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Motivation and preliminaries

Cardinal theory (finite case)

Example
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Apples Pears

How to compare the mass of apples and pears?
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Motivation and preliminaries

Cardinal theory (finite case)

Functional approach to compare the size of sets
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f

Using a one-to-one correspondence (functional approach).



logo

Relations between Graded Equipollence And Fuzzy C-measures Of Finite Fuzzy Sets

Motivation and preliminaries

Cardinal theory (finite case)

Approach based on ordinal numbers
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Apples Pears5

Using ordinal (cardinal) numbers.

|Apples| = 5 = |Pears|

Von Neumann construction of natural numbers:

0 = ∅, 1 = 0 ∪ {0}, . . . , 5 = 4 ∪ {4}, . . .



logo

Relations between Graded Equipollence And Fuzzy C-measures Of Finite Fuzzy Sets

Motivation and preliminaries

Fuzzy cardinal theory (FCT): a survey

Two directions in the fuzzy cardinal theory

We can distinguish the approaches based on
1 the relation “to have the same fuzzy cardinality”

|A| = |B| or |A| ∼ |B| = α (graded approach)

2 fuzzy measures similar to the cardinality measure

C(A) = real number or C(A) = fuzzy number

i.e.

C : Ffin→ N
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Motivation and preliminaries

Fuzzy cardinal theory (FCT): a survey

Several natural questions about ∼ and
C : Ffin→ N.

One can ask
What structure of truth values is suitable? (residuated
lattice, MV-algebra, IMTL-algebra???)
What is Ffin? (a set or class of fuzzy sets???)
What is N? (set or class of finite fuzzy cardinals???)
How to establish the degree to which two (finite) fuzzy sets
have the same cardinality (using one-to-one
correspondences between fuzzy sets, or α-cuts???).
What properties have to keep the mapping C to be
something like the cardinality measure? (additive measure,
cardinality measure for the classical set???)
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Motivation and preliminaries

Fuzzy sets and fuzzy cardinals

Residuated-dually residuated lattice

Łukasiewicz algebra
An algebra ([0,1],∧,∨,⊗,→,⊕,	) is the Łukasiewicz algebra,
if for a,b, c ∈ [0,1], we have

¬a = 1− a,
a⊗ b = max(a + b − 1,0),
a⊕ b = min(a + b,1) (dual operation to ⊗),
a→ b = min(1− a + b,1),
a	 b = max(a− b,0) (dual operation to→).

Common denotation
We use � ∈ {∧,⊗} and � ∈ {∨,⊕}.
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Motivation and preliminaries

Fuzzy sets and fuzzy cardinals

Fuzzy sets in the universe of countable sets
Count

Definition
A mapping A : x → L is called a countable fuzzy set in Count, if
x is a set in Count. The class of all countable fuzzy sets in
Count is denoted by Fcount.

Definition
∅ : ∅ → L is the empty fuzzy set,
if Dom(A) contains only one element, then A is a singleton,
Supp(A) = {x ∈ Dom(A) | A(x) > ⊥} is a support of A,
A is a finite fuzzy set, if Supp(A) is a finite set,
Ffin denotes the class of all finite fuzzy sets in Count.
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Motivation and preliminaries

Fuzzy sets and fuzzy cardinals

Equivalence relation for fuzzy sets

Definition
We shall say that fuzzy sets A and B are the equivalent fuzzy
sets (symbolically, A ≡ B), if Supp(A) = Supp(B) and
A(x) = B(x) for any x ∈ Supp(A).

Definition
cls(A) denotes the class of all equivalent fuzzy sets with A.
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Motivation and preliminaries

Fuzzy sets and fuzzy cardinals

Operations in Fcount

Definition
Let A,B ∈ Fcount, x = Dom(A) ∪ Dom(B) and A′ ≡ A, B′ ≡ B
such that Dom(A′) = Dom(B′) = x. Then

the union of A and B is a mapping A∪B : x → L defined by

(A ∪ B)(a) = A′(a) ∨ B′(a),

the intersection of A and B is a mapping A ∩ B : x → L
defined by

(A ∩ B)(a) = A′(a) ∧ B′(a),
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Motivation and preliminaries

Fuzzy sets and fuzzy cardinals

Example

Consider the Łukasiewicz algebra L
For A = {1/a,0.4/b} and B = {0.6/a,0.2/c} we have

A ∪ B = {1/a,0.4/b,0.2/c},
A ∩ B = {0.6/a,0/b,0/c},
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Motivation and preliminaries

Fuzzy sets and fuzzy cardinals

Generalized cardinals in FCT for finite fuzzy
sets

Definition
A generalized cardinal A (over N) is an �-convex fuzzy set
A : N→ L, i.e.

A(i)� A(j) ≤ A(k), i ≤ k ≤ j .

N denotes the set of all generalized cardinals.
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Motivation and preliminaries

Fuzzy sets and fuzzy cardinals

Structure of fuzzy cardinals

Addition of fuzzy cardinals and neutral element (zero
element)

(A + B)(i) =
∨

k ,l∈N
k+l=i

(A(k)� B(l)),

0(k) =

{
1, k=0;
0, otherwise.

Theorem
The triplet (N,+,0) is a commutative monoid.
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Graded equipollence of fuzzy sets

How to define degrees of one-to-one mappings

Definition
Let A,B ∈ Ffin, x , y ∈ Count and f : x → y be a one-to-one
mapping of x onto y in Count. We shall say that f is a
one-to-one mapping of A onto B in the degree α with respect to
�, if Supp(A) ⊆ x ⊆ Dom(A) and Supp(B) ⊆ y ⊆ Dom(B) and

α =
⊙
z∈x

(A(z)↔ B(f (z))).
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Graded equipollence of fuzzy sets

How does it work?

Dom(A)

Dom(B)

x

y

f

Supp(A)

Supp(B)
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Graded equipollence of fuzzy sets

But we can imagine much more!

Dom(A)

Dom(B)

x

y = Dom(B′)

f

Supp(A)

Supp(B) = Supp(B′)
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Graded equipollence of fuzzy sets

How to define a graded equipollence of
countable fuzzy sets

Definition
Let A,B ∈ Fcount. A mapping f : x → y belongs to the set
Bij(A,B), if

(i) f is a one-to-one mapping of x onto y,
(ii) Supp(A) ⊆ x ⊆ Dom(A), and
(iii) Supp(B) ⊆ y ⊆ Dom(B).
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Graded equipollence of fuzzy sets

Definition of graded equipollence between
countable fuzzy sets

Definition
Let A,B ∈ Fcount. We shall say that A is equipollent with B (or
A has the same cardinality as B) in the degree α, if there exist
fuzzy sets C ∈ cls(A) and D ∈ cls(B) such that

α =
∨

f∈Bij(C,D)

[C ∼�f D]

and, for each A′ ∈ cls(A), B′ ∈ cls(B) and f ∈ Bij(A′,B′), there
is [A′ ∼f B′] ≤ α.
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Graded equipollence of fuzzy sets

Graded equipollence for finite fuzzy sets

Theorem
Let A,B ∈ Ffin and C ∈ cls(A), D ∈ cls(B) be such that

z = Dom(C) = Dom(D) and |z| = m.

Then

[A ∼� B] =
∨

f∈Perm(z)

[C ∼�f D],

where Perm(z) denotes the set of all permutations on z.
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Fuzzy c-measures of finite fuzzy sets

Motivation

How to model the behavior of fuzzy
“cardinality” measures?

A =“Apples”

∗ ∗
∗

∗
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Motivation
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“cardinality” measures?

A =“Apples”

∗ ∗
∗

∗

∗

∗

∗

∗

A1

A2

A3

A4
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Fuzzy c-measures of finite fuzzy sets

Motivation

How to model the behavior of fuzzy
“cardinality” measures?

A =“Apples”

∗ ∗
∗

∗

∗

∗

∗

∗

A1

A2

A3

A4

|A| = |A1| + |A2| + |A3| + |A4| = 4
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Fuzzy c-measures of finite fuzzy sets

Motivation

How to model the behavior of fuzzy
“cardinality” measures?

A =“Fresh apples”

∗ ∗
∗

∗

∗

∗

∗

∗

A1 = {a/∗}

A2 = {b/∗}

A3 = {c/∗}

A4 = {d/∗}
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Fuzzy c-measures of finite fuzzy sets

Motivation

How to model the behavior of fuzzy
“cardinality” measures?

A =“Fresh apples”

∗ ∗
∗

∗

∗

∗

∗

∗

A1 = {a/∗}

A2 = {b/∗}

A3 = {c/∗}

A4 = {d/∗}

C(A) = C(A1) + C(A2) + C(A3) + C(A4)

C(Ai)(n) =?, n ∈ N
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Fuzzy c-measures of finite fuzzy sets

Motivation

C(Ai)(n) =?

Crisp set Fuzzy set

C({1/∗})(0) = 0 C({a/∗})(0) = α
C({1/∗})(1) = 1 C({a/∗})(1) = β
C({1/∗})(2) = 0 C({a/∗})(2) = 0
C({1/∗})(3) = 0 C({a/∗})(3) = 0

...
...

Explanation of α and β.
α = “the degree of non-existence of ∗ in A1 = {a/∗}”.
β = “the degree of existence of ∗ in A1 = {a/∗}”.
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Fuzzy c-measures of finite fuzzy sets

Axiomatic definition

Definition
A class mapping C : Ffin→ N is a fuzzy c-measure of finite
fuzzy sets with respect to �, if, for arbitrary A,B ∈ Ffin, it holds:

C1: if Supp(A) ∩ Supp(B) = ∅, then C(A ∪ B) = C(A) + C(B),
C2: if i , j ∈ N and i > |Supp(A)|, j > |Supp(B)|, then

C(A)(i) = C(B)(j),
C3: if A is a crisp set, then C(A) is a crisp set, C(A)(|A|) = >,
C4: if a ∈ L and x , y ∈ Count, then C({a/x}) = C({a/y}),
C5: if a,b ∈ L and x ∈ Count, then

C({a�b/x})(0) = C({a/x})(0)� C({b/x})(0),

C({a� b/x})(1) = C({a/x})(1)� C({b/x})(1).
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Fuzzy c-measures of finite fuzzy sets

Axiomatic definition

Example
Consider

Cid(A)(i) = FGCount(A)(i) =
∨
{a | a ∈ L and |Aa| ≥ i}

and define

C(A)(i) =

{
>, i = 0,
C(A)(i − 1)⊗ Cid(A)(i), otherwise.

For A = {0.5/a,0.8/b,0.1/c,0.4/d ,0/e}, we obtain

C(A) = {1/0,0.8/1,0.3/2,0/3,0/4,0/5,0/6, . . . },

where e.g. C(A)(2) = 0.8⊗ 0.5 = max(0.8 + 0.5− 1,0) = 0.3.
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Fuzzy c-measures of finite fuzzy sets

Axiomatic definition

Theorem (Representation of c-measures)
Let C : Ffin→ N be a mapping satisfying the additivity axiom
and C(A) = C(∅) for any A ∈ cls(∅). Then the following
statements are equivalent:

(i) C is a c-measure of finite fuzzy sets with respect to �,
(ii) there exist an �-homomorphism f : L→ L and an
�d-homomorphism g : L→ L, such that f (⊥) ∈ {⊥,>},
g(>) ∈ {⊥,>} and

C({a/x})(0) = g(a), C({a/x})(1) = f (a),

C({a/x})(k) = f (⊥), k > 1

hold for arbitrary a ∈ L and x ∈ Count.
Denote Cg,f a c-measure determined by g and f .



logo

Relations between Graded Equipollence And Fuzzy C-measures Of Finite Fuzzy Sets

Fuzzy c-measures of finite fuzzy sets

Axiomatic definition

Theorem (Representation of c-measures)
Let C : Ffin→ N be a mapping satisfying the additivity axiom
and C(A) = C(∅) for any A ∈ cls(∅). Then the following
statements are equivalent:

(i) C is a c-measure of finite fuzzy sets with respect to �,
(ii) there exist an �-homomorphism f : L→ L and an
�d-homomorphism g : L→ L, such that f (⊥) ∈ {⊥,>},
g(>) ∈ {⊥,>} and

C({a/x})(0) = g(a), C({a/x})(1) = f (a),

C({a/x})(k) = f (⊥), k > 1

hold for arbitrary a ∈ L and x ∈ Count.
Denote Cg,f a c-measure determined by g and f .



logo

Relations between Graded Equipollence And Fuzzy C-measures Of Finite Fuzzy Sets

Fuzzy c-measures of finite fuzzy sets

Expression of fuzzy c-measures

Corollary
Let L be a linearly ordered rdr-lattice, Cg,f be a c-measure such
that f is a �-po-homomorphism and g is a
�d-po-homomorphism. Then

Cg,f (A)(i) = Cg(A)(i)� Cf (A)(i)

holds for any A ∈ Ffin and i ∈ N.
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Fuzzy c-measures of finite fuzzy sets

Expression of fuzzy c-measures

Corollary
Let L be linearly ordered, Cg,f be a c-measure with respect to ∧
such that f is ∧-homomorphism and g is ∨-homomorphisms.
Then

Cg,f (A)(i) = g(Cid(A)(i + 1)) ∧ f (Cid(A)(i))

holds for any A ∈ Ffin and i ∈ N.



logo

Relations between Graded Equipollence And Fuzzy C-measures Of Finite Fuzzy Sets

Fuzzy c-measures of finite fuzzy sets

Example

Cg(A) for A = {0.6/x , 1/y} and g(x) = 1− x

1 2 3 4 5
i

0.2

0.4

0.6

0.8

1.0

C

Cg(A)(i) = “at most i elements in A”
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Fuzzy c-measures of finite fuzzy sets

Example

Cf (A) for A = {0.6/x , 1/y} and f (x) = x

1 2 3 4 5
i

0.2

0.4

0.6

0.8

1.0

C

Cg(A)(i) = “at least i elements in A”
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Fuzzy c-measures of finite fuzzy sets

Example

Cg,f (A) for A = {0.6/x , 1/y} and f (x) = x ,
g(x) = 1− x

1 2 3 4 5
i

0.2

0.4

0.6

0.8

1.0
C

Cg,f (A)(i) = “exactly i elements in A”
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Relation between graded equipollence and c-measures of finite fuzzy sets

Preliminary notions

Denote
f (A) = f ◦ A

Definition
We shall say that fuzzy sets A and B are the equivalent fuzzy
sets in the degree a (symbolically, [A ≈ B] = a), if

a =
∧

x∈Dom(A)∪Dom(B)

(A′(x)↔ B′(x)),

holds for A′ ∈ cls(A), B′ ∈ cls(B) with

Dom(A′) = Dom(B′) = Dom(A) ∪ Dom(B).
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Relation between graded equipollence and c-measures of finite fuzzy sets

One-to-one mappings vs. equivalence of fuzzy cardinals

Theorem
Let Cg,f be a c-measure. Then

[g(A) ∼�h g(B)]� [f (A) ∼�h f (B)] ≤ [Cg,f (A) ≈ Cg,f (B)]

holds for any A,B ∈ Ffin such that |Dom(A)| = |Dom(B)| = m
and h ∈ Perm(A,B).
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Relation between graded equipollence and c-measures of finite fuzzy sets

One-to-one mappings vs. equivalence of fuzzy cardinals

Corollary

Let Cg,f be a c-measure. Then
(i) [g(A) ∼� g(B)] ≤ [Cg(A) ≈ Cg(B)]

(ii) [f (A) ∼� f (B)] ≤ [Cf (A) ≈ Cf (B)],
hold for any A,B ∈ Ffin such that |Dom(A)| = |Dom(B)| = m.
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Relation between graded equipollence and c-measures of finite fuzzy sets

One-to-one mappings vs. equivalence of fuzzy cardinals

Corollary

Let Cg,f be a c-measure. Then
(i) [g(A) ∼� g(B)] ≤ [Cg(A) ≈ Cg(B)]

(ii) [f (A) ∼� f (B)] ≤ [Cf (A) ≈ Cf (B)],
hold for any A,B ∈ Ffin such that |Dom(A)| = |Dom(B)| = m.
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Relation between graded equipollence and c-measures of finite fuzzy sets

One-to-one mappings vs. equivalence of fuzzy cardinals

Theorem

Let L be a linearly ordered rdr-lattice, Cg,f be a c-measure such
that f is a �-po-homomorphism and g is a
�d-po-homomorphism. Then

[g(A) ∼� g(B)]� [f (A) ∼� f (B)] ≤ [Cg,f (A) ≈ Cg,f (B)]

for any A,B ∈ Ffin. Especially, if Cg and Cf are c-measures with
respect to � = ∧, then

(i) [g(A) ∼∧ g(B)] = [Cg(A) ≈ Cg(B)],
(ii) [f (A) ∼∧ f (B)] = [Cf (A) ≈ Cf (B)]

hold for any A,B ∈ Ffin such that |Dom(A)| = |Dom(B)| = m.
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Conclusion

A future work

To investigate further properties of fuzzy c-measures of
finite fuzzy sets.
To investigate further relations between fuzzy c-measures
and graded equipollence of finite fuzzy sets.
To extend c-measures to infinite case.
To develop the fuzzy cardinality theory.

...
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Conclusion

Thank you for your attention.
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