y} \in \mathcal{F}(V)$	$\lambda_{A}(\mathbf{x})=\lambda_{A}(\mathbf{y})$
11.	$\mathbf{x} \circ A=A \circ \mathbf{y}$	$A \in \mathcal{R}(U, U)$	$\mathbf{x}, \mathbf{y} \in \mathcal{F}(U)$	$\varrho_{A}(\mathbf{x})=\lambda_{A}(\mathbf{y})$
12.	$\mathbf{x} \circ A=\mathbf{y} \circ B$	$A \in \mathcal{R}(U, W), B \in \mathcal{R}(V, W)$	$\mathbf{x} \in \mathcal{F}(U), \mathbf{y} \in \mathcal{F}(V)$	$\varrho_{A}(\mathbf{x})=\varrho_{B}(\mathbf{y})$
13.	$A \circ \mathbf{x}=B \circ \mathbf{y}$	$A \in \mathcal{R}(U, V), B \in \mathcal{R}(U, W)$	$\mathbf{x} \in \mathcal{F}(V), \mathbf{y} \in \mathcal{F}(W)$	$\lambda_{A}(\mathbf{x})=\lambda_{B}(\mathbf{y})$
14.	$\mathbf{x} \circ A=B \circ \mathbf{y}$	$A \in \mathcal{R}(U, V), B \in \mathcal{R}(V, W)$	$\mathbf{x} \in \mathcal{F}(U), \mathbf{y} \in \mathcal{F}(W)$	$\varrho_{A}(\mathbf{x})=\lambda_{B}(\mathbf{y})$

The theory of ordered sets Equations and inequalities Important examples

Equatuions and inequalities with unknown fuzzy relations Equatuions and inequalities with unknown fuzzy sets Equatuions and inequalities with given fuzzy sets... Moore-Penrose equations

Classification of equations and inequalities with given fuzzy relations and unknown fuzzy sets

1. and 2. - studied by Sanchez $(1974,1976,1978)$ along with the corresponding equations and inequalities with fuzzy relations;
Cuninghame-Green and Cechlárová (1995) - a more general form through residuated functions
2. and 4. - [Sanchez (1978,1981), Ćirić, Ignjatović, Šešelja, Tepavčević (2011)]
3. - fuzzy bilinear equations [Tang (1988), Li (1992), Zhang (1995)]

The theory of ordered sets Equations and inequalities Important examples

Residuals of a fuzzy set by a fuzzy set

Residuals of a fuzzy set by a fuzzy set

U, V - non-empty sets; $\mathbf{a} \in \mathcal{F}(U), \mathbf{b} \in \mathcal{F}(V)$ - given fuzzy sets;
$\lambda_{\mathbf{a}}: \mathcal{R}(U, V) \rightarrow \mathcal{F}(V)$ defined by $\lambda_{\mathbf{a}}(X)=\mathbf{a} \circ X, X \in \mathcal{R}(U, V)$ - a residuated function;
$\lambda_{\mathbf{a}}^{\sharp}: \mathcal{F}(V) \rightarrow \mathcal{R}(U, V)$ given by $\lambda_{\mathbf{a}}^{\sharp}(\mathbf{y})=\mathbf{a} \backslash \mathbf{y}, \mathbf{y} \in \mathcal{F}(V)$ - the residual, where

$$
(\mathbf{a} \backslash \mathbf{y})(u, v)=\mathbf{a}(u) \rightarrow \mathbf{y}(v), \mathbf{a} \backslash \mathbf{y} \in \mathcal{R}(U, V),(u, v) \in U \times V
$$

$\varrho_{\mathbf{b}}: \mathcal{R}(U, V) \rightarrow \mathcal{F}(U)$ defined by $\varrho_{\mathbf{b}}(X)=X \circ \mathbf{b}, X \in \mathcal{R}(U, V)$ - a residuated function;
$\varrho_{\mathbf{b}}^{\sharp}: \mathcal{F}(U) \rightarrow \mathcal{R}(U, V)$ given by $\varrho_{\mathbf{b}}^{\sharp}(\mathbf{x})=\mathbf{x} / \mathbf{b}, \mathbf{x} \in \mathcal{F}(U)$ - the residual, where

$$
(\mathbf{x} / \mathbf{b})(u, v)=\mathbf{b}(v) \rightarrow \mathbf{x}(u), \quad \mathbf{x} / \mathbf{b} \in \mathcal{R}(U, V),(u, v) \in U \times V
$$

The theory of ordered sets Equations and inequalities Important examples

Equatuions and inequalities with unknown fuzzy relations Equatuions and inequalities with unknown fuzzy sets Equatuions and inequalities with given fuzzy sets... Moore-Penrose equations

Equations and inequalities with given fuzzy sets and unknown fuzzy relations, defined by residuated functions

	Equation/inequality	Given fuzzy sets	Unknown fuzzy relations	Written by residuated functions
1.	$\mathbf{a} \circ X \bowtie \mathbf{b}$	$\mathbf{a} \in \mathcal{F}(U), \mathbf{b} \in \mathcal{F}(V)$	$X \in \mathcal{R}(U, V)$	$\lambda_{\mathbf{a}}(X) \bowtie \mathbf{b}$
2.	$X \circ \mathbf{b} \bowtie \mathbf{a}$	$\mathbf{a} \in \mathcal{F}(U), \mathbf{b} \in \mathcal{F}(V)$	$X \in \mathcal{R}(U, V)$	$\varrho_{\mathbf{b}}(X) \bowtie \mathbf{a}$
3.	$\mathbf{a} \circ X \bowtie \mathbf{a}$	$\mathbf{a} \in \mathcal{F}(U)$	$X \in \mathcal{R}(U, U)$	$\lambda_{\mathbf{a}}(X) \bowtie \mathbf{a}$
4.	$X \circ \mathbf{a} \bowtie \mathbf{a}$	$\mathbf{a} \in \mathcal{F}(U)$	$X \in \mathcal{R}(U, U)$	$\varrho_{\mathbf{a}}(X) \bowtie \mathbf{a}$
5.	$\mathbf{a} \circ X \bowtie \mathbf{b} \circ X$	$\mathbf{a}, \mathbf{b} \in \mathcal{F}(U)$	$X \in \mathcal{R}(U, V)$	$\lambda_{\mathbf{a}}(X) \bowtie \lambda_{\mathbf{b}}(X)$
6.	$X \circ \mathbf{a} \bowtie X \circ \mathbf{b}$	$\mathbf{a}, \mathbf{b} \in \mathcal{F}(V)$	$X \in \mathcal{R}(U, V)$	$\varrho_{\mathbf{a}}(X) \bowtie \varrho_{\mathbf{b}}(X)$
7.	$\mathbf{a} \circ X \bowtie X \circ \mathbf{b}$	$\mathbf{a}, \mathbf{b} \in \mathcal{F}(U)$	$X \in \mathcal{R}(U, U)$	$\lambda_{\mathbf{a}}(X) \bowtie \varrho_{\mathbf{b}}(X)$
8.	$\mathbf{a} \circ X=\mathbf{a} \circ Y$	$\mathbf{a} \in \mathcal{F}(U)$	$X, Y \in \mathcal{R}(U, V)$	$\lambda_{\mathbf{a}}(X)=\lambda_{\mathbf{a}}(Y)$
9.	$X \circ \mathbf{a}=Y \circ \mathbf{a}$	$\mathbf{a} \in \mathcal{F}(V)$	$X, Y \in \mathcal{R}(U, V)$	$\varrho_{\mathbf{a}}(X)=\varrho_{\mathbf{a}}(Y)$
10.	$\mathbf{a} \circ X=Y \circ \mathbf{a}$	$\mathbf{a} \in \mathcal{F}(U)$	$X \in \mathcal{R}(U, V), Y \in \mathcal{R}(V, U)$	$\lambda_{\mathbf{a}}(X)=\varrho_{\mathbf{a}}(Y)$
11.	$\mathbf{a} \circ X=\mathbf{b} \circ Y$	$\mathbf{a} \in \mathcal{F}(U), \mathbf{b} \in \mathcal{F}(V)$	$X \in \mathcal{R}(U, W), Y \in \mathcal{R}(V, W)$	$\lambda_{\mathbf{a}}(X)=\lambda_{\mathbf{b}}(Y)$
12.	$X \circ \mathbf{a}=Y \circ \mathbf{b}$	$\mathbf{a} \in \mathcal{F}(V), \mathbf{b} \in \mathcal{F}(W)$	$X \in \mathcal{R}(U, V), Y \in \mathcal{R}(U, W)$	$\varrho_{\mathbf{a}}(X)=\varrho_{\mathbf{b}}(Y)$
13.	$\mathbf{a} \circ X=Y \circ \mathbf{b}$	$\mathbf{a} \in \mathcal{F}(U), \mathbf{b} \in \mathcal{F}(W)$	$X \in \mathcal{R}(U, V), Y \in \mathcal{R}(V, W)$	$\lambda_{\mathbf{a}}(X)=\varrho_{\mathbf{b}}(Y)$

The theory of ordered sets Equations and inequalities

Equatuions and inequalities with unknown fuzzy relations Equatuions and inequalities with unknown fuzzy sets Equatuions and inequalities with given fuzzy sets... Moore-Penrose equations

Moore-Penrose equations

Moore-Penrose equations

U, V - nonempty sets; $A \in \mathcal{R}(U, V)$ - a given fuzzy relation;
$X \in \mathcal{R}(U, V)$ - an unknown fuzzy relation
(G1) $A \circ X \circ A=A$;
(G2) $X \circ A \circ X=X$;
(G3) $(A \circ X)^{-1}=A \circ X$;
(G4) $(X \circ A)^{-1}=X \circ A$

Moore-Penrose inverse

System (G1) - (G4) has the unique solution - the Moore-Penrose inverse of A

Remark:

The equation (G2) is independent, but the left side of (G1) is the residuated function, and in (G3) and (G4) residuated functions are on both sides, so the equations (G1), (G3) and (G4) can be resolved by using above mention methods.

THANK YOU FOR YOUR ATTENTION!

