Fuzzy Orders for Solving MOLP Problems

Olga Grigorenko

University of Latvia

January 30 - February 03, 2012
FSTA2012

Problem formulation

In our work we observe a multi-objective linear programming problem, which can be represented as follows:
$\operatorname{MAX} Z$, where $Z=\left(z_{1}, \ldots, z_{k}\right)$ is a vector of objectives,
$z_{i}=\sum_{j=1}^{n} c_{i j} x_{j}$ where $i=1, . ., k$,
subject to $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, i=1, \ldots, m$.
That is we should find a vector $x^{0}=\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$ which maximizes k objective functions with n variables, and m constraints.

$$
\begin{aligned}
& M A X X_{z} \\
& z=\sum_{j=1}^{n} c_{j} x_{j} \\
& \text { subject to } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \\
& i=1, \ldots, m
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{MAX}\left(z_{1}, z_{2}\right) \\
& z_{i}=\sum_{j=1}^{n} c_{i j} x_{j} \text { where } i=1,2 \\
& \text { subject to } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \\
& i=1, \ldots, m .
\end{aligned}
$$

Fuzzy approach

Membership functions:

$$
\mu_{i}(x)= \begin{cases}0, & z_{i}(x)<z_{i}^{\min } \\ \frac{z_{i}(x)-z_{i}^{\min }}{z_{i}^{\max }-z_{i}^{\min }}, & z_{i}^{\min } \leq z_{i}(x) \leq z_{i}^{\max } \\ 1, & z_{i}(x)>z_{i}^{\max }\end{cases}
$$

$\max _{x} \min _{i} \mu_{i}(x)$

$$
\begin{aligned}
& \operatorname{MAX} z \\
& z=\sum_{j=1}^{n} c_{j} x_{j} \\
& \text { subject to } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \\
& i=1, \ldots, m . \\
& x \doteq y \Leftrightarrow z(x)=z(y) \\
& x \preceq y \Leftrightarrow z(x) \leq z(y) \\
& \max (D, \preceq)
\end{aligned}
$$

$$
\begin{aligned}
& M A X_{n} z \\
& z=\sum_{j=1}^{n} c_{j} x_{j} \\
& \text { subject to } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \\
& i=1, \ldots, m
\end{aligned}
$$

$$
\begin{aligned}
& \quad M A X_{\text {}} z \\
& z=\sum_{j=1}^{n} c_{j} x_{j} \\
& \text { subject to } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \\
& i=1, \ldots, m
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{MAX}_{n} \\
& z=\sum_{j=1}^{n} c_{j} x_{j} \\
& \text { subject to } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \\
& i=1, \ldots, m
\end{aligned}
$$

$$
\begin{aligned}
& M A X^{n} z \\
& z=\sum_{j=1}^{n} c_{j} x_{j} \\
& \text { subject to } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \\
& i=1, \ldots, m . \\
& x \doteq y \Leftrightarrow z(x)=z(y) \\
& x \preceq y \Leftrightarrow z(x) \leq z(y)
\end{aligned}
$$

$$
\begin{aligned}
& M A X^{n} z \\
& z=\sum_{j=1}^{n} c_{j} x_{j} \\
& \text { subject to } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \\
& i=1, \ldots, m . \\
& x \doteq y \Leftrightarrow z(x)=z(y) \\
& x \preceq y \Leftrightarrow z(x) \leq z(y) \\
& \max (D, \preceq)
\end{aligned}
$$

Fuzzy order approach

1. We define fuzzy order relations P_{i} which generalize the following crisp order relations
$x \preceq_{i} y \Leftrightarrow z_{i}(x) \leq z_{i}(y), i=1, \ldots, k$. Thus each fuzzy order relation describes corresponding objective function z_{i}.
2. We aggregate fuzzy orders using an aggregation functior A which preserves the properties of initial fuzzy orders.

$$
P(x, y)=A\left(P_{1}(x, y), \ldots, P_{k}(x, y)\right)
$$

Thus the aggregated fuzzy order relation P provides the information about all objective functions.
3. We maximize aggregated fuzzy order relation

Fuzzy order approach

1. We define fuzzy order relations P_{i} which generalize the following crisp order relations
$x \preceq_{i} y \Leftrightarrow z_{i}(x) \leq z_{i}(y), i=1, . ., k$. Thus each fuzzy order relation describes corresponding objective function z_{i}.

Thus the aggregated fuzzy order relation P provides the 3. We maximize aggregated fuzzy order relation.

Fuzzy order approach

1. We define fuzzy order relations P_{i} which generalize the following crisp order relations
$x \preceq_{i} y \Leftrightarrow z_{i}(x) \leq z_{i}(y), i=1, . ., k$. Thus each fuzzy order relation describes corresponding objective function z_{i}.
2. We aggregate fuzzy orders using an aggregation function A which preserves the properties of initial fuzzy orders.

$$
P(x, y)=A\left(P_{1}(x, y), \ldots, P_{k}(x, y)\right)
$$

Thus the aggregated fuzzy order relation P provides the information about all objective functions.

Fuzzy order approach

1. We define fuzzy order relations P_{i} which generalize the following crisp order relations
$x \preceq_{i} y \Leftrightarrow z_{i}(x) \leq z_{i}(y), i=1, . ., k$. Thus each fuzzy order relation describes corresponding objective function z_{i}.
2. We aggregate fuzzy orders using an aggregation function A which preserves the properties of initial fuzzy orders.

$$
P(x, y)=A\left(P_{1}(x, y), \ldots, P_{k}(x, y)\right)
$$

Thus the aggregated fuzzy order relation P provides the information about all objective functions.
3. We maximize aggregated fuzzy order relation.

Definition of a fuzzy equivalence relation

Definition

A fuzzy binary relation $E: X \times X \rightarrow[0,1]$ on a set X is called fuzzy equivalence relation with respect to a t-norm T, for brevity T-equivalence, if and only if the following three axioms are fulfilled for all $x, y, z \in X$:

Definition of a fuzzy equivalence relation

Definition

A fuzzy binary relation $E: X \times X \rightarrow[0,1]$ on a set X is called fuzzy equivalence relation with respect to a t-norm T, for brevity T-equivalence, if and only if the following three axioms are fulfilled for all $x, y, z \in X$:

1. $E(x, x)=1$ reflexivity;

Definition of a fuzzy equivalence relation

Definition

A fuzzy binary relation $E: X \times X \rightarrow[0,1]$ on a set X is called fuzzy equivalence relation with respect to a t-norm T, for brevity T-equivalence, if and only if the following three axioms are fulfilled for all $x, y, z \in X$:

1. $E(x, x)=1$ reflexivity;
2. $E(x, y)=E(y, x)$ symmetry;

Definition of a fuzzy equivalence relation

Definition

A fuzzy binary relation $E: X \times X \rightarrow[0,1]$ on a set X is called fuzzy equivalence relation with respect to a t-norm T, for brevity T-equivalence, if and only if the following three axioms are fulfilled for all $x, y, z \in X$:

1. $E(x, x)=1$ reflexivity;
2. $E(x, y)=E(y, x)$ symmetry;
3. $T(E(x, y), E(y, z)) \leq E(x, z) T$-transitivity.

Fuzzy equivalence relation

Theorem

Let T be a continuous Archimedean t-norm with an additive generator t. For any pseudo-metric d, the mapping

$$
E_{d}(x, y)=t^{(-1)}(\min (d(x, y), t(0)))
$$

is a T-equivalence.

Example

Let us consider the set of real numbers $X=\mathbb{R}$ and metric $d(x, y)=|x-y|$ on it. Taking into account that $t_{L}(x)=1-x$ is an additive generator of T_{L} (Łukasiewicz t-norm) and that $t_{P}(x)=-\ln (x)$ is an additive generator of T_{P} (product t-norm), we obtain two fuzzy equivalence relations:

$$
\begin{gathered}
E_{L}(x, y)=\max (1-|x-y|, 0) ; \\
E_{P}(x, y)=e^{-|x-y|} .
\end{gathered}
$$

Definition of a fuzzy order relation

Definition

Let X be a set. By a fuzzy order relation with respect to a t-norm T and T-equivalence E we call a fuzzy relation $P: X \times X \rightarrow[0,1]$ such that

Definition of a fuzzy order relation

Definition

Let X be a set. By a fuzzy order relation with respect to a t-norm T and T-equivalence E we call a fuzzy relation $P: X \times X \rightarrow[0,1]$ such that

1. $P(x, x)=1 \forall x \in X$ reflexivity;

Definition of a fuzzy order relation

Definition

Let X be a set. By a fuzzy order relation with respect to a t-norm T and T-equivalence E we call a fuzzy relation $P: X \times X \rightarrow[0,1]$ such that

1. $P(x, x)=1 \forall x \in X$ reflexivity;
2. $T(P(x, y), P(y, z)) \leq P(x, z) \forall x, y, z \in X T$-transitivity;

Definition of a fuzzy order relation

Definition

Let X be a set. By a fuzzy order relation with respect to a t-norm T and T-equivalence E we call a fuzzy relation $P: X \times X \rightarrow[0,1]$ such that

1. $P(x, x)=1 \forall x \in X$ reflexivity;
2. $T(P(x, y), P(y, z)) \leq P(x, z) \forall x, y, z \in X T$-transitivity;
3. $T(P(x, y), P(y, x)) \leq E(x, y) \forall x, y \in X T$ - E-antisymmetry.

Definition of a fuzzy order relation

Definition

Let X be a set. By a fuzzy order relation with respect to a t-norm T and T-equivalence E we call a fuzzy relation $P: X \times X \rightarrow[0,1]$ such that

1. $P(x, x)=1 \forall x \in X$ reflexivity;
2. $T(P(x, y), P(y, z)) \leq P(x, z) \forall x, y, z \in X T$-transitivity;
3. $T(P(x, y), P(y, x)) \leq E(x, y) \forall x, y \in X T$ - E-antisymmetry.

A pair (X, P) is called a fuzzy ordered set.

Definition of a fuzzy order relation

Definition

Let X be a set. By a fuzzy order relation with respect to a t-norm T and T-equivalence E we call a fuzzy relation
$P: X \times X \rightarrow[0,1]$ such that

1. $P(x, x)=1 \forall x \in X$ reflexivity;
2. $T(P(x, y), P(y, z)) \leq P(x, z) \forall x, y, z \in X T$-transitivity;
3. $T(P(x, y), P(y, x)) \leq E(x, y) \forall x, y \in X T$ - E-antisymmetry.

A pair (X, P) is called a fuzzy ordered set.
A fuzzy ordering P is called strongly linear if and only if

$$
\forall x, y \in X: \quad \max (P(x, y), P(y, x))=1
$$

Construction of fuzzy orderings (U.Bodenhofer)

Let X be a set.

Construction of fuzzy orderings (U.Bodenhofer)

Let X be a set.
Linear ordering \leq

Construction of fuzzy orderings (U.Bodenhofer)

Let X be a set.
Linear ordering $\leq+$

Construction of fuzzy orderings (U.Bodenhofer)

Let X be a set.
Linear ordering $\leq+T$-equivalence $E($ compatible with $\leq)$

Construction of fuzzy orderings (U.Bodenhofer)

Let X be a set.
Linear ordering $\leq+T$-equivalence $E($ compatible with $\leq)=$

Construction of fuzzy orderings (U.Bodenhofer)

Linear ordering $\leq+T$-equivalence E (compatible with $\leq)=$

$$
P(x, y)= \begin{cases}1, & \text { if } x \leq y \\ E(x, y), & \text { otherwise }\end{cases}
$$

a strongly linear T - E-ordering on X.

Construction of fuzzy orderings

Construction of fuzzy orderings

Construction of fuzzy orderings

1. $d_{i}(x, y)=\frac{\left|z_{i}(x)-z_{i}(y)\right|}{z_{i}^{\text {max }}-z_{i}^{\text {min }}}$ are pseudo-metrics
2. $E_{i}(x, y)=t^{(-1)}\left(\min \left(\frac{\left|z_{i}(x)-z_{i}(y)\right|}{z^{\text {max }}-z^{\text {min }}}, t(0)\right)\right)$ are fuzzy T-equivalence relations
3. we build fuzzy order relations (T-E-orders) by the following way:
4. $d_{i}(x, y)=\frac{\left|z_{i}(x)-z_{i}(y)\right|}{z_{i}^{\text {max }}-z_{i}^{\text {min }}}$ are pseudo-metrics
5. $E_{i}(x, y)=t^{(-1)}\left(\min \left(\frac{\left|z_{i}(x)-z_{i}(y)\right|}{z_{i}^{\text {max }}-z_{i}^{\text {min }}}, t(0)\right)\right)$ are fuzzy T-equivalence relations
6. $d_{i}(x, y)=\frac{\left|z_{i}(x)-z_{i}(y)\right|}{z_{i}^{\text {max }}-z_{i}^{\text {min }}}$ are pseudo-metrics
7. $E_{i}(x, y)=t^{(-1)}\left(\min \left(\frac{\left|z_{i}(x)-z_{i}(y)\right|}{z_{i}^{\text {max }}-z_{i}^{\text {min }}}, t(0)\right)\right)$ are fuzzy T-equivalence relations
8. we build fuzzy order relations (T-E-orders) by the following way:

$$
P_{i}(x, y)= \begin{cases}1, & \text { if } z_{i}(x) \leq z_{i}(y) \\ E_{i}(x, y), & \text { otherwise }\end{cases}
$$

Example

1. $d_{i}(x, y)=\frac{\left|z_{i}(x)-z_{i}(y)\right|}{z_{i}^{\text {max }}-z_{i}^{\text {min }}}$ are pseudo-metrics
2. $E_{i}(x, y)=1-\frac{\left|z_{i}(x)-z_{i}(y)\right|}{z_{i}^{\text {max }}-z_{i}^{\text {min }}}$ are fuzzy T_{L}-equivalence relations
3. fuzzy order relations ($T_{L}-E_{i}$-orders):

$$
P_{i}(x, y)= \begin{cases}1, & \text { if } z_{i}(x) \leq z_{i}(y) \\ 1-\frac{\left|z_{i}(x)-z_{i}(y)\right|}{z_{i}^{\text {max }}-z_{i}^{\text {min }}}, & \text { otherwise }\end{cases}
$$

Example

1. $d_{i}(x, y)=\frac{\left|z_{i}(x)-z_{i}(y)\right|}{z_{i}^{\text {max }}-z_{i}^{\text {min }}}$ are pseudo-metrics
2. $E_{i}(x, y)=e^{-\frac{\left|z_{i}(x)-z_{i}(y)\right|}{z_{i}^{\text {max }}-z_{i}^{m i n}}}$ are fuzzy $T_{P \text {-equivalence relations }}$
3. fuzzy order relations (T_{P} - E_{i}-orders):

$$
P_{i}(x, y)= \begin{cases}1, & \text { if } z_{i}(x) \leq z_{i}(y) \\ e^{-\frac{\left|z_{i}(x)-z_{i}(y)\right|}{z_{i}^{\max -z_{i}^{m i n}}},} & \text { otherwise }\end{cases}
$$

Aggregation of fuzzy relations

We aggregate fuzzy orders $P_{i} i \in\{1, \ldots, k\}$ using an aggregation function A which preserves the properties of initial fuzzy orders:

$$
P(x, y)=A\left(P_{1}(x, y), \ldots, P_{k}(x, y)\right)
$$

Definition

Consider an n-argument aggregation function $A^{n}:[0,1]^{n} \rightarrow[0,1]$ and an m-argument aggregation function $B^{m}:[0,1]^{m} \rightarrow[0,1]$. We say that A^{n} dominates B^{m} if for all $x_{i, j} \in[0,1]$ with $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$ the following property holds:

$$
\begin{aligned}
& B^{m}\left(A^{n}\left(x_{1,1}, \ldots, x_{1, n}\right), \ldots, A^{n}\left(x_{m, 1}, \ldots, x_{m, n}\right)\right) \leq \\
& \leq A^{n}\left(B^{m}\left(x_{1,1}, \ldots, x_{m, 1}\right), \ldots, B^{m}\left(x_{1, n}, \ldots, x_{m, n}\right)\right)
\end{aligned}
$$

Theorem

Let $|X|>3$ and let T be a t-norm. An aggregation function A preserves T-transitivity of fuzzy relations on X if and only if A belongs to the class of aggregation functions which dominate T.

Example

For any $k>2$ and any $p=\left(p_{1}, \ldots, p_{k}\right)$ with $\sum_{i=1}^{k} p_{i} \geq 1$ and
$p_{i} \in[0, \infty] k$-ary aggregation function

$$
A_{p}\left(x_{1}, \ldots, x_{k}\right)=\prod_{i=1}^{k} x_{i}^{p_{i}}
$$

dominates the product t-norm T_{P}.

Theorem

Let $|X|>3$ and let T be a t-norm. An aggregation function A preserves T-transitivity of fuzzy relations on X if and only if A belongs to the class of aggregation functions which dominate T.

Example

For any $k>2$ and any $p=\left(p_{1}, \ldots, p_{k}\right)$ with $\sum_{i=1}^{k} p_{i} \geq 1$ and
$p_{i} \in[0, \infty] k$-ary aggregation function

$$
A_{p}\left(x_{1}, \ldots, x_{k}\right)=\max \left(\sum_{i=1}^{k} x_{i} \cdot p_{i}+1-\sum_{i=1}^{k} p_{i}, 0\right)
$$

dominates the Łukasiewicz t-norm T_{L}.

Theorem

Let $|X|>3$ and let T be a t-norm. If E_{i} for all $i \in\{1, \ldots, n\}$ are fuzzy equivalence relations (T-equivalences) then

$$
E(x, y)=A\left(E_{1}(x, y), \ldots, E_{n}(x, y)\right)
$$

is also a T-equivalence relation if A belongs to the class of aggregation functions which dominate T.

Theorem

Let $|X|>3$ and let T be a t-norm. If E_{i} for all $i \in\{1, \ldots, n\}$ are fuzzy equivalence relations (T-equivalences); P_{i} for all $i \in\{1, \ldots, n\}$ are fuzzy order relations (T - E_{i}-orders) then
$P(x, y)=A\left(P_{1}(x, y), \ldots, P_{n}(x, y)\right)$ is
T - E-order relation if A belongs to the class of aggregation functions which dominate T and

$$
E(x, y)=A\left(E_{1}(x, y), \ldots, E_{n}(x, y)\right) .
$$

Further the multi-objective linear programming problem comes to the following problem:

$$
\max _{y} \min _{x} P(x, y)
$$

Further the multi-objective linear programming problem comes to the following problem:

$$
\max _{y} \min _{x} P(x, y)
$$

Definition

x^{*} is called Pareto optimal solution if and only if there does not exist another $x \in D$ such that $z_{i}(x) \leq z_{i}\left(x^{*}\right)$ for all i and $z_{j}(x) \neq z_{j}\left(x^{*}\right)$ for at least one j.

Further the multi-objective linear programming problem comes to the following problem:

$$
\max _{y} \min _{x} P(x, y)
$$

Definition

x^{*} is called Pareto optimal solution if and only if there does not exist another $x \in D$ such that $z_{i}(x) \leq z_{i}\left(x^{*}\right)$ for all i and $z_{j}(x) \neq z_{j}\left(x^{*}\right)$ for at least one j.

Theorem

An optimal solution x^{*} to the problem (P) is a Pareto optimal solution if it is unique optimal solution.

Further the multi-objective linear programming problem comes to the following problem:

$$
\max _{y} \min _{x} P(x, y)
$$

Definition

x^{*} is called Pareto optimal solution if and only if there does not exist another $x \in D$ such that $z_{i}(x) \leq z_{i}\left(x^{*}\right)$ for all i and $z_{j}(x) \neq z_{j}\left(x^{*}\right)$ for at least one j.

Theorem

An optimal solution x^{*} to the problem (P) is a Pareto optimal solution if it is unique optimal solution.

Theorem

An optimal solution x^{*} to the problem (P) is a Pareto optimal solution if for all x and $y z_{i}(x)>z_{i}(y) \Rightarrow P_{i}(x, y)<1, A$ is a strictly monotone function and set D is linearly connected.

Numerical example

Let us observe the following linear programming problem: $\max z_{1}=x_{1}$,
$\max z_{2}=x_{2}$,
s.t. $x_{1}+x_{2} \leq 1$, $x_{1}, x_{2} \geq 0$.

Numerical example

Let us observe the following linear programming problem: $\max z_{1}=x_{1}$,
$\max z_{2}=x_{2}$,
s.t. $x_{1}+x_{2} \leq 1$, $x_{1}, x_{2} \geq 0$.

Numerical example(Łukasiewicz t-norm)

We solve the following problem: $\max _{y \in D} \min _{x \in D} P(x, y)$.

$$
f(y)=\min _{x \in B} P(x, y):
$$

Figure:

Figure:

$$
P(x, y)=\frac{P_{1}(x, y)+P_{2}(x, y)}{2}
$$

$$
P(x, y)=\frac{2 P_{1}(x, y)+P_{2}(x, y)}{3}
$$

Numerical example(Product t-norm)

We solve the following problem: $\max _{y \in D} \min _{x \in D} P(x, y)$.

$$
f(y)=\min _{x \in B} P(x, y):
$$

Figure:

Figure:

$$
P(x, y)=P_{1}(x, y)^{\frac{1}{2}} \cdot P_{2}(x, y)^{\frac{1}{2}} \quad P(x, y)=P_{1}(x, y)^{\frac{2}{3}} \cdot P_{2}(x, y)^{\frac{1}{3}}
$$

Thank you for attention!

