

Relations between Graded Equipollence And Fuzzy C-measures Of Finite Fuzzy Sets

Michal Holčapek

Centre of Excellence IT4Innovations division of the University of Ostrava Institute for Research and Applications of Fuzzy Modeling Ostrava 1, Czech Republic

Outline

- Motivation and preliminaries
 - Cardinal theory (finite case)
 - Fuzzy cardinal theory (FCT): a survey
 - Fuzzy sets and fuzzy cardinals
- Graded equipollence of fuzzy sets
- Fuzzy c-measures of finite fuzzy sets
 - Motivation
 - Axiomatic definition
 - Expression of fuzzy c-measures
 - Example
- 4 Relation between graded equipollence and c-measures of finite fuzzy sets
 - Preliminary notions
 - One-to-one mappings vs. equivalence of fuzzy cardinals
- Conclusion

A poor interest about fuzzy cardinal theory

S. Gottwald

Fuzzy uniqueness of fuzzy mappings. *Fuzzy Sets and Systems*, 3:49–74, 1980.

L. Zadeh

A computational approach to fuzzy quantifiers in natural languages. Comp. Math. with Applications 9 (1983) 149–184

M. Wygralak

Vaguely defined objects. Representations, fuzzy sets and nonclassical cardinality theory. Theory and Decision Library. Kluwer Academic Publisher, 1996.

M. Wygralak

Cardinalities of Fuzzy Sets. Kluwer Academic Publisher, Berlin, 2003.

- Motivation and preliminaries
 - Cardinal theory (finite case)

Example

How to compare the mass of apples and pears?

- Motivation and preliminaries
 - Cardinal theory (finite case)

Functional approach to compare the size of sets

Using a one-to-one correspondence (functional approach).

- Motivation and preliminaries
 - Cardinal theory (finite case)

Approach based on ordinal numbers

Von Neumann construction of natural numbers:

$$0 = \emptyset, 1 = 0 \cup \{0\}, \dots, 5 = 4 \cup \{4\}, \dots$$

Using ordinal (cardinal) numbers.

$$|Apples| = 5 = |Pears|$$

Fuzzy cardinal theory (FCT): a survey

Two directions in the fuzzy cardinal theory

We can distinguish the approaches based on

• the relation "to have the same fuzzy cardinality"

$$|A| = |B|$$
 or $|A| \sim |B| = \alpha$ (graded approach)

$$\mathfrak{C}(A) = \textit{real number} \quad \textit{or} \quad \mathfrak{C}(A) = \textit{fuzzy number}$$

⁻ Motivation and preliminaries

Fuzzy cardinal theory (FCT): a survey

Two directions in the fuzzy cardinal theory

We can distinguish the approaches based on

• the relation "to have the same fuzzy cardinality"

$$|A| = |B|$$
 or $|A| \sim |B| = \alpha$ (graded approach)

$$\mathfrak{C}(A) = real number$$
 or $\mathfrak{C}(A) = fuzzy number$

⁻ Motivation and preliminaries

i.e.

Two directions in the fuzzy cardinal theory

We can distinguish the approaches based on

• the relation "to have the same fuzzy cardinality"

$$|A| = |B|$$
 or $|A| \sim |B| = \alpha$ (graded approach)

$$\mathfrak{C}(A) = real number$$
 or $\mathfrak{C}(A) = fuzzy number$

$$\mathfrak{C}:\mathfrak{Ffin}\to\mathfrak{N}$$

⁻ Motivation and preliminaries

Fuzzy cardinal theory (FCT): a survey

i.e.

Fuzzy cardinal theory (FCT): a survey

Two directions in the fuzzy cardinal theory

We can distinguish the approaches based on

• the relation "to have the same fuzzy cardinality"

$$|A| = |B|$$
 or $|A| \sim |B| = \alpha$ (graded approach)

$$\mathfrak{C}(A) = real number$$
 or $\mathfrak{C}(A) = fuzzy number$

$$\mathfrak{C}:\mathfrak{Ffin} o\mathfrak{N}$$

⁻ Motivation and preliminaries

Fuzzy cardinal theory (FCT): a survey

Several natural questions about \sim and

 $\mathfrak{C}:\mathfrak{Ffin}\to\mathfrak{N}$.

One can ask

- What structure of truth values is suitable? (residuated lattice, MV-algebra, IMTL-algebra???)
- What is Ffin? (a set or class of fuzzy sets???)
- What is M? (set or class of finite fuzzy cardinals???)
- How to establish the degree to which two (finite) fuzzy sets have the same cardinality (using one-to-one correspondences between fuzzy sets, or α-cuts???).
- What properties have to keep the mapping
 C to be something like the cardinality measure? (additive measure, cardinality measure for the classical set???)

⁻ Motivation and preliminaries

Residuated-dually residuated lattice

Łukasiewicz algebra

An algebra ([0, 1], \land , \lor , \otimes , \rightarrow , \oplus) is the Łukasiewicz algebra, if for $a,b,c\in[0,1]$, we have

- $a \otimes b = \max(a + b 1, 0),$
- $a \oplus b = \min(a + b, 1)$ (dual operation to \otimes),
- $a \to b = \min(1 a + b, 1),$
- $a \ominus b = \max(a b, 0)$ (dual operation to \rightarrow).

Common denotation

We use $\odot \in \{\land, \otimes\}$ and $\overline{\odot} \in \{\lor, \oplus\}$.

Motivation and preliminaries

Fuzzy sets and fuzzy cardinals

Definition

A mapping $A: x \to L$ is called a countable fuzzy set in \mathfrak{Count} , if x is a set in \mathfrak{Count} . The class of all countable fuzzy sets in \mathfrak{Count} is denoted by $\mathfrak{F} \mathfrak{count}$.

⁻ Motivation and preliminaries

Fuzzy sets and fuzzy cardinals

Definition

A mapping $A: x \to L$ is called a countable fuzzy set in \mathfrak{Count} , if x is a set in \mathfrak{Count} . The class of all countable fuzzy sets in \mathfrak{Count} is denoted by $\mathfrak{F} \mathfrak{count}$.

- \emptyset : $\emptyset \rightarrow L$ is the empty fuzzy set,
- if Dom(A) contains only one element, then A is a singleton,
- Supp $(A) = \{x \in Dom(A) \mid A(x) > \bot\}$ is a support of A,
- A is a finite fuzzy set, if Supp(A) is a finite set,
- Fin denotes the class of all finite fuzzy sets in Count.

Motivation and preliminaries

Fuzzy sets and fuzzy cardinals

Definition

A mapping $A: x \to L$ is called a countable fuzzy set in \mathfrak{Count} , if x is a set in \mathfrak{Count} . The class of all countable fuzzy sets in \mathfrak{Count} is denoted by $\mathfrak{F} \mathfrak{count}$.

- $\emptyset : \emptyset \to L$ is the empty fuzzy set,
- if Dom(A) contains only one element, then A is a singleton,
- Supp $(A) = \{x \in Dom(A) \mid A(x) > \bot\}$ is a support of A,
- A is a finite fuzzy set, if Supp(A) is a finite set,
- Fin denotes the class of all finite fuzzy sets in Count.

⁻ Motivation and preliminaries

Fuzzy sets and fuzzy cardinals

Definition

A mapping $A: x \to L$ is called a countable fuzzy set in \mathfrak{Count} , if x is a set in \mathfrak{Count} . The class of all countable fuzzy sets in \mathfrak{Count} is denoted by $\mathfrak{F} \mathfrak{count}$.

- $\emptyset : \emptyset \to L$ is the empty fuzzy set,
- if Dom(A) contains only one element, then A is a singleton,
- Supp $(A) = \{x \in Dom(A) \mid A(x) > \bot\}$ is a support of A,
- A is a finite fuzzy set, if Supp(A) is a finite set,
- Fin denotes the class of all finite fuzzy sets in Count.

⁻ Motivation and preliminaries

Fuzzy sets and fuzzy cardinals

Definition

A mapping $A: x \to L$ is called a countable fuzzy set in \mathfrak{Count} , if x is a set in \mathfrak{Count} . The class of all countable fuzzy sets in \mathfrak{Count} is denoted by $\mathfrak{F} \mathfrak{count}$.

- \emptyset : $\emptyset \to L$ is the empty fuzzy set,
- if Dom(A) contains only one element, then A is a singleton,
- Supp $(A) = \{x \in Dom(A) \mid A(x) > \bot\}$ is a support of A,
- A is a finite fuzzy set, if Supp(A) is a finite set,
- If in denotes the class of all finite fuzzy sets in Count.

Motivation and preliminaries

Fuzzy sets and fuzzy cardinals

Definition

A mapping $A: x \to L$ is called a countable fuzzy set in \mathfrak{Count} , if x is a set in \mathfrak{Count} . The class of all countable fuzzy sets in \mathfrak{Count} is denoted by $\mathfrak{F} \mathfrak{count}$.

- $\emptyset : \emptyset \to L$ is the empty fuzzy set,
- if Dom(A) contains only one element, then A is a singleton,
- Supp $(A) = \{x \in Dom(A) \mid A(x) > \bot\}$ is a support of A,
- A is a finite fuzzy set, if Supp(A) is a finite set,
- Fin denotes the class of all finite fuzzy sets in Count.

⁻ Motivation and preliminaries

Fuzzy sets and fuzzy cardinals

Fuzzy sets and fuzzy cardinals

Equivalence relation for fuzzy sets

Definition

We shall say that fuzzy sets A and B are the equivalent fuzzy sets (symbolically, $A \equiv B$), if Supp(A) = Supp(B) and A(x) = B(x) for any $x \in Supp(A)$.

Definition

cls(A) denotes the class of all equivalent fuzzy sets with A.

Motivation and preliminaries

Equivalence relation for fuzzy sets

Definition

We shall say that fuzzy sets A and B are the equivalent fuzzy sets (symbolically, $A \equiv B$), if Supp(A) = Supp(B) and A(x) = B(x) for any $x \in Supp(A)$.

Definition

cls(A) denotes the class of all equivalent fuzzy sets with A.

⁻ Motivation and preliminaries

Fuzzy sets and fuzzy cardinals

Fuzzy sets and fuzzy cardinals

Operations in &count

Definition

Let $A, B \in \mathfrak{F}\mathfrak{count}$, $x = \mathrm{Dom}(A) \cup \mathrm{Dom}(B)$ and $A' \equiv A, B' \equiv B$ such that $\mathrm{Dom}(A') = \mathrm{Dom}(B') = x$. Then

• the union of A and B is a mapping $A \cup B : x \to L$ defined by

$$(A \cup B)(a) = A'(a) \vee B'(a),$$

 the intersection of A and B is a mapping A ∩ B : x → L defined by

$$(A \cap B)(a) = A'(a) \wedge B'(a),$$

Fuzzy sets and fuzzy cardinals

Operations in &count

Definition

Let $A, B \in \mathfrak{F}\mathfrak{count}$, $x = \mathrm{Dom}(A) \cup \mathrm{Dom}(B)$ and $A' \equiv A, B' \equiv B$ such that $\mathrm{Dom}(A') = \mathrm{Dom}(B') = x$. Then

• the union of A and B is a mapping $A \cup B : x \to L$ defined by

$$(A \cup B)(a) = A'(a) \vee B'(a),$$

 the intersection of A and B is a mapping A ∩ B : x → L defined by

$$(A \cap B)(a) = A'(a) \wedge B'(a),$$

Motivation and preliminaries

LFuzzy sets and fuzzy cardinals

Example

Consider the Łukasiewicz algebra L

For
$$A = \{1/a, 0.4/b\}$$
 and $B = \{0.6/a, 0.2/c\}$ we have

$$A \cup B = \{1/a, 0.4/b, 0.2/c\},$$

$$A \cap B = \{0.6/a, 0/b, 0/c\},\$$

Fuzzy sets and fuzzy cardinals

Generalized cardinals in FCT for finite fuzzy sets

Definition

A generalized cardinal A (over \mathbb{N}) is an \odot -convex fuzzy set $A: \mathbb{N} \to L$, i.e.

$$A(i) \odot A(j) \leq A(k), \quad i \leq k \leq j.$$

 \mathfrak{N} denotes the set of all generalized cardinals.

⁻ Motivation and preliminaries

Structure of fuzzy cardinals

Addition of fuzzy cardinals and neutral element (zero element)

$$(A+B)(i) = \bigvee_{\substack{k,l \in \mathbb{N} \\ k+l=i}} (A(k) \odot B(l)),$$

$$\mathbf{0}(k) = \left\{ \begin{array}{ll} 1, & \text{k=0;} \\ 0, & \text{otherwise.} \end{array} \right.$$

Theorem

The triplet $(\mathfrak{N}, +, \mathbf{0})$ is a commutative monoid.

⁻ Motivation and preliminaries

Fuzzy sets and fuzzy cardinals

Structure of fuzzy cardinals

Addition of fuzzy cardinals and neutral element (zero element)

$$(A+B)(i) = \bigvee_{\substack{k,l \in \mathbb{N} \\ k+l=i}} (A(k) \odot B(l)),$$

$$\mathbf{0}(k) = \left\{ \begin{array}{ll} 1, & \text{k=0;} \\ 0, & \text{otherwise.} \end{array} \right.$$

Theorem

The triplet $(\mathfrak{N}, +, \mathbf{0})$ is a commutative monoid.

⁻ Motivation and preliminaries

Fuzzy sets and fuzzy cardinals

How to define degrees of one-to-one mappings

Definition

Let $A, B \in \mathfrak{Ffin}$, $x, y \in \mathfrak{Count}$ and $f: x \to y$ be a one-to-one mapping of x onto y in \mathfrak{Count} . We shall say that f is a one-to-one mapping of A onto B in the degree α with respect to \odot , if $\mathrm{Supp}(A) \subseteq x \subseteq \mathrm{Dom}(A)$ and $\mathrm{Supp}(B) \subseteq y \subseteq \mathrm{Dom}(B)$ and

$$\alpha = \bigodot_{z \in Y} (A(z) \leftrightarrow B(f(z))).$$

How does it work?

But we can imagine much more!

How to define a graded equipollence of countable fuzzy sets

Definition

Let $A, B \in \mathfrak{F}$ count. A mapping $f : x \to y$ belongs to the set Bij(A, B), if

- (i) f is a one-to-one mapping of x onto y,
- (ii) Supp(A) $\subseteq x \subseteq Dom(A)$, and
- (iii) $\operatorname{Supp}(B) \subseteq y \subseteq \operatorname{Dom}(B)$.

Definition of graded equipollence between countable fuzzy sets

Definition

Let $A, B \in \mathfrak{F}count$. We shall say that A is equipollent with B (or A has the same cardinality as B) in the degree α , if there exist fuzzy sets $C \in cls(A)$ and $D \in cls(B)$ such that

$$\alpha = \bigvee_{f \in \mathrm{Bij}(C,D)} [C \sim_f^{\circ} D]$$

and, for each $A' \in \operatorname{cls}(A)$, $B' \in \operatorname{cls}(B)$ and $f \in \operatorname{Bij}(A', B')$, there is $[A' \sim_f B'] \leq \alpha$.

Graded equipollence for finite fuzzy sets

Theorem

Let $A, B \in \mathfrak{Ffin}$ and $C \in cls(A)$, $D \in cls(B)$ be such that

$$z = \text{Dom}(C) = \text{Dom}(D)$$
 and $|z| = m$.

Then

$$[A \sim^{\odot} B] = \bigvee_{f \in Perm(z)} [C \sim_f^{\odot} D],$$

where Perm(z) denotes the set of all permutations on z.

└ Motivation

$$A =$$
 "Apples"

└ Motivation

Motivation

$$|A| = |A_1| + |A_2| + |A_3| + |A_4| = 4$$

└ Motivation

└ Motivation

How to model the behavior of fuzzy "cardinality" measures?

Motivation

How to model the behavior of fuzzy "cardinality" measures?

$$\mathfrak{C}(A) = \mathfrak{C}(A_1) + \mathfrak{C}(A_2) + \mathfrak{C}(A_3) + \mathfrak{C}(A_4)$$

└ Motivation

$$\mathfrak{C}(A_i)(n) = ?$$

Crisp set	Fuzzy set	
$\mathfrak{C}(\{1/*\})(0) = 0$ $\mathfrak{C}(\{1/*\})(1) = 1$ $\mathfrak{C}(\{1/*\})(2) = 0$ $\mathfrak{C}(\{1/*\})(3) = 0$ \vdots	$\mathfrak{C}(\{a/*\})(0) = \alpha$ $\mathfrak{C}(\{a/*\})(1) = \beta$ $\mathfrak{C}(\{a/*\})(2) = 0$ $\mathfrak{C}(\{a/*\})(3) = 0$ $\mathfrak{C}(\{a/*\})(3) = 0$	

Explanation of α and β .

 α = "the degree of non-existence of * in $A_1 = \{a/*\}$ ". β = "the degree of existence of * in $A_1 = \{a/*\}$ ".

└ Motivation

$$\mathfrak{C}(A_i)(n) = ?$$

Crisp set	Fuzzy set
$\mathfrak{C}(\{1/*\})(0) = 0$ $\mathfrak{C}(\{1/*\})(1) = 1$ $\mathfrak{C}(\{1/*\})(2) = 0$ $\mathfrak{C}(\{1/*\})(3) = 0$ \vdots	$\mathfrak{C}(\{a/*\})(0) = \alpha$ $\mathfrak{C}(\{a/*\})(1) = \beta$ $\mathfrak{C}(\{a/*\})(2) = 0$ $\mathfrak{C}(\{a/*\})(3) = 0$ $\mathfrak{C}(\{a/*\})(3) = 0$

Explanation of α and β .

 α = "the degree of non-existence of * in $A_1 = \{a/*\}$ ".

 β = "the degree of existence of * in $A_1 = \{a/*\}$ ".

└ Motivation

$$\mathfrak{C}(A_i)(n) = ?$$

Crisp set	Fuzzy set
$\mathfrak{C}(\{1/*\})(0) = 0$ $\mathfrak{C}(\{1/*\})(1) = 1$ $\mathfrak{C}(\{1/*\})(2) = 0$ $\mathfrak{C}(\{1/*\})(3) = 0$ \vdots	$\mathfrak{C}(\{a/*\})(0) = \alpha$ $\mathfrak{C}(\{a/*\})(1) = \beta$ $\mathfrak{C}(\{a/*\})(2) = 0$ $\mathfrak{C}(\{a/*\})(3) = 0$ $\mathfrak{C}(\{a/*\})(3) = 0$

Explanation of α and β .

 α = "the degree of non-existence of * in $A_1 = \{a/*\}$ ".

 β = "the degree of existence of * in $A_1 = \{a/*\}$ ".

Axiomatic definition

Definition

A class mapping $\mathfrak C:\mathfrak{Ffin}\to\mathfrak N$ is a fuzzy c-measure of finite fuzzy sets with respect to \odot , if, for arbitrary $A,B\in\mathfrak{Ffin}$, it holds:

C1: if
$$\operatorname{Supp}(A) \cap \operatorname{Supp}(B) = \emptyset$$
, then $\mathfrak{C}(A \cup B) = \mathfrak{C}(A) + \mathfrak{C}(B)$,

C2: if
$$i, j \in \mathbb{N}$$
 and $i > |\operatorname{Supp}(A)|, j > |\operatorname{Supp}(B)|$, then $\mathfrak{C}(A)(i) = \mathfrak{C}(B)(j)$,

C3: if A is a crisp set, then
$$\mathfrak{C}(A)$$
 is a crisp set, $\mathfrak{C}(A)(|A|) = \top$,

C4: if
$$a \in L$$
 and $x, y \in \mathfrak{Count}$, then $\mathfrak{C}(\{a/x\}) = \mathfrak{C}(\{a/y\})$,

C5: if
$$a, b \in L$$
 and $x \in \mathfrak{Count}$, then

$$\mathfrak{C}(\{a \overline{\odot} b/x\})(0) = \mathfrak{C}(\{a/x\})(0) \odot \mathfrak{C}(\{b/x\})(0),$$

$$\mathfrak{C}(\{a \odot b/x\})(1) = \mathfrak{C}(\{a/x\})(1) \odot \mathfrak{C}(\{b/x\})(1).$$

Axiomatic definition

Example

Consider

$$\mathfrak{C}_{id}(A)(i) = \operatorname{FGCount}(A)(i) = \bigvee \{a \mid a \in L \text{ and } |A_a| \geq i\}$$

and define

$$\mathfrak{C}(A)(i) = \left\{ \begin{array}{l} \top, & i = 0, \\ \mathfrak{C}(A)(i-1) \otimes \mathfrak{C}_{id}(A)(i), & \text{otherwise.} \end{array} \right.$$

For
$$A = \{0.5/a, 0.8/b, 0.1/c, 0.4/d, 0/e\}$$
, we obtain

$$\mathfrak{C}(A) = \{1/0, 0.8/1, 0.3/2, 0/3, 0/4, 0/5, 0/6, \dots\},\$$

where e.g.
$$\mathfrak{C}(A)(2) = 0.8 \otimes 0.5 = \max(0.8 + 0.5 - 1, 0) = 0.3$$
.

Axiomatic definition

Theorem (Representation of c-measures)

Let $\mathfrak{C}:\mathfrak{Ffin}\to\mathfrak{N}$ be a mapping satisfying the additivity axiom and $\mathfrak{C}(A)=\mathfrak{C}(\emptyset)$ for any $A\in\mathrm{cls}(\emptyset)$. Then the following statements are equivalent:

- (i) € is a c-measure of finite fuzzy sets with respect to ⊙,
- (ii) there exist an \odot -homomorphism $f:L\to L$ and an $\overline{\odot}_d$ -homomorphism $g:L\to L$, such that $f(\bot)\in\{\bot,\top\}$, $g(\top)\in\{\bot,\top\}$ and

$$\mathfrak{C}(\{a/x\})(0) = g(a), \ \mathfrak{C}(\{a/x\})(1) = f(a),$$

 $\mathfrak{C}(\{a/x\})(k) = f(\bot), \ k > 1$

hold for arbitrary $a \in L$ and $x \in \mathfrak{Count}$. Denote $\mathfrak{C}_{g,f}$ a c-measure determined by g and f.

Axiomatic definition

Theorem (Representation of c-measures)

Let $\mathfrak{C}:\mathfrak{Ffin}\to\mathfrak{N}$ be a mapping satisfying the additivity axiom and $\mathfrak{C}(A)=\mathfrak{C}(\emptyset)$ for any $A\in\mathrm{cls}(\emptyset)$. Then the following statements are equivalent:

- (i) $\mathfrak C$ is a c-measure of finite fuzzy sets with respect to \odot ,
- (ii) there exist an \odot -homomorphism $f:L\to L$ and an $\overline{\odot}_d$ -homomorphism $g:L\to L$, such that $f(\bot)\in\{\bot,\top\}$, $g(\top)\in\{\bot,\top\}$ and

$$\mathfrak{C}(\{a/x\})(0) = g(a), \ \mathfrak{C}(\{a/x\})(1) = f(a), \ \mathfrak{C}(\{a/x\})(k) = f(\bot), \ k > 1$$

hold for arbitrary $a \in L$ *and* $x \in \mathfrak{Count}$.

Denote $\mathfrak{C}_{a,f}$ a c-measure determined by g and f.

Expression of fuzzy c-measures

Corollary

Let L be a linearly ordered rdr-lattice, $\mathfrak{C}_{g,f}$ be a c-measure such that f is a \odot -po-homomorphism and g is a $\overline{\odot}_d$ -po-homomorphism. Then

$$\mathfrak{C}_{g,f}(A)(i) = \mathfrak{C}_g(A)(i) \odot \mathfrak{C}_f(A)(i)$$

holds for any $A \in \mathfrak{Ffin}$ and $i \in \mathbb{N}$.

Expression of fuzzy c-measures

Corollary

Let **L** be linearly ordered, $\mathfrak{C}_{g,f}$ be a c-measure with respect to \wedge such that f is \wedge -homomorphism and g is \vee -homomorphisms. Then

$$\mathfrak{C}_{g,f}(A)(i) = g(\mathfrak{C}_{id}(A)(i+1)) \wedge f(\mathfrak{C}_{id}(A)(i))$$

holds for any $A \in \mathfrak{Ffin}$ and $i \in \mathbb{N}$.

Example

$$\mathfrak{C}_{g}(A)$$
 for $A = \{0.6/x, 1/y\}$ and $g(x) = 1 - x$

 $\mathfrak{C}_q(A)(i) =$ "at most i elements in A"

Example

$$\mathfrak{C}_{f}(A) \text{ for } A = \{0.6/x, 1/y\} \text{ and } f(x) = x$$

Example

$$\mathfrak{C}_{g,f}(A)$$
 for $A=\{0.6/x,1/y\}$ and $f(x)=x$, $g(x)=1-x$

Relation between graded equipollence and c-measures of finite fuzzy sets

Preliminary notions

Denote

$$f(A) = f \circ A$$

Definition

We shall say that fuzzy sets A and B are the equivalent fuzzy sets in the degree a (symbolically, $[A \approx B] = a$), if

$$a = \bigwedge_{x \in \text{Dom}(A) \cup \text{Dom}(B)} (A'(x) \leftrightarrow B'(x)),$$

holds for $A' \in \operatorname{cls}(A)$, $B' \in \operatorname{cls}(B)$ with

$$Dom(A') = Dom(B') = Dom(A) \cup Dom(B).$$

Theorem

Let $\mathfrak{C}_{g,f}$ be a c-measure. Then

$$[g(A) \sim_h^{\circ} g(B)] \odot [f(A) \sim_h^{\circ} f(B)] \leq [\mathfrak{C}_{g,f}(A) \approx \mathfrak{C}_{g,f}(B)]$$

holds for any $A, B \in \mathfrak{Ffin}$ such that |Dom(A)| = |Dom(B)| = m and $h \in Perm(A, B)$.

Relation between graded equipollence and c-measures of finite fuzzy sets

One-to-one mappings vs. equivalence of fuzzy cardinals

Corollary

Let $\mathfrak{C}_{q,f}$ be a c-measure. Then

(i)
$$[g(A) \sim^{\circ} g(B)] \leq [\mathfrak{C}_g(A) \approx \mathfrak{C}_g(B)]$$

(ii)
$$[f(A) \sim^{\odot} f(B)] \leq [\mathfrak{C}_f(A) \approx \mathfrak{C}_f(B)],$$

hold for any $A, B \in \mathfrak{Ffin}$ such that |Dom(A)| = |Dom(B)| = m.

Relation between graded equipollence and c-measures of finite fuzzy sets

One-to-one mappings vs. equivalence of fuzzy cardinals

Corollary

Let $\mathfrak{C}_{q,f}$ be a c-measure. Then

(i)
$$[g(A) \sim^{\circ} g(B)] \leq [\mathfrak{C}_g(A) \approx \mathfrak{C}_g(B)]$$

(ii)
$$[f(A) \sim^{\odot} f(B)] \leq [\mathfrak{C}_f(A) \approx \mathfrak{C}_f(B)],$$

hold for any $A, B \in \mathfrak{Ffin}$ such that |Dom(A)| = |Dom(B)| = m.

Relation between graded equipollence and c-measures of finite fuzzy sets

One-to-one mappings vs. equivalence of fuzzy cardinals

Theorem

Let **L** be a linearly ordered rdr-lattice, $\mathfrak{C}_{g,f}$ be a c-measure such that f is a \odot -po-homomorphism and g is a $\overline{\odot}_d$ -po-homomorphism. Then

$$[g(A) \sim^{\circ} g(B)] \odot [f(A) \sim^{\circ} f(B)] \leq [\mathfrak{C}_{g,f}(A) \approx \mathfrak{C}_{g,f}(B)]$$

for any $A,B\in\mathfrak{Ffin}$. Especially, if \mathfrak{C}_g and \mathfrak{C}_f are c-measures with respect to $\odot=\wedge$, then

(i)
$$[g(A) \sim^{\wedge} g(B)] = [\mathfrak{C}_g(A) \approx \mathfrak{C}_g(B)],$$

(ii)
$$[f(A) \sim^{\wedge} f(B)] = [\mathfrak{C}_f(A) \approx \mathfrak{C}_f(B)]$$

hold for any $A, B \in \mathfrak{Ffin}$ such that |Dom(A)| = |Dom(B)| = m.

igspace Relation between graded equipollence and c-measures of finite fuzzy sets

One-to-one mappings vs. equivalence of fuzzy cardinals

A future work

- To investigate further properties of fuzzy c-measures of finite fuzzy sets.
- To investigate further relations between fuzzy c-measures and graded equipollence of finite fuzzy sets.
- To extend c-measures to infinite case.
- To develop the fuzzy cardinality theory.

÷

-Conclusion

Thank you for your attention.