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Problem formulation

In our work we observe a multi-objective linear programming
problem, which can be represented as follows:
MAX Z , where Z = (z1, ..., zk ) is a vector of objectives,

zi =
n∑

j=1
cijxj where i = 1, .., k ,

subject to
n∑

j=1
aijxj ≤ bi , i = 1, ...,m.

That is we should find a vector xo = (xo
1 , ..., x

o
n ) which

maximizes k objective functions with n variables, and m
constraints.
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j=1
cijxj where i = 1,2

subject to
n∑

j=1
aijxj ≤ bi ,

i = 1, ...,m.



Fuzzy approach

Membership functions:

µi(x) =


0, zi(x) < zmin

i ,

zi(x)− zmin
i

zmax
i − zmin

i
, zmin

i ≤ zi(x) ≤ zmax
i ,

1, zi(x) > zmax
i .

max
x

min
i

µi(x)
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Fuzzy order approach

1. We define fuzzy order relations Pi which generalize the
following crisp order relations
x �i y ⇔ zi(x) ≤ zi(y), i = 1, .., k . Thus each fuzzy order
relation describes corresponding objective function zi .

2. We aggregate fuzzy orders using an aggregation function
A which preserves the properties of initial fuzzy orders.

P(x , y) = A(P1(x , y), ...,Pk (x , y)).

Thus the aggregated fuzzy order relation P provides the
information about all objective functions.

3. We maximize aggregated fuzzy order relation.
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Definition of a fuzzy equivalence relation

Definition

A fuzzy binary relation E : X × X → [0,1] on a set X is called
fuzzy equivalence relation with respect to a t-norm T , for brevity
T -equivalence, if and only if the following three axioms are
fulfilled for all x , y , z ∈ X :

1. E(x , x) = 1 reflexivity;
2. E(x , y) = E(y , x) symmetry;
3. T (E(x , y),E(y , z)) ≤ E(x , z) T -transitivity.
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Fuzzy equivalence relation

Theorem

Let T be a continuous Archimedean t-norm with an additive
generator t. For any pseudo-metric d, the mapping

Ed(x , y) = t(−1)(min(d(x , y), t(0)))

is a T -equivalence.

Example

Let us consider the set of real numbers X = R and metric
d(x , y) = |x − y | on it. Taking into account that tL(x) = 1− x is
an additive generator of TL (Łukasiewicz t-norm) and that
tP(x) = −ln(x) is an additive generator of TP (product t-norm),
we obtain two fuzzy equivalence relations:

EL(x , y) = max(1− |x − y |,0);
EP(x , y) = e−|x−y |.



Definition of a fuzzy order relation

Definition

Let X be a set. By a fuzzy order relation with respect to a
t-norm T and T -equivalence E we call a fuzzy relation
P : X × X → [0,1] such that

1. P(x , x) = 1 ∀x ∈ X reflexivity;
2. T (P(x , y),P(y , z)) ≤ P(x , z) ∀x , y , z ∈ X T -transitivity;
3. T (P(x , y),P(y , x)) ≤ E(x , y) ∀x , y ∈ X T -E-antisymmetry.

A pair (X ,P) is called a fuzzy ordered set.
A fuzzy ordering P is called strongly linear if and only if

∀x , y ∈ X : max(P(x , y),P(y , x)) = 1.
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Construction of fuzzy orderings (U.Bodenhofer)

Let X be a set.
Linear ordering ≤ + T -equivalence E (compatible with ≤) =

P(x , y) =

{
1, if x ≤ y
E(x , y), otherwise

-

a strongly linear T -E-ordering on X .
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1. di(x , y) =
|zi (x)−zi (y)|
zmax

i −zmin
i

are pseudo-metrics

2. Ei(x , y) = t(−1)(min( |zi (x)−zi (y)|
zmax

i −zmin
i

, t(0))) are fuzzy
T -equivalence relations

3. we build fuzzy order relations (T -E-orders) by the following
way:

Pi(x , y) =

{
1, if zi(x) ≤ zi(y)
Ei(x , y), otherwise.
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Example

1. di(x , y) =
|zi (x)−zi (y)|
zmax

i −zmin
i

are pseudo-metrics

2. Ei(x , y) = 1− |zi (x)−zi (y)|
zmax

i −zmin
i

are fuzzy TL-equivalence
relations

3. fuzzy order relations (TL-Ei -orders):

Pi(x , y) =

{
1, if zi(x) ≤ zi(y)
1− |zi (x)−zi (y)|

zmax
i −zmin

i
, otherwise.



Example

1. di(x , y) =
|zi (x)−zi (y)|
zmax

i −zmin
i

are pseudo-metrics

2. Ei(x , y) = e
− |zi (x)−zi (y)|

zmax
i −zmin

i are fuzzy TP-equivalence relations
3. fuzzy order relations (TP-Ei -orders):

Pi(x , y) =

1, if zi(x) ≤ zi(y)

e
− |zi (x)−zi (y)|

zmax
i −zmin

i , otherwise.



Aggregation of fuzzy relations

We aggregate fuzzy orders Pi i ∈ {1, ..., k} using an
aggregation function A which preserves the properties of initial
fuzzy orders:

P(x , y) = A(P1(x , y), ...,Pk (x , y))

Definition

Consider an n-argument aggregation function
An : [0,1]n → [0,1] and an m-argument aggregation function
Bm : [0,1]m → [0,1]. We say that An dominates Bm if for all
xi,j ∈ [0,1] with i ∈ {1, ...,m} and j ∈ {1, ...,n} the following
property holds:

Bm(An(x1,1, ..., x1,n), ...,An(xm,1, ..., xm,n)) ≤

≤ An(Bm(x1,1, ..., xm,1), ...,Bm(x1,n, ..., xm,n)).



Theorem

Let |X | > 3 and let T be a t-norm. An aggregation function A
preserves T -transitivity of fuzzy relations on X if and only if A
belongs to the class of aggregation functions which dominate
T .

Example

For any k > 2 and any p = (p1, ...,pk ) with
k∑

i=1
pi ≥ 1 and

pi ∈ [0,∞] k -ary aggregation function

Ap(x1, ..., xk ) =
k∏

i=1

xpi
i

dominates the product t-norm TP .



Theorem

Let |X | > 3 and let T be a t-norm. An aggregation function A
preserves T -transitivity of fuzzy relations on X if and only if A
belongs to the class of aggregation functions which dominate
T .

Example

For any k > 2 and any p = (p1, ...,pk ) with
k∑

i=1
pi ≥ 1 and

pi ∈ [0,∞] k -ary aggregation function

Ap(x1, ..., xk ) = max(
k∑

i=1

xi · pi + 1−
k∑

i=1

pi ,0)

dominates the Łukasiewicz t-norm TL.



Theorem

Let |X | > 3 and let T be a t-norm. If Ei for all i ∈ {1, ...,n} are
fuzzy equivalence relations (T -equivalences) then

E(x , y) = A(E1(x , y), ...,En(x , y))

is also a T -equivalence relation if A belongs to the class of
aggregation functions which dominate T .

Theorem

Let |X | > 3 and let T be a t-norm. If Ei for all i ∈ {1, ...,n} are
fuzzy equivalence relations (T -equivalences); Pi for all
i ∈ {1, ...,n} are fuzzy order relations (T -Ei -orders) then
P(x , y) = A(P1(x , y), ...,Pn(x , y)) is
T -E-order relation if A belongs to the class of aggregation
functions which dominate T and
E(x , y) = A(E1(x , y), ...,En(x , y)).



Further the multi-objective linear programming problem comes
to the following problem:

max
y

min
x

P(x , y) (P)

Definition

x∗ is called Pareto optimal solution if and only if there does not
exist another x ∈ D such that zi(x) ≤ zi(x∗) for all i and
zj(x) 6= zj(x∗) for at least one j .

Theorem

An optimal solution x∗ to the problem (P) is a Pareto optimal
solution if it is unique optimal solution.

Theorem

An optimal solution x∗ to the problem (P) is a Pareto optimal
solution if for all x and y zi(x) > zi(y)⇒ Pi(x , y) < 1, A is a
strictly monotone function and set D is linearly connected.
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Numerical example

Let us observe the following linear programming problem:
max z1 = x1,
max z2 = x2,
s.t. x1 + x2 ≤ 1,
x1, x2 ≥ 0.
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Numerical example(Łukasiewicz t-norm)

We solve the following problem: max
y∈D

min
x∈D

P(x , y).

f (y) = min
x∈B

P(x , y) :

Figure:

P(x , y) = P1(x ,y)+P2(x ,y)
2

Figure:

P(x , y) = 2P1(x ,y)+P2(x ,y)
3



Numerical example(Product t-norm)

We solve the following problem: max
y∈D

min
x∈D

P(x , y).

f (y) = min
x∈B

P(x , y) :

Figure:

P(x , y) = P1(x , y)
1
2 ·P2(x , y)

1
2

Figure:

P(x , y) = P1(x , y)
2
3 ·P2(x , y)

1
3
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