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Motivation

I Each lattice ordered orthoalgebra is OML.

I I. Chajda, J. Kühr - to find a structure such that ortholattices
(without orthomodular law) are represented in the similar way.

I pre effect algebras, pre orthoalgebras

I pre effect algebra = effect algebra - unique existence of
orthosupplement

I i.e. orthosupplement need no longer be the only element such
that

I a + b = 1

I Pre orthoalgebras = pre effect algebra + property ∃a + a, iff
a = 0.
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Definitions

Pseudo effect-algebra = (A;⊕,L ,R , 0, 1) such that

I a⊕ b, (a⊕ b)⊕ c exist, iff b ⊕ c, a⊕ (b ⊕ c) exist and in
such case (a⊕ b)⊕ c = a⊕ (b ⊕ c);

I for any a ∈ A there are unique elements e, f such that
a + e = f + a = 1. (e := aR), (f := aL);

I if a + b is defined then there are elements c , d such that
a + b = c + a = b + d ;

I 1 + a, a + 1 are defined then a = 0.

Order: a ≤ b, iff ∃c a + c = b, iff ∃d d + a = b.
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Weak pre-pseudo effect algebras

Weak pre-effect-algebra = (A;⊕,L ,R , 0, 1) such that

I a⊕ b, (a⊕ b)⊕ c exist, iff b ⊕ c, a⊕ (b ⊕ c) exist and in
such case (a⊕ b)⊕ c = a⊕ (b ⊕ c);

I for any a ∈ A a + aR = aL + a = 1;

I relation a ≤ b, iff a⊕ bR is defined, iff bL + a is defined is a
partial order;

I 1 + a, a + 1 are defined then a = 0.

I 1 and 0 are comparable to all elements

Order left: a vL b, iff ∃c a + c = b
Order right: a vR b, iff ∃d d + a = b.
Order v: if it is both left and right order
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Pre pseudo-effect algebras

Pre-effect-algebra = (A;⊕,L ,R , 0, 1) such that

I a⊕ b, (a⊕ b)⊕ c exist, iff b⊕ c , a⊕ (b⊕ c) exist and in such
case (a⊕ b)⊕ c = a⊕ (b ⊕ c);

I for any a ∈ A a + aR = aL + a = 1;

I relation a ≤ b, iff a⊕ bR is defined, iff bL + a is defined is a
partial order;

I if a + b is defined then there are elements c , d such that
a + b = c + a = b + d ;

I 1 + a, a + 1 are defined then a = 0;

I 1 and 0 are comparable to all elements.

Order v: a v b, iff ∃c a + c = b, iff ∃d d + a = b.
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(Weak) Pre pseudo orthoalgebras

(Weak) Pre pseudo orthoalgebras = (weak) pre pseudo effect
algebras + property a + a is defined, then a = 0.
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Results
Let A be a weak pre pseudo-effect algebra. Then

I a + 0, 0 + a are defined and a + 0 = 0 + a = a;

I 0 is the bottom and 1 is the top elements in (A,≤);

I a = aRL = aLR ;

I if a + b is defined, then a ≤ a + b;

I if b + a is defined, then a ≤ b + a;

I if a + b is defined and a + b = a, then b = 0;

I if b + a is defined and b + a = a, then b = 0;

I b ≤ c , then if a + c is defined then a + b is defined and
a + b ≤ a + c

I b ≤ c , then if c + a is defined then b + a is defined and
b + a ≤ c + a

I a + b = 0, then a = b = 0

It need not be cancelative, i.e. a + b = a + c (, resp.
b + a = c + a) , then b = c .
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Results contd.

I if WprePEA is commutative, then it is also prePEA

I (prePEA) if a v b, then a ≤ b

I (WprePEA) if a vL b, or a vR b, then a ≤ b

I (prePEA) if ≤=v, then it is PEA
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Gallery of structures
The smallest example of weak pre-pseudoeffect algebra that is not
pre-preudoeffect algebra

⊕ 0 1 2 3 4 5
0 0 1 2 3 4 5

1 1 - - 5 - -

2 2 - - - 5 -

3 3 - 5 5 1 -

4 4 5 - 2 5 -

5 5 - - - - -

0 1 2 3 4 5
L 5 4 3 1 2 0
R 5 3 4 2 1 0

0

5

4 3

1 2≤

0

5

4 3

1 2vR

0

5

4 3

1 2vL

10 / 18



Gallery of structures

The smallest example of Pre-pseudoeffect algebra that is not
pseudoeffect algebra
⊕ 0 1 2 3 4 5
0 0 1 2 3 4 5

1 1 - - 5 - -

2 2 - - - 5 -

3 3 - 5 5 5 -

4 4 5 - 5 5 -

5 5 - - - - -

0 1 2 3 4 5
L 5 4 3 1 2 0
R 5 3 4 2 1 0
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Gallery of structures

The smallest pseudoeffect algebra that is not effect algebra.
⊕ 0 1 2 3 4
0 0 1 2 3 4

1 1 - 4 - -

2 2 - - 4 -

3 3 4 - - -

4 4 - - - -

0 1 2 3 4
L 4 3 1 2 0
R 4 2 3 1 0
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Gallery of results

There are 36 5-element pre pseudoeffect algebras that reduce to 8
distict algebras from which just one is non-commutative.

There are 648 6-element pre pseudoeffect algebras that reduce to
38 distinct algebras for which 3 are non-commutative.

2 3 4 5 6
total 1 1 6 36 648

nonIso 1 1 4 8 38

nonComm 0 0 0 1 3
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Complexity of the search

I For ⊕: (n − 2)× (n − 2) elements and each is taken from
{−, 0, 1, . . . , n − 1}, rough estimate (n + 1)(n−2)2

.

I left and right orthosupplement (n − 2)!

I For each possibility, we need to test
I I associativity, O(n3)

I existence of left and right orthosupplement, O(n2)
I for PrePEA - ∃a + b, then there are c , d such that

a + b = c + a = b + d , O(n2)
I partial order a ≤ b, iff ∃a⊕ bR , iff ∃bL ⊕ a: antisymmetry

O(n2), transitivity O(n3)

I Total (worst case): (n + 1)(n−2)2
(O((n − 2)!)2).O(n3)
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Complexity - Improvements

I Since a = aRL = aLR then if we know one orthosupplement
then in O(n) we are able to compute the other one

I Thus ((n − 2)!)2 is reduced to (n − 2)!O(n)

I Since a⊕ b = 0, iff a = b = 0 then no element among
(n − 2)× (n − 2) can be equal to 0

I (n + 1)(n−2)2
is reduced to n(n−2)2

I Similarly, a + b = a, iff b = 0 and a + b = b, iff a = 0, thus
a + b 6= a, b

I n(n−2)2
is reduced to (n − 2)(n−2)(n−3).(n − 1)n−2

I Total (worst c.):
(n − 2)(n−2)(n−3) · (n − 1)n−2 · O((n − 2)!) · O(n4)

I E.g. for n = 6, the computation is ≈ 3756 times faster
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Complexity - Improvements

Since for each element there are its left and right complements,
each column (row) needs to contain at least one unit. This reduces
number of possibilities per column to the value:

(n − 1)[(n − 3)n−4 + (n − 3)n−5(n − 2) + . . .

+ (n − 3)(n − 2)n−5 + (n − 2)n−4] + (n − 3)n−3.

After small computation it is possible to simplify it to:

(n − 1)(n − 2)n−3 − (n − 2)(n − 3)n−3.

Thus total complexity (w. case) is equal:

[(n − 1)(n − 2)n−3 − (n − 2)(n − 3)n−3]n−2O((n − 2)!)O(n4).

For n = 6 it is ≈ 5.19 times faster than previous method
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Future research
I Prob: Find a characterization of all pre pseudoeffect algebras?

I Prob: Improve further more the method for searching finite
models of (weak) pre pseudoeffect algebras. If the previous
method was applied to the case n = 7 then the best estimate
need to compute ≈ 6.9 · 1021 possibilities.
For n = 6 it is mere ≈ 2.96 · 1011, i.e. it is necessary
2.33 · 1010 more time.
Current computation took on 2 core machine 47s and 51s
(computation splitted to half).
(34725.39 years, 37680.75 years :( )

I ChKu - introduced also generalized versions of structures, i.e.
there need no longe be a top element

I Prob1: Introduce noncommutative version of generalized pre
effect algebras (generalized pre D-posets).

I Prob2: T. Vetterlein introduced so called weak pseudo-effect
algebras. Is there a relation to ChKu’s strong pre effect
algebras?
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