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Problem formulation

In our work we observe a multi-objective linear programming
problem, which can be represented as follows:
MAX Z,where Z = (z1, ..., zx) is a vector of objectives,

n

zi= ) cjxjwhere i =1, . K,
j=1
. n .
subjectto > ajx; < bj, i=1,....,m.
j=1
That is we should find a vector x° = (x?, ..., x3) which
maximizes k objective functions with n variables, and m

constraints.
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Membership functions:

0, zj(x) < zmn,
ni(x) = z’max — z”"i”’ z" < zj(x) <z,
i i
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zi(x) > z".
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Thus the aggregated fuzzy order relation P provides the
information about all objective functions.

3. We maximize aggregated fuzzy order relation.



Definition of a fuzzy equivalence relation

Definition

A fuzzy binary relation E : X x X — [0, 1] on a set X is called
fuzzy equivalence relation with respect to a t-norm T, for brevity
T-equivalence, if and only if the following three axioms are
fulfilled for all x, y,z € X :



Definition of a fuzzy equivalence relation

Definition
A fuzzy binary relation E : X x X — [0, 1] on a set X is called
fuzzy equivalence relation with respect to a t-norm T, for brevity
T-equivalence, if and only if the following three axioms are
fulfilled for all x, y,z € X :

1. E(x, x) = 1 reflexivity;



Definition of a fuzzy equivalence relation

Definition
A fuzzy binary relation E : X x X — [0, 1] on a set X is called
fuzzy equivalence relation with respect to a t-norm T, for brevity
T-equivalence, if and only if the following three axioms are
fulfilled for all x, y,z € X :

1. E(x, x) = 1 reflexivity;

2. E(x,y) = E(y,x) symmetry;



Definition of a fuzzy equivalence relation

Definition
A fuzzy binary relation E : X x X — [0, 1] on a set X is called
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Fuzzy equivalence relation

Theorem

Let T be a continuous Archimedean t-norm with an additive
generator t. For any pseudo-metric d, the mapping

Ea(x,y) = t ) (min(d(x, y), ¥(0)))

is a T-equivalence.

Let us consider the set of real numbers X = R and metric
d(x,y) = |x — y| on it. Taking into account that f;(x) =1 — x is
an additive generator of T, (Lukasiewicz t-norm) and that
tp(x) = —In(x) is an additive generator of Tp (product t-norm),
we obtain two fuzzy equivalence relations:
E (x,y) = max(1 — [x — y|,0);
Ep(x,y) = e" V.
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Definition of a fuzzy order relation

Definition
Let X be a set. By a fuzzy order relation with respect to a

t-norm T and T-equivalence E we call a fuzzy relation
P: X x X —[0,1] such that

1. P(x,x) =1 Vx € X reflexivity;

2. T(P(x,y),P(y,2)) < P(x,2) Vx,y,z € X T-transitivity;

3. T(P(x,y),P(y,x)) < E(x,y) Vx,y € X T-E-antisymmetry.
A pair (X, P) is called a fuzzy ordered set.
A fuzzy ordering P is called strongly linear if and only if

Vx,y € X : max(P(x,y), P(y,x)) = 1.
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Construction of fuzzy orderings (U.Bodenhofer)

Let X be a set.
Linear ordering < + T-equivalence E (compatible with <) =

1, ifx <y
E(x,y), otherwise

P(va):{

a strongly linear T-E-ordering on X.



Construction of fuzzy orderings

E(x, xo)
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. di(x, y) = 2=2Wl are pseudo-metrics

zirnax _ z.””"

. Ei(x,y) =t )(mm(%, t(0))) are fuzzy
T-equivalence relations

. we build fuzzy order relations (T-E-orders) by the following
way:

1, if zi(x) < z(y)

Ei(x,y), otherwise.

Pi(Xay)_{



Example

1. di(x,y) = [200=20l 5re phseudo-metrics

z/max 721[77117

2. Ei(x,y)=1- % are fuzzy T;-equivalence
relations ’ ’
3. fuzzy order relations (T;-E;-orders):

1, if z(x) < zi(y)
PXY) =1 1200200 otherwise,

ijax _zimm )



Example

1. di(x,y) = 289-20)| are pseudo-metrics
i i
_1Z2(0=z )l
zMmax _ zmin . .
2. Ei(x,y)=¢e “i i are fuzzy Tp-equivalence relations

3. fuzzy order relations ( Tp-Ej-orders):

1, if zi(x) < zi(y)
Pi(x,y) =< _la-zW)l

Zmax—zim’n

e , otherwise.




Aggregation of fuzzy relations

We aggregate fuzzy orders P; i € {1,...,k} using an
aggregation function A which preserves the properties of initial
fuzzy orders:

P(va) :A(P1(x,y),...,Pk(x,y))

Definition
Consider an n-argument aggregation function
A":10,1]" — [0, 1] and an m-argument aggregation function
B™:[0,1]™ — [0, 1]. We say that A” dominates B" if for all
xij € [0,1] with i € {1,...,m} and j € {1, ..., n} the following
property holds:

Bm(An(X171 s ey X17n), ety An(Xm71 5 e Xm,n)) <

< An(Bm(X171 y - Xm ), caog Bm(X17n, 500 Xm,n))~



Theorem

Let |X| > 3 and let T be a t-norm. An aggregation function A
preserves T -transitivity of fuzzy relations on X if and only if A
belongs to the class of aggregation functions which dominate
T.

k
For any k > 2 and any p = (py, ..., k) With >~ p; > 1 and
i=1
pi € [0, 00| k-ary aggregation function

K
Ap(X1, ooy X)) = H ped
i—1

dominates the product t-norm Tp.



Theorem

Let|X| > 3 and let T be a t-norm. An aggregation function A
preserves T -transitivity of fuzzy relations on X if and only if A

belongs to the class of aggregation functions which dominate
T.

k

Forany k > 2 and any p = (py, ..., px) with >~ p; > 1 and
i=1

pi € [0, 00| k-ary aggregation function

K K
Ap(Xt, .., X)) = max(d_x;-pi+ 1> p;,0)
i i

dominates the tukasiewicz t-norm T;.



Theorem

Let|X| >3 andlet T be a t-norm. IfE; foralli € {1,...,n} are
fuzzy equivalence relations (T -equivalences) then

E(va) = A(E1(X7y)a'~7En(X7y))

is also a T-equivalence relation if A belongs to the class of
aggregation functions which dominate T.

Theorem

Let|X| >3 andlet T be a t-norm. If E; foralli € {1,...,n} are
fuzzy equivalence relations (T -equivalences); P; for all

i € {1,...,n} are fuzzy order relations (T -E;-orders) then
P(x,y) = A(Pi(x,y), ..., Pn(x,y)) is

T-E-order relation if A belongs to the class of aggregation
functions which dominate T and

E(X’y) = A(E1 (va)v ) En(Xay))'
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Further the multi-objective linear programming problem comes
to the following problem:

max min P(x, y) (P)
y X

Definition
x* is called Pareto optimal solution if and only if there does not

exist another x € D such that z;(x) < z;j(x*) for all i and
Zj(x) # zj(x*) for at least one j.

Theorem

An optimal solution x* to the problem (P) is a Pareto optimal
solution if it is unique optimal solution.

Theorem

An optimal solution x* to the problem (P) is a Pareto optimal
solution if for all x and y zj(x) > zj(y) = Pi(x,y) <1,Alis a
strictly monotone function and set D is linearly connected.
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Numerical example(tukasiewicz t-norm)

We solve the following problem: max min P(x, y).
yeD xeD

fy) = min P(x.y):
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Figure: Figure:

P(x,y) = Pi(x, Y)+P2(X 2) P(x,y) = 2Py (x, }’)+P2(X ¥)



Numerical example(Product t-norm)

We solve the following problem: max min P(x, y).
yeD xeD

fy) = min P(x.y):
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P(x,y) = Py(x,y)2-Pa(x,y)2 P(x,y) = Py(X,y)3-Pa(x,y)



Thank you for attention!
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