Triangular norms based submeasures

Ondrej Hutník

Institute of Mathematics Faculty of Science Pavol Jozef Šafárik University in Košice Jesenná 5, 040 01 Košice Slovakia

E-mail: ondrej.hutnik@upjs.sk

FSTA 2012, Liptovský Ján

- O. Hutník and R. Mesiar: On a certain class of submeasures based on triangular norms. *Internat. J. Uncertain. Fuzziness Knowledge-Based Systems* **17**(3) (2009), 297–316.
- L. Halčinová, O. Hutník and R. Mesiar: On some classes of distance distribution functions-valued submeasures. *Nonlinear Anal.* 74(5) (2011), 1545–1554.
- L. Halčinová, O. Hutník and R. Mesiar: On distance distribution functions-valued submeasures related to aggregation functions. *Fuzzy Sets Systems* (online first, 2012).

- Let Σ be a ring of subsets of a fixed (non-empty) set Ω . A mapping $n: \Sigma \to \overline{\mathbb{R}}$, such that
 - (i) $\eta(\emptyset) = 0;$
 - (ii) $\eta(E) \leq \eta(F)$ for $E, F \in \Sigma$ such that $E \subset F$;
 - (iii) $\eta(E \cup F) \leq \eta(E) + \eta(F)$ whenever $E, F \in \Sigma$;

is said to be a numerical submeasure.

• MENGER'S IDEA OF PROBABILISTIC METRIC SPACES: let Ω be a non-empty set, $\mathcal{F} : \Omega \times \Omega \to \Delta^+$ a function which assigns to each pair $(p, q) \in \Omega \times \Omega$ a distance distribution function $F_{p,q} \in \Delta^+$, and $\tau : \Delta^+ \times \Delta^+ \to \Delta^+$ a triangle function. The triple $(\Omega, \mathcal{F}, \tau)$ is called a probabilistic metric space (PM-space) if the following properties hold for all $p, q, r \in \Omega$:

(1)
$$F_{p,q} = \varepsilon_0$$
 if and only if $p = q$;

(2)
$$F_{p,q} = F_{q,p};$$

(3)
$$F_{p,r} \geq \tau(F_{p,q}, F_{q,r}).$$

our interest = Menger PM-spaces (Ω, F, τ_T) with triangular function τ_T(F, G)(x) = sup_{u+v=x} T(F(u), G(v))

- Let Σ be a ring of subsets of a fixed (non-empty) set Ω . A mapping $\eta: \Sigma \to \mathbb{R}_+$ such that
 - - (i) $\eta(\emptyset) = 0;$
 - (ii) $\eta(E) \leq \eta(F)$ for $E, F \in \Sigma$ such that $E \subset F$;
 - (iii) $\eta(E \cup F) \leq \eta(E) + \eta(F)$ whenever $E, F \in \Sigma$;

is said to be a numerical submeasure.

1)
$$F_{p,q} = \varepsilon_0$$
 if and only if $p = q$;

(2)
$$F_{p,q} = F_{q,p};$$

(3)
$$F_{p,r} \geq \tau(F_{p,q}, F_{q,r}).$$

- Let Σ be a ring of subsets of a fixed (non-empty) set Ω . A mapping
 - $\eta: \Sigma \to \mathbb{R}_+$ such that
 - (i) $\eta(\emptyset) = 0;$
 - (ii) $\eta(E) \leq \eta(F)$ for $E, F \in \Sigma$ such that $E \subset F$;
 - (iii) $\eta(E \cup F) \leq \eta(E) + \eta(F)$ whenever $E, F \in \Sigma$;

is said to be a numerical submeasure.

• MENGER'S IDEA OF PROBABILISTIC METRIC SPACES: let Ω be a non-empty set, $\mathcal{F} : \Omega \times \Omega \to \Delta^+$ a function which assigns to each pair $(p, q) \in \Omega \times \Omega$ a distance distribution function $F_{p,q} \in \Delta^+$, and $\tau : \Delta^+ \times \Delta^+ \to \Delta^+$ a triangle function. The triple $(\Omega, \mathcal{F}, \tau)$ is called a probabilistic metric space (PM-space) if the following properties hold for all $p, q, r \in \Omega$:

(1)
$$F_{p,q} = \varepsilon_0$$
 if and only if $p = q$;

(2)
$$F_{p,q} = F_{q,p};$$

$$(3) \quad \boldsymbol{F}_{\boldsymbol{p},\boldsymbol{r}} \geq \tau(\boldsymbol{F}_{\boldsymbol{p},\boldsymbol{q}},\boldsymbol{F}_{\boldsymbol{q},\boldsymbol{r}}).$$

our interest = Menger PM-spaces (Ω, F, τ_T) with triangular function τ_T(F, G)(x) = sup_{u+v=x} T(F(u), G(v))

- Let Σ be a ring of subsets of a fixed (non-empty) set Ω . A mapping
 - $\eta: \Sigma \to \mathbb{R}_+$ such that
 - (i) $\eta(\emptyset) = 0;$
 - (ii) $\eta(E) \leq \eta(F)$ for $E, F \in \Sigma$ such that $E \subset F$;
 - (iii) $\eta(E \cup F) \leq \eta(E) + \eta(F)$ whenever $E, F \in \Sigma$;

is said to be a numerical submeasure.

• MENGER'S IDEA OF PROBABILISTIC METRIC SPACES: let Ω be a non-empty set, $\mathcal{F} : \Omega \times \Omega \to \Delta^+$ a function which assigns to each pair $(p, q) \in \Omega \times \Omega$ a distance distribution function $F_{p,q} \in \Delta^+$, and $\tau : \Delta^+ \times \Delta^+ \to \Delta^+$ a triangle function. The triple $(\Omega, \mathcal{F}, \tau)$ is called a probabilistic metric space (PM-space) if the following properties hold for all $p, q, r \in \Omega$:

(1)
$$F_{p,q} = \varepsilon_0$$
 if and only if $p = q$;

2)
$$F_{p,q} = F_{q,p};$$

$$(3) \quad F_{p,r} \geq \tau(F_{p,q}, F_{q,r}).$$

our interest = Menger PM-spaces (Ω, F, τ_T) with triangular function τ_T(F, G)(x) = sup_{u+v=x} T(F(u), G(v))

Definition (τ_T -submeasure)

Let $T : [0,1]^2 \to [0,1]$ be a t-norm, and Σ a ring of subsets of $\Omega \neq \emptyset$. A mapping $\gamma : \Sigma \to \Delta^+$ (where $\gamma(E)$ is denoted by γ_E) such that

Σ.

(a)
$$\gamma_{\emptyset}(x) = \varepsilon_0(x);$$

(b) if $E \subset F$, then $\gamma_E(x) \ge \gamma_F(x);$
(c) $\gamma_{E \cup F}(x + y) \ge T(\gamma_E(x), \gamma_F(y)), E, F \in$
is said to be a τ_T -submeasure.

indeed, the notion of τ_T -submeasure is closely related to the Menger PM-space $(\Omega, \mathcal{F}, \tau_T)$ with the 'probabilistic analogue' of the triangle inequality expressed by

$$F_{p,r}(x+y) \geq T(F_{p,q}(x),F_{q,r}(y))$$

Definition (τ_T -submeasure)

Let $T : [0, 1]^2 \rightarrow [0, 1]$ be a t-norm, and Σ a ring of subsets of $\Omega \neq \emptyset$. A mapping $\gamma : \Sigma \rightarrow \Delta^+$ (where $\gamma(E)$ is denoted by γ_E) such that (a) $\gamma_{\emptyset}(x) = \varepsilon_0(x)$; (b) if $E \subset F$, then $\gamma_E(x) \ge \gamma_F(x)$; (c) $\gamma_{E \cup F}(x + y) \ge T(\gamma_E(x), \gamma_F(y))$, $E, F \in \Sigma$, is said to be a τ_T -submeasure.

interpretation:

1. τ_T -submeasures = fuzzy number-valued submeasures 2. τ_M -submeasures can be represented by means of a non-decreasing system $(\eta_\alpha)_{\alpha \in [0,1]}$ of numerical submeasures as follows

$$\gamma_{\boldsymbol{E}}(\boldsymbol{x}) = \sup \{ \alpha \in [0, 1]; \ \eta_{\alpha}(\boldsymbol{E}) \leq \boldsymbol{x} \}, \quad \boldsymbol{E} \in \Sigma$$

Family of t-norms	Corresponding family of $ au_T$ -submeasures
Aczél-Alsina t-norms $T_{\lambda}^{ extsf{AA}},\lambda\in [0,+\infty[$	$\gamma_{E}^{AA,0}(\mathbf{x}) = \varepsilon_{\eta(E)}(\mathbf{x})$ $\gamma_{E}^{AA,\lambda}(\mathbf{x}) = \exp\left(-\left[\max\{\eta(E) - \mathbf{x}, 0\}\right]^{1/\lambda}\right)$
Dombi t-norms $T^D_\lambda,\lambda\in [0,+\infty[$	$\gamma_E^{D,0}(x) = \gamma_E^{AA,0}(x)$ $\gamma_E^{D,\lambda}(x) = \left(1 + \left[\max\{\eta(E) - x, 0\}\right]^{1/\lambda}\right)^{-1}$
Frank t-norms $T^{\sf F}_\lambda,\lambda\in]0,+\infty]$	$\begin{aligned} \gamma_E^{F,1}(x) &= \min\left\{\exp(x - \eta(E)), 1\right\} \\ \gamma_E^{F,+\infty}(x) &= \max\left\{\min\{1 + x - \eta(E), 1\}, 0\right\} \\ \gamma_E^{F,\lambda}(x) &= \min\left\{\log_\lambda\left(1 + (\lambda - 1)\exp(x - \eta(E))\right), 1\right\} \end{aligned}$

Family of t-norms	Corresponding family of $ au_{\mathcal{T}}$ -submeasures
Hamacher t-norms $T^{H}_{\lambda}, \lambda \in [0,+\infty]$	$\gamma_{E}^{H,+\infty}(x) = \gamma_{E}^{AA,0}(x)$ $\gamma_{E}^{H,0}(x) = \min\left\{ (1+\eta(E)-x)^{-1}, 1 \right\}$ $\gamma_{E}^{H,\lambda}(x) = \min\left\{ \lambda \left(\exp(\eta(E)-x) + \lambda - 1 \right)^{-1}, 1 \right\}$
Yager t-norms $T_\lambda^{m{\gamma}},\lambda\in [0,+\infty[$	$\gamma_{E}^{Y,0}(x) = \gamma_{E}^{AA,0}(x)$ $\gamma_{E}^{Y,\lambda}(x) = \max\left\{\min\left\{1 - \left[\max\{\eta(E) - x, 0\}\right]^{1/\lambda}, 1\right\}, 0\right\}$
Sugeno-Weber t-norms $T^{SW}_{\lambda},\lambda\in [-1,+\infty]$	$ \begin{split} & \gamma_{E}^{\text{SW},-1}(x) = \gamma_{E}^{\text{AA},0}(x) \\ & \gamma_{E}^{\text{SW},0}(x) = \gamma_{E}^{\text{F},+\infty}(x) \\ & \gamma_{E}^{\text{SW},+\infty}(x) = \gamma_{E}^{\text{F},1}(x) \\ & \gamma_{E}^{\text{SW},\lambda}(x) = \max\left\{\min\left\{\lambda^{-1}\left((1+\lambda)^{1+x-\eta(E)}-1\right),1\right\},0\right\} \end{split} $

Numerical versus probabilistic submeasure

Numerical \Rightarrow Probabilistic

Let $\eta: \Sigma \to \overline{\mathbb{R}}_+$ be a numerical submeasure. Then

$$\gamma_{\boldsymbol{E}}(\boldsymbol{x}) = \varepsilon_0(\boldsymbol{x} - \eta(\boldsymbol{E}))$$

is a universal τ_T -submeasure.

interpretation: the number $\gamma_E(x)$ gives the probability that the value of submeasure η of a set $E \in \Sigma$ is less than x

Probabilistic \Rightarrow Numerical

Let T be a t-norm, and Σ be a ring of subsets of Ω . If $\gamma : \Sigma \to \Delta^+$ is a τ_T -submeasure, then the set function $\eta_\gamma : \Sigma \to \overline{\mathbb{R}}_+$ given by

$$\eta_{\gamma}(E) = \sup\{x \in \overline{\mathbb{R}}_+; \gamma_E(x) < 1\}$$

s a numerical submeasure.

Ondrej Hutník (FSTA 2012)

Numerical versus probabilistic submeasure

Numerical \Rightarrow Probabilistic

Let $\eta: \Sigma \to \overline{\mathbb{R}}_+$ be a numerical submeasure. Then

$$\gamma_{\boldsymbol{E}}(\boldsymbol{x}) = \varepsilon_0(\boldsymbol{x} - \eta(\boldsymbol{E}))$$

is a universal τ_T -submeasure.

interpretation: the number $\gamma_E(x)$ gives the probability that the value of submeasure η of a set $E \in \Sigma$ is less than x

Probabilistic \Rightarrow Numerical

Let T be a t-norm, and Σ be a ring of subsets of Ω . If $\gamma : \Sigma \to \Delta^+$ is a τ_T -submeasure, then the set function $\eta_\gamma : \Sigma \to \overline{\mathbb{R}}_+$ given by

$$\eta_{\gamma}(E) = \sup\{x \in \overline{\mathbb{R}}_+; \gamma_E(x) < 1\}$$

is a numerical submeasure.

Ondrej Hutník (FSTA 2012)

Numerical versus probabilistic submeasure

Numerical \Rightarrow Probabilistic

Let $\eta: \Sigma \to \overline{\mathbb{R}}_+$ be a numerical submeasure. Then

$$\gamma_{\boldsymbol{E}}(\boldsymbol{x}) = \varepsilon_0(\boldsymbol{x} - \eta(\boldsymbol{E}))$$

is a universal τ_T -submeasure.

interpretation: the number $\gamma_E(x)$ gives the probability that the value of submeasure η of a set $E \in \Sigma$ is less than x

Probabilistic \Rightarrow Numerical

Let T be a t-norm, and Σ be a ring of subsets of Ω . If $\gamma : \Sigma \to \Delta^+$ is a τ_T -submeasure, then the set function $\eta_\gamma : \Sigma \to \overline{\mathbb{R}}_+$ given by

$$\eta_{\gamma}(E) = \sup\{x \in \overline{\mathbb{R}}_+; \gamma_E(x) < 1\}$$

is a numerical submeasure.

Universal probabilistic submeasures

Problem

Characterize a class of all universal probabilistic submeasures!

– to find a function $f : [0, +\infty[\times]0, +\infty[\rightarrow [0, 1]]$ satisfying the following properties:

- (a') f(0, x) = 1 for all x > 0;
- (b') f(a, x) is non-increasing in its first and non-decreasing in its second component;
- (c') f is a solution of the functional inequality

$$f(a+b, x+y) \geq \min\{f(a, x), f(b, y)\},\$$

for all $a, b \ge 0, x, y > 0$.

Constructing universal τ_T -submeasures

Let η be a numerical submeasure on Σ , and $\Phi \in \Delta$. Then a mapping $\gamma: \Sigma \to \Delta^+$ given by

$$\gamma_{\mathcal{A}}(\boldsymbol{x}) = \Phi\left(rac{\boldsymbol{c} \boldsymbol{x}}{\eta(\mathcal{A})}
ight), \quad \boldsymbol{c} > \boldsymbol{0}, \ \boldsymbol{x} > \boldsymbol{0},$$

is a parametric family of universal τ_T -submeasures.

Examples:

(i)
$$\gamma_E(x) = 1$$
 corresponds to $\Phi(z) = \varepsilon_0(z)$

(ii) γ_E(x) = min{ cx/η(A), 1}, c > 0, corresponds to a distribution function of random variable uniformly distributed over [0, 1]
 (iii)

$$\Phi(z) = \begin{cases} \frac{z}{1+z}, & z \ge 0, \\ 0, & \text{otherwise}, \end{cases} & \dots & \gamma_E(z) = \frac{cz}{cz + \eta(A)}, \quad c > 0 \end{cases}$$

Constructing universal τ_T -submeasures

Let η be a numerical submeasure on Σ , and $\Phi \in \Delta$. Then a mapping $\gamma : \Sigma \to \Delta^+$ given by

$$\gamma_{\mathcal{A}}(\boldsymbol{x}) = \Phi\left(rac{\boldsymbol{c} \boldsymbol{x}}{\eta(\mathcal{A})}
ight), \quad \boldsymbol{c} > \boldsymbol{0}, \ \boldsymbol{x} > \boldsymbol{0},$$

is a parametric family of universal τ_T -submeasures.

Examples:

$$\gamma_{E}(\boldsymbol{x}) = \begin{cases} 0 & \text{for } \boldsymbol{x} \leq \boldsymbol{0}, \\ 1/2 & \text{for } \boldsymbol{x} \in]\boldsymbol{0}, \eta(\boldsymbol{E})]; \\ 1 & \text{for } \boldsymbol{x} > \eta(\boldsymbol{E}), \end{cases}$$

Generated probabilistic submeasures

Constructing τ_T -submeasures from additive generator of T

Let η be a numerical submeasure on Σ . If *t* is an additive generator of a continuous Archimedean t-norm *T*, then $\gamma : \Sigma \to \Delta^+$ given by

$$\gamma_{\boldsymbol{E}}(\boldsymbol{x}) = t^{(-1)}(\eta(\boldsymbol{E}) - \boldsymbol{x}),$$

is a τ_T -submeasure.

Examples: given in table

Probabilistic \Rightarrow Numerical once more

Let γ be a τ_T -submeasure on Σ . If t is an additive generator of a continuous Archimedean t-norm T, then a mapping $\eta_{\gamma,t} : \Sigma \to \mathbb{R}_+$ given by

$$\eta_{\gamma,t}(E):= \supig\{z\in\mathbb{R}_+;\ t(\gamma_E(z))\geq zig\}$$

is a numerical submeasure.

Ondrej Hutník (FSTA 2012)

Generated probabilistic submeasures

Constructing τ_T -submeasures from additive generator of T

Let η be a numerical submeasure on Σ . If *t* is an additive generator of a continuous Archimedean t-norm *T*, then $\gamma : \Sigma \to \Delta^+$ given by

$$\gamma_{\boldsymbol{E}}(\boldsymbol{x}) = t^{(-1)}(\eta(\boldsymbol{E}) - \boldsymbol{x}),$$

is a τ_T -submeasure.

Examples: given in table

Probabilistic \Rightarrow Numerical once more

Let γ be a τ_T -submeasure on Σ . If t is an additive generator of a continuous Archimedean t-norm T, then a mapping $\eta_{\gamma,t} : \Sigma \to \mathbb{R}_+$ given by

$$\eta_{\gamma,t}(E) := \sup\{z \in \mathbb{R}_+; t(\gamma_E(z)) \ge z\}$$

is a numerical submeasure.

Transformations of probabilistic submeasures

Strict t-norms and related probabilistic submeasures

- (i) Let φ be an automorphism and γ be a τ_{Π} -submeasure. If φ is supermultiplicative, then γ is a $\tau_{\Pi_{\varphi}}$ -submeasure.
- (ii) Let T be a strict t-norm with a multiplicative generator θ . Then the following statements are equivalent:
 - (a) γ is a τ_T -submeasure;
 - (b) $\theta(\gamma)$ is a τ_{Π} -submeasure.

Nilpotent t-norms and related probabilistic submeasures

- (i) Let φ be an automorphism, and γ be a τ_W -submeasure. If $\psi(x) = 1 \varphi(1 x)$ is subadditive, then γ is a $\tau_{W_{\varphi}}$ -submeasure
- (ii) If *T* is a nilpotent t-norm with additive generator *t*, then the following statements are equivalent:
 - (a) γ is a τ_T -submeasure;
 - (b) $arphi(\gamma)$ is a au_W -submeasure, where $arphi(x) = \mathsf{1} rac{t(x)}{t(0)}$

Transformations of probabilistic submeasures

Strict t-norms and related probabilistic submeasures

- (i) Let φ be an automorphism and γ be a τ_{Π} -submeasure. If φ is supermultiplicative, then γ is a $\tau_{\Pi_{\varphi}}$ -submeasure.
- (ii) Let T be a strict t-norm with a multiplicative generator θ . Then the following statements are equivalent:
 - (a) γ is a τ_T -submeasure;
 - (b) $\theta(\gamma)$ is a τ_{Π} -submeasure.

Nilpotent t-norms and related probabilistic submeasures

- (i) Let φ be an automorphism, and γ be a τ_W -submeasure. If $\psi(\mathbf{x}) = 1 \varphi(1 \mathbf{x})$ is subadditive, then γ is a $\tau_{W_{\alpha}}$ -submeasure.
- (ii) If T is a nilpotent t-norm with additive generator t, then the following statements are equivalent:
 - (a) γ is a τ_T -submeasure;
 - (b) $\varphi(\gamma)$ is a τ_W -submeasure, where $\varphi(x) = 1 \frac{t(x)}{t(0)}$.

Aggregation of τ_T -submeasures I

Let *T* be a continuous Archimedean t-norm with an additive generator *t*, let $\gamma^{(1)}, \ldots, \gamma^{(n)}, n \in \mathbb{N}$, be τ_T -submeasures, and $H : \bigcup_{n \in \mathbb{N}} [0, 1]^n \to [0, 1]$ be an aggregation function. If there exists a subadditive aggregation function $K : \bigcup_{n \in \mathbb{N}} [0, t(0)]^n \to [0, t(0)]$ such that for all $n \in \mathbb{N}$ and for all $x_i \in [0, 1], i = 1, 2, \ldots, n$,

$$t(H(x_1,\ldots,x_n))=K(t(x_1),\ldots,t(x_n)),$$

then $\gamma = H(\gamma^{(1)}, \ldots, \gamma^{(n)})$ is a τ_T -submeasure.

Example: For the strongest subadditive aggregation function $K : \bigcup_{n \in \mathbb{N}} [0, t(0)]^n \to [0, t(0)]$ given by

$$\mathcal{K}(u_1,\ldots,u_n) = \begin{cases} 0, & u_1 = \cdots = u_n = 0, \\ t(0), & \text{otherwise}, \end{cases}$$

the condition

$$t(H(x_1,\ldots,x_n))=K(t(x_1),\ldots,t(x_n))$$

is fulfilled if and only if H is the weakest aggregation function

$$H_w(x_1,\ldots,x_n) = \begin{cases} 1, & x_1 = \cdots = x_n = 1, \\ 0, & \text{otherwise.} \end{cases}$$

Then $\gamma = H_w(\gamma^{(1)}, \dots, \gamma^{(n)})$ is a τ_T -submeasure.

Aggregation of τ_T -submeasures II

Let *t* be an additive generator of a continuous Archimedean t-norm *T*. If $\gamma^{(i)}$ are τ_T -submeasures for i = 1, 2, ..., n, then $\gamma = \mathbf{A}_t^w \left(\gamma^{(1)}, ..., \gamma^{(n)} \right)$ is a τ_T -submeasure, where

$$\mathbf{A}_t^w(\mathbf{x}_1,\ldots,\mathbf{x}_n):=t^{(-1)}\left(\sum_{i=1}^n w_i\,t(\mathbf{x}_i)\right).$$

Aggregation of universal au_T -submeasures

Let $\gamma^{(1)}, \ldots, \gamma^{(n)}$, $n \in \mathbb{N}$, be universal τ_T -submeasures. Since the weakest aggregation function H_w dominates all t-norms, then $\gamma = H_w(\gamma^{(1)}, \ldots, \gamma^{(n)})$ is also a universal τ_T -submeasure.

Aggregation of τ_T -submeasures II

Let *t* be an additive generator of a continuous Archimedean t-norm *T*. If $\gamma^{(i)}$ are τ_T -submeasures for i = 1, 2, ..., n, then $\gamma = \mathbf{A}_t^w \left(\gamma^{(1)}, ..., \gamma^{(n)} \right)$ is a τ_T -submeasure, where

$$\mathbf{A}_t^w(\mathbf{x}_1,\ldots,\mathbf{x}_n):=t^{(-1)}\left(\sum_{i=1}^n w_i\,t(\mathbf{x}_i)\right).$$

Aggregation of universal τ_T -submeasures

Let $\gamma^{(1)}, \ldots, \gamma^{(n)}$, $n \in \mathbb{N}$, be universal τ_T -submeasures. Since the weakest aggregation function H_w dominates all t-norms, then $\gamma = H_w(\gamma^{(1)}, \ldots, \gamma^{(n)})$ is also a universal τ_T -submeasure.

Ondrej Hutník (FSTA 2012)

Aggregation of τ_T -submeasures II

Let *t* be an additive generator of a continuous Archimedean t-norm *T*. If $\gamma^{(i)}$ are τ_T -submeasures for i = 1, 2, ..., n, then $\gamma = \mathbf{A}_t^w \left(\gamma^{(1)}, ..., \gamma^{(n)} \right)$ is a τ_T -submeasure, where

$$\mathbf{A}_t^w(\mathbf{x}_1,\ldots,\mathbf{x}_n):=t^{(-1)}\left(\sum_{i=1}^n w_i\,t(\mathbf{x}_i)\right).$$

Problem

Characterize the class of mappings (aggregation functions) which preserve the class of τ_T -submeasures for a fixed T!