On probabilistic submeasures

Lenka Halčinová

Institute of Mathematics, Faculty of Science, Pavol Jozef Šafárik University in Košice Jesenná 5, 040 01 Košice, Slovakia Slovakia

E-mail: lenka.halcinova@student.upjs.sk

february 2012

Introduction and motivations

- probabilistic submeasures as non-additive set functions have appeared naturally in classical measure theory
- much attention was paid there to develop a theory of submeasures

 → for example, Dobrakov submeasures and semimeasures and their
 various generalizations and extensions
- we have only a probabilistic information about measure of a set → for example, if rounding of reals is considered, then the uniform distributions over intervals describe our information about the measure of a set
- interpretation as a fuzzy number

 \rightarrow the value γ_E can be seen as a non-negative *LT*-fuzzy number, where $\tau_T(\gamma_E, \gamma_F)$ corresponds to the *T*-sum of fuzzy numbers γ_E and γ_F

Introduction and motivations

- probabilistic submeasures as non-additive set functions have appeared naturally in classical measure theory
- much attention was paid there to develop a theory of submeasures → for example, Dobrakov submeasures and semimeasures and their various generalizations and extensions
- we have only a probabilistic information about measure of a set → for example, if rounding of reals is considered, then the uniform distributions over intervals describe our information about the measure of a set
- interpretation as a fuzzy number

 \rightarrow the value γ_E can be seen as a non-negative *LT*-fuzzy number, where $\tau_T(\gamma_E, \gamma_F)$ corresponds to the *T*-sum of fuzzy numbers γ_E and γ_F

Basic notations

distance distribution function F : ℝ → [0, 1] is non-decreasing, left continuous on ℝ, F(-∞) = 0, F(+∞) = 1 and F(0) = 0 the class of all distance distribution functions will be denoted by Δ⁺

for example, the distribution function of Dirac random variable concentrated in point 0

$$arepsilon_0(\mathbf{x}) = egin{cases} \mathbf{0}, & ext{for } \mathbf{x} \leq \mathbf{0}, \ \mathbf{1}, & ext{for } \mathbf{x} > \mathbf{0} \end{cases}$$

- *triangle function* is a function $\tau : \Delta^+ \times \Delta^+ \rightarrow \Delta^+$ which is symmetric, associative, non-decreasing in each variable and has ε_0 as the identity
- triangular norm is a mapping T : [0, 1]² → [0, 1] which is symmetric, associative, non-decreasing in each argument and has 1 as the identity

Definition (τ_T -submeasure)

Let $T : [0, 1]^2 \rightarrow [0, 1]$ be a t-norm, and Σ a ring of subsets of $\Omega \neq \emptyset$. A mapping $\gamma : \Sigma \rightarrow \Delta^+$ (where $\gamma(E)$ is denoted by γ_E) such that (a) if $E = \emptyset$, then $\gamma_{\emptyset}(x) = \varepsilon_0(x), x > 0$; (b) if $E \subset F$, then $\gamma_E(x) \ge \gamma_F(x), x > 0$; (c) $\gamma_{E \cup F}(x + y) \ge T(\gamma_E(x), \gamma_F(y)), x, y > 0, E, F \in \Sigma$, is said to be a τ_T -submeasure.

• the notion of τ_T -submeasure is closely related to the Menger PM-space $(\Omega, \mathcal{F}, \tau_T)$ where τ_T is the triangle function in the form

$$\tau_T(G,H)(x) = \sup_{u+v=x} T(G(u),H(v)),$$

and T is a left-continuous t-norm

Definition ($\tau_{L,T}$ -submeasure)

In effort to generalize the concept of τ_T -submeasure let us introduce the following notations

- Let us denote by \mathcal{L} the set of binary operations on $\overline{\mathbb{R}}_+$ such that
 - (a) L is commutative and associative;
 - (b) *L* is jointly strictly increasing, i.e., for all $u_1, u_2, v_1, v_2 \in \overline{\mathbb{R}}_+$ with $u_1 < u_2, v_1 < v_2$ holds $L(u_1, v_1) < L(u_2, v_2)$;
 - (c) *L* is continuous on $\overline{\mathbb{R}}_+ \times \overline{\mathbb{R}}_+$;
 - (d) L has 0 as its neutral element.
- Let *T* is a left-continuous t-norm and $L \in \mathcal{L}$. Then for all $x \in \mathbb{R}_+$ and $G, H \in \Delta^+$

$$\tau_{L,T}(G,H)(x) = \sup_{L(u,v)=x} T(G(u),H(v))$$

is a triangle function.

Definition ($\tau_{L,T}$ -submeasure)

Let $(L, T) \in \mathcal{L} \times \mathcal{T}$ and Σ be a ring of subsets of $\Omega \neq \emptyset$. A mapping $\gamma : \Sigma \to \Delta^+$ such that

(a') $\gamma_{\emptyset}(x) = \varepsilon_0(x), x > 0;$

(b') $\gamma_E(x) \ge \gamma_F(x), x > 0$ whenever $E \subset F$;

(c')
$$\gamma_{E\cup F}(L(x,y)) \geq T(\gamma_E(x), \gamma_F(y)), x, y > 0, E, F \in \Sigma,$$

is said to be a $\tau_{L,T}$ -submeasure.

if L is classical addition, we simply speak about τ_T -submeasure

- the order \ll on the set of all $\tau_{L,T}$ -submeasures $\Theta_{\mathcal{L},T}$
- pseudo-metrics and metrics generated by \(\tau_{T,L}\)-submeasures

A few examples of $\tau_{L,T}$ -submeasures

Let $\eta: \Sigma \to \overline{\mathbb{R}}_+$ be a numerical submeasure on a ring Σ of a non-empty set Ω and $E \in \Sigma$. Then

(a) $\gamma \in \Theta_{L,M}$, where $L \in \mathcal{L}$, $L \ge K_1$ and

$$\gamma_{\mathcal{E}}(\boldsymbol{x}) = egin{cases} 0 & ext{for } \boldsymbol{x} \leq \boldsymbol{0}, \ 1/2 & ext{for } \boldsymbol{x} \in]\boldsymbol{0}, \eta(\mathcal{E})]; \ 1 & ext{for } \boldsymbol{x} > \eta(\mathcal{E}), \end{cases}$$

(b) $\gamma \in \Theta_{L,D}$, where $L \in \mathcal{L}$ is arbitrary and

$$\gamma_E(\mathbf{x}) = \frac{\mathbf{x}}{\mathbf{x} + \eta(E)};$$

(c) $\gamma \in \Theta_{L,W}$, where $L \in \mathcal{L}$, $L \ge K_1$ and

$$\gamma_{\boldsymbol{E}}(\boldsymbol{x}) = \max\left\{\min\{1 + \boldsymbol{x} - \eta(\boldsymbol{E}), 1\}, 0\right\}.$$

Poset of all $\tau_{L,T}$ -submeasures

1

We use the usual point-wise order \leq between real-valued functions:

since γ ∈ Δ⁺ is non-decreasing, then for a fixed T ∈ T each τ_{L1,T}-submeasure is a τ_{L2,T}-submeasure whenever L₁ ≤ L₂.
 moreover, if T₂ ≤ T₁ then each τ_{L1,T1}-submeasure is a τ_{L2,T2}-submeasure.

We define the order \ll on $\Theta_{\mathcal{L},\mathcal{T}}$ as follows

$$\Theta_{L_1,T_1} \ll \Theta_{L_2,T_2}$$
 if and only if $L_1 \leq L_2$ and $T_2 \leq T_1$.

Then $(\Theta_{\mathcal{L},\mathcal{T}},\ll)$ is a partially ordered set (poset) and since for any t-norm T we have $M \ge T \ge D$, then for each $(L, T) \in \mathcal{L} \times \mathcal{T}$ holds

$$\Theta_{L,M} \ll \Theta_{L,T} \ll \Theta_{L,D}.$$

Pseudo-metrics and metrics generated by $\tau_{L,T}$ -submeasures

Proposition

Let $L \in \mathcal{L}$ be an operation on $\overline{\mathbb{R}}_+$ such that $L \leq K_1$. If γ is a $\tau_{L,T}$ -submeasure on Σ , then the function

 $\chi(E,F) = \sup\{x > 0; \ \gamma_{E riangle F}(x) < 1\}, \quad E,F \in \Sigma,$

is a pseudo-metric on Σ .

- E△F means a symmetrical difference of sets
- it is related to universal \(\tau_T\)-submeasures
- If the condition

$$\gamma_{\boldsymbol{E}}(\boldsymbol{x}) = \varepsilon_0(\boldsymbol{x}) \Rightarrow \boldsymbol{E} = \emptyset, \quad \boldsymbol{x} > \mathbf{0},$$

is fulfilled, then χ given by (1) is a metric on Σ .

(1)

Pseudo-metrics and metrics generated by $\tau_{T,L}$ -submeasures

Proposition

Let $L \in \mathcal{L}$ be an operation on \mathbb{R}_+ such that $L \leq K_1$. If γ is a τ_{L,T_1} -submeasure on Σ and t is an additive generator of a continuous Archimedean t-norm T such that $T \leq T_1$, then

$$\mu_t(E,F) = \sup\{x > 0; \ t(\gamma_{E \triangle F}(x)) \ge x\}, \quad E,F \in \Sigma,$$
(2)

is a pseudo-metric on Σ .

it is related to τ_T-submeasures where *T* has an additive generator
If the condition

$$\gamma_{\boldsymbol{E}}(\boldsymbol{x}) = \varepsilon_0(\boldsymbol{x}) \Rightarrow \boldsymbol{E} = \emptyset, \quad \boldsymbol{x} > \mathbf{0},$$

is fulfilled, then μ_t given by (2) is a metric on Σ .

■ Consider the group H of automorphisms of the unit interval [0, 1] acting on the class B of all functions from [0, 1]² to [0, 1] as follows

$$(\Psi_h B)(x,y) = h^{-1}(B(h(x),h(y))), \quad h \in \mathcal{H},$$

for all $x, y \in [0, 1]$.

Ψ_H ... a class of all transformations (determined by a function h ∈ H)
 indeed, Ψ_H is a group under the composition with the inverse Ψ_h⁻¹ = Ψ_h⁻¹ and the identity Ψ_{id[0,1]}

Proposition

Let $h \in \mathcal{H}$. Then

- (i) if h is supermultiplicative, then for each $L_1, L_2 \in \mathcal{L}$ such that $L_1 \leq L_2$ holds $\Theta_{L_1,\Pi} \ll \Theta_{L_2,\Psi_h\Pi}$;
- (ii) if the function 1 h(1 x) is subadditive, then for each $L_1, L_2 \in \mathcal{L}$ such that $L_1 \leq L_2$ holds $\Theta_{L_1,W} \ll \Theta_{L_2,\Psi_hW}$.

Definition ($\tau_{L,A}$ -submeasure)

In order to generalize the concept of $\tau_{L,T}$ -submeasure let us introduce some notations

A binary aggregation function A : [0, 1]² → [0, 1] is a non-decreasing function in both components with the boundary conditions A(0,0) = 0 and A(1,1) = 1.

The class of all binary aggregation functions will be denoted by \mathcal{A} .

for $(L, A) \in \mathcal{L} \times \mathcal{A}$ we have a function

$$\tau_{L,A}(G,H)(x) = \sup_{L(u,v)=x} A(G(u),H(v))$$

left-continuity of *A* ensures that $\tau_{L,A}$ is a binary operation on Δ^+ , however, $\tau_{L,A}$ need not be associative in general, but it has good properties on Δ^+

Definition

Let $(L, A) \in \mathcal{L} \times \mathcal{A}$ and Σ be a ring of subsets of $\Omega \neq \emptyset$. A mapping $\gamma : \Sigma \to \Delta^+$ such that (a") $\gamma_{\emptyset}(x) = \varepsilon_0(x), x > 0$; (b") $\gamma_E(x) \ge \gamma_F(x), x > 0$ whenever $E \subset F$; (c") $\gamma_{E \cup F}(L(x, y)) \ge A(\gamma_E(x), \gamma_F(y)), x, y > 0, E, F \in \Sigma$, is said to be a $\tau_{L,A}$ -submeasure.

Example: Let η be a numerical submeasure on Σ and $E \in \Sigma$. Then $\gamma \in \Theta_{C_{\lambda}^{GH}}$, where

$$\gamma_{\mathcal{E}}(\mathbf{x}) = \exp\left(-\left[\max\{\eta(\mathcal{E}) - \mathbf{x}, \mathbf{0}\}\right]^{1/\lambda}
ight)$$

corresponds to the *Gumbel-Hougaard family* of (strict) copulas C_{λ}^{GH} , $\lambda \in [1, +\infty[$.

Definition

Let $(L, A) \in \mathcal{L} \times \mathcal{A}$ and Σ be a ring of subsets of $\Omega \neq \emptyset$. A mapping $\gamma : \Sigma \to \Delta^+$ such that (a") $\gamma_{\emptyset}(x) = \varepsilon_0(x), x > 0$; (b") $\gamma_E(x) \ge \gamma_F(x), x > 0$ whenever $E \subset F$; (c") $\gamma_{E \cup F}(L(x, y)) \ge A(\gamma_E(x), \gamma_F(y)), x, y > 0, E, F \in \Sigma$, is said to be a $\tau_{L,A}$ -submeasure.

Example: Let η be a numerical submeasure on Σ and $E \in \Sigma$. Then $\gamma \in \Theta_{M_{\rho}}$, where

$$\gamma_{E}(x) = 2^{-1/p} \left(1 + \left(\max\left\{ \min\left\{ \sqrt[p]{\max\{1 + x - \eta(E), 0\}}, 1\right\}, 0\right\} \right)^{p} \right)^{1/p} \right)^{1/p}$$

corresponds to the Hölder mean $\mathbf{M}_{\rho}(x, y) := \left(\frac{x^{\rho} + y^{\rho}}{2}\right)^{1/\rho}$, $\rho > 0$.

Lattice structure of submeasure spaces in Θ_S

If we denote set of all copulas, semi-copulas, quasi-copulas $\mathcal{C},\mathcal{Q},\mathcal{S},$ then

$$\mathcal{C} \subset \mathcal{Q} \subset \mathcal{S}.$$

Semi-copula is an aggregation function $S : [0, 1]^2 \rightarrow [0, 1]$ with 1 as its neutral element.

- every semi-copula may be represented as the point-wise supremum (∨) and infimum (∧) of a suitable subset of t-norms
- Observe that if γ is a τ_{S1}- and τ_{S2}-submeasure for some S₁, S₂ ∈ S, then γ is a τ_{S1∨S2}- as well as τ_{S1∧S2}-submeasure.

Lattice structure of submeasure spaces in Θ_S

for $S_1, S_2 \in \mathcal{S}$ put

 $\Theta_{S_1} \sqcup \Theta_{S_2} = \Theta_{S_1 \land S_2} \quad \text{and} \quad \Theta_{S_1} \sqcap \Theta_{S_2} = \Theta_{S_1 \lor S_2}$

It is easy to see that \Box and \Box are *lattice operations*.

since (S, ≤, ∨, ∧) is a complete lattice, then we have the following observation:

Proposition

The family Θ_S of all probabilistic submeasure spaces is a distributive lattice.

Since for each $S \in S$ holds $\Theta_M \ll \Theta_S \ll \Theta_D$, thus Θ_S is a *bounded distributive lattice*.

- O. Hutník and R. Mesiar: On a certain class of submeasures based on triangular norms. *Internat. J. Uncertain. Fuzziness Knowledge-Based Systems* **17**(3) (2009), 297–316.
- Halčinová, L., Hutník, O., Mesiar, R.: On some classes of distance distribution functions-valued submeasures. Nonlinear Anal. 74(5) (2011) 1545–1554.
- Halčinová, L., Hutník, O., Mesiar, R.: On distance distribution functions-valued submeasures related to aggregation functions. Fuzzy Sets Systems (in print).