Robust Integrals

Salvatore Greco, Fabio Rindone

Department of Economics and Business, University of Catania, Italy salgreco@unict.it frindone@unict.it

February 01, 2012

FSTA 11th International Conference on Fuzzy Set Theory and Applications

• • • • • • • • • • • • •

.∋...>

Outline of talk

Introduction

- The domain of MCDM
- Non-additive integrals

Imprecise evaluations

- The concept of interval-capacity
- The Robust Choquet Integral (RCI)
- An illustrative example
- Integral characterization

Other robust integrals

- The Robust Sugeno Integral
- The Robust Shilkret Integral
- Other possible extension of robustness

The domain of MCDM Non-additive integrals

Choosing from a set of alternatives

In many decision problems, several alternatives

 $A = \{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \ldots\}$

are evaluated with respect to a set of criteria

 $N = \{1, \cdots, n\}.$

• We could evaluate a car with respect to criteria such as

{maximum speed, price, acceleration, fuel consumption..};

 We could evaluate a students with respect to the notes on different subjects such as

{Mathematics, Physics, Literature,...}.

イロト イ押ト イヨト イヨト

Considering redundancy or synergy among criteria

The importance of a set of criteria is not necessarily the sum of the importance of each criterion in the set.

Situation of redundancy

- maximum speed and acceleration in evaluating cars
- Mathematics and Physics in evaluating a student

Situation o synergy

- maximum speed and price in evaluating cars
- Mathematics and Literature in evaluating a student

Thus, in order to express a decision, such as a choice from a given set of cars or a ranking of a set of students, it is necessary to choose how **to aggregate the evaluations** on considered criteria.

The domain of MCDM Non-additive integrals

Non-additive integrals

If on each criterion a given alternative \boldsymbol{x} is evaluated on the same scale (α, β) , thus this alternative can be identified with a score vector

$$\boldsymbol{x} = (x_1, \ldots, x_n) \in (\alpha, \beta)^n$$

where x_i is the evaluation of **x** with respect to the *i*th criterion. In order to aggregate these evaluations, several non additive integrals have been introduced in the last sixty years. Among them, we remember

- the Choquet integral (Choquet (1953)
- the Shilkret integral (Shilkret (1971))
- the Sugeno integral (Sugeno (1974))

Introduction

Imprecise evaluations Other robust integrals References The domain of MCDM Non-additive integrals

The Choquet integral

Definition

A capacity is function $\mu : 2^N \rightarrow [0, 1]$ satisfying:

1
$$\mu(\emptyset) = 0, \ \mu(N) = 1,$$

2) for all
$$A \subseteq B \subseteq N, \ \mu(A) \leq \mu(B)$$
.

Definition

The Choquet integral (Choquet (1953)) of a vector $\mathbf{x} = (x_1, ..., x_n) \in (\alpha, \beta)^n \subseteq [0, +\infty [^n \text{ with respect to the capacity } \mu \text{ is given by}$

$$Ch(\mathbf{x},\mu) = \int_0^\infty \mu\left(\{i \in \mathbf{N} : x_i \ge t\}\right) dt.$$
(1)

イロト イポト イヨト イヨト

The domain of MCDM Non-additive integrals

Schmeidler (Schmeidler (1986)) extended the above definition to negative values too, moreover he characterized the Choquet integral in terms of monotonicity and comonotonic additivity.

Definition

The Choquet integral of a vector $\mathbf{x} = (x_1, ..., x_n) \in (\alpha, \beta)^n$ with respect to the capacity μ is given by

$$Ch(\mathbf{x},\mu) = \int_{-\infty}^{0} \left[1 - \mu\left(\{i \in \mathbf{N} : x_i \ge t\}\right)\right] dt + \int_{0}^{\infty} \mu\left(\{i \in \mathbf{N} : x_i \ge t\}\right) dt$$
(2)

alternatively written

$$Ch(\mathbf{x},\mu) = \int_{\min_i x_i}^{\max_i x_i} \mu\left(\{i \in \mathbf{N} : x_i \ge t\}\right) dt + \min_i x_i$$
(3)

< □ > < □ > < □ > < □ >

The concept of interval-capacity The Robust Choquet Integral (RCI) An illustrative example Integral characterization

Interval evaluations on each criterion

Suppose that, for a given alternative **x** we have, on each criterion

$$i \in N = \{1, \cdots, n\}$$

the knowledge of an interval containing the exact evaluation

 $[\underline{x}_i, \overline{x}_i]$

Thus, the alternative **x** can be identified with a (score) vector

$$\mathbf{x} = \left(\left[\underline{x}_1, \overline{x}_1 \right], \dots, \left[\underline{x}_i, \overline{x}_i \right], \dots, \left[\underline{x}_n, \overline{x}_n \right] \right) \in I_{[a,b]}^n$$
(4)

(日) (同) (三) (三)

being

$$I_{[a,b]} = \left\{ \left[\underline{x}, \overline{x} \right] \mid \underline{x}, \overline{x} \in \mathbb{R}, \ \underline{x} \leq \overline{x} \right\}$$

The concept of interval-capacity The Robust Choquet Integral (RCI) An illustrative example Integral characterization

Pessimistic and optimistic evaluation of *x*

We associate to every alternative $\mathbf{x} \in I_{[a,b]}^n$ the vector of all the worst (or pessimistic) evaluations on each criterion

$$\underline{\boldsymbol{x}} = (\underline{x}_1, \ldots, \underline{x}_n)$$

and the vector of all the best (or optimistic) evaluations on each criterion

$$\overline{\mathbf{X}}=(\overline{\mathbf{X}}_1,\ldots,\overline{\mathbf{X}}_n).$$

The elements of $I_{[a,b]}^n$ will be, indifferently, called alternatives or, simply, vectors.

The concept of interval-capacity The Robust Choquet Integral (RCI) An illustrative example Integral characterization

Interval capacity (a)

Let us consider the set

$$\mathcal{Q} = \{ (A, B) \mid A \subseteq B \subseteq N \}$$

On \mathcal{Q} we define a binary relation

$$(A, B) \preceq (C, D) \iff A \subseteq C \text{ and } B \subseteq D$$
 (5)

(日) (同) (三) (三)

with respect to \precsim, \mathcal{Q} is a lattice, where

$$\sup \left\{ \left(A,B\right) ,\left(C,D\right) \right\} =\left(A\cup C,B\cup D\right)$$

and

$$\inf\left\{\left(A,B\right),\left(C,D\right)\right\}=\left(A\cap C,B\cap D\right).$$

The concept of interval-capacity The Robust Choquet Integral (RCI) An illustrative example Integral characterization

• □ > • # # > • = > •

Interval capacity (b)

Regarding the significance of $\ensuremath{\mathcal{Q}}$ in this work, let us consider the alternative

$$\boldsymbol{x} = \left(\left[\underline{x}_1, \overline{x}_1 \right], \dots, \left[\underline{x}_n, \overline{x}_n \right] \right)$$

and a fixed evaluation level t.

Aggregating the criteria whose pessimistic evaluation of \boldsymbol{x} is at least t

$$A_t = \{i \in N \mid \underline{x}_i \ge t\}$$

and the criteria whose optimistic evaluation of \boldsymbol{x} is at least t

$$B_t = \{i \in N \mid \overline{x}_i \ge t\}$$

thus,

$$\boldsymbol{A}_t \subseteq \boldsymbol{B}_t \Rightarrow (\boldsymbol{A}_t, \boldsymbol{B}_t) \in \mathcal{Q}$$

The concept of interval-capacity The Robust Choquet Integral (RCI) An illustrative example Integral characterization

< ロ > < 同 > < 三 > < 三 >

Interval capacity (c)

Definition

A function $\mu_r : \mathcal{Q} \rightarrow [0, 1]$ is an interval capacity on \mathcal{Q} if

• $\mu_r(\emptyset, \emptyset) = 0;$

•
$$\mu_r(N, N) = 1;$$

• $\mu_r(A, B) \leq \mu_r(C, D)$ whenever $(A, B) \lesssim (C, D)$.

An interval capacity is an useful tool to assign a "weight" to the elements

$$(\boldsymbol{A}_t, \boldsymbol{B}_t) = (\{i \in \boldsymbol{N} \mid \underline{\boldsymbol{x}}_i \geq t\}, \{i \in \boldsymbol{N} \mid \overline{\boldsymbol{x}}_i \geq t\}) \in \mathcal{Q}$$

The concept of interval-capacity **The Robust Choquet Integral (RCI)** An illustrative example Integral characterization

(日) (同) (三) (三)

The Robust Choquet Integral (RCI)

Definition

The Robust Choquet Integral (RCI) of a vector

$$\boldsymbol{X} = \left(\left[\underline{X}_1, \overline{X}_1 \right], \dots, \left[\underline{X}_n, \overline{X}_n \right] \right) \in \boldsymbol{I}_{[a,b]}^n$$

with respect to an interval capacity $\mu_r : 2^N \rightarrow [0, 1]$ is:

$$Ch_{r}(\mathbf{x},\mu_{r}) =: \int_{\min\{\underline{x}_{1},\ldots,\underline{x}_{n}\}}^{\max\{\overline{x}_{1},\ldots,\overline{x}_{n}\}} \mu_{r}(\{i \in \mathbf{N} \mid \underline{x}_{i} \ge t\}, \{i \in \mathbf{N} \mid \overline{x}_{i} \ge t\})dt + \min\{\underline{x}_{1},\ldots,\underline{x}_{n}\}.$$
(6)

Note that being in the (6) the integrand bounded and not increasing, the integral is the standard Riemann integral.

The concept of interval-capacity **The Robust Choquet Integral (RCI)** An illustrative example Integral characterization

Relation with the Choquet integral (a)

Givien an interval capacity

$$\mu_r: \mathcal{Q} \to [\mathbf{0}, \mathbf{1}]$$

a capacity $\nu: 2^N \rightarrow [0,1]$ is defined by setting

$$\nu(\mathbf{A}) = \mu_r(\mathbf{A}, \mathbf{A}) : \mathbf{2}^N \to [0, 1], \quad \text{for all } \mathbf{A} \subseteq \mathbf{N}$$
(7)

イロト イポト イヨト イヨト

Due to the *monotonicity* of the RCI

$$Ch_r(\underline{\mathbf{x}},\mu_r) = Ch(\underline{\mathbf{x}},\nu) \le Ch_r(\mathbf{x},\mu_r) \le Ch(\overline{\mathbf{x}},\nu) = Ch_r(\overline{\mathbf{x}},\mu_r).$$
 (8)

Note that when on each criterion we have exact evaluations, $\underline{x}_i = \overline{x}_i$,

$$Ch_r(\boldsymbol{x},\mu_r) = Ch(\boldsymbol{x},\nu).$$

the RCI of \boldsymbol{x} w.r.t. μ_r collapses on the Choquet integral of \boldsymbol{x} w.r.t. ν .

Introduction The cond Imprecise evaluations Other robust integrals An illustr References Integral of

The concept of interval-capacity **The Robust Choquet Integral (RCI)** An illustrative example Integral characterization

Relation with the Choquet integral (b)

On the other hand, starting from two capacities

$$\underline{\nu}: \mathbf{2}^N \to [0, 1]$$
$$\overline{\nu}: \mathbf{2}^N \to [0, 1]$$

for all $\alpha \in (0, 1)$, a *separable* interval capacity is defined by means of

$$\mu_r(\boldsymbol{A},\boldsymbol{B}) = \alpha \underline{\nu}(\boldsymbol{A}) + (1-\alpha)\overline{\nu}(\boldsymbol{B}), \quad \text{for all } (\boldsymbol{A},\boldsymbol{B}) \in \mathcal{Q} \quad (9)$$

In this case

$$Ch_{r}(\boldsymbol{x},\mu_{r}) = \alpha Ch(\underline{\boldsymbol{x}},\underline{\nu}) + (1-\alpha)Ch(\overline{\boldsymbol{x}},\overline{\nu})$$
(10)

For example, given a capacity ν , one could think to obtain a lower, an intermediate and an upper aggregate evaluation of an alternative \boldsymbol{x}

$$Ch(\underline{\mathbf{x}},\nu) \le \alpha Ch(\underline{\mathbf{x}},\nu) + (1-\alpha)Ch(\overline{\mathbf{x}},\nu) \le Ch(\overline{\mathbf{x}},\nu).$$
(11)

A D > A A > A >

Clearly, our approach is more general.

The concept of interval-capacity The Robust Choquet Integral (RCI) An illustrative example Integral characterization

An illustrative example

Example

Taking inspiration from an example very well known in the specialized literature, Grabisch (1996), let us consider a case of evaluation of three students in Mathematics, Physics and Literature.

- The students are evaluated on each subject by a 10 point scale,
- some evaluation are imprecise (typical situation in the middle of a school year),
- the dean of the school ranks the students as follows:

$$S_2 \succ S_1 \succ S_3.$$

Introduction The concept of interval-capacity Imprecise evaluations The Robust Choquet Integral (RC Other robust integrals An illustrative example References Integral characterization

	Mathematics	Physics	Literature
S_1	8	8	7
<i>S</i> ₂	[7,8]	8	[6,8]
S_3	9	9	[5,6]

Table: Students' evaluations

Dean ranking: $S_2 > S_1 > S_3$.

イロト イヨト イヨト イヨト

3

Introduction The concept of interva Imprecise evaluations Other robust integrals An illustrative example References Integral characterizatic

The rationale of this ranking is that:

- $S_1 > S_3$: the better evaluations of S_3 in scientific subjects are redundant, the dean retains relevant the better evaluation of S_1 in Literature, where S_3 risks an insufficiency. In other words, when the scientific evaluation is fairly high, Literature becomes very important;
- S₂ > S₁ the conjoint evaluation in Mathematics and Physics is very similar, also considering the redundancy of the two subjects. However S₂ has the same average in Literature but a greater potential;

< □ > < /i>

• $S_2 > S_3$ by transitivity of preferences.

Introduction	The concept of interval-capacity
Imprecise evaluations	The Robust Choquet Integral (RCI)
Other robust integrals	An illustrative example
References	Integral characterization

	Mathematics	Physics	Literature
S_1	8	8	7
S ₂	7	8	6
S_3	9	9	5

Table: pessimistic evaluations S_1 dominates S_2 , S_3 has the best average

æ

Introduction	The concept of interval-capacity
Imprecise evaluations	The Robust Choquet Integral (RCI)
Other robust integrals	An illustrative example
References	Integral characterization

	Mathematics	Physics	Literature
S_1	8	8	7
<i>S</i> ₂	8	8	8
S_3	9	9	6

Table: Optimistic evaluations: S_2 dominates S_1 , S_3 has the best average.

æ

∋⊳

< < >> < </p>

Introduction The concept of interval-capacity Imprecise evaluations The Robust Choquet Integral (RCI) Other robust integrals An illustrative example References Integral characterization

The RCI permits to represent the preferences of the dean. Let

 $N = \{M, Ph, L\}$

be set of criteria and let us identify the three students respectively with the three vectors:

$$x_1 = ([8,8], [8,8], [7,7]) x_2 = ([7,8], [8,8], [6,8]) x_3 = ([9,9], [9,9], [5,6]) .$$

The RCI represents the preferences of the dean if there exists an interval capacity μ_r such that

$$Ch_r(\mathbf{x}_2, \mu_r) > Ch_r(\mathbf{x}_1, \mu_r) > Ch_r(\mathbf{x}_3, \mu_r),$$

• □ > • # # > • = > •

Introduction The concept of interval-capacity Imprecise evaluations The Robust Choquet Integral (RC Other robust integrals An illustrative example References Integral characterization

that is

$$6 + \mu_r(\{M, Ph\}, N) + \mu_r(\{Ph\}, N) > 7 + \mu_r(\{M, Ph\}, \{M, Ph\}) >$$

$$>$$
 5 + $\mu_r(\{M, Ph\}, S)$ + 3 $\mu_r(\{M, Ph\}, \{M, Ph\})$.

Which can be explained, for example, by setting

$$\begin{cases} \mu_r (\{M, Ph\}, N) = 0.9 \\ \mu_r (\{Ph\}, N) = 0.7 \\ \mu_r (\{M, Ph\}, \{M, Ph\}) = 0.5 \end{cases}$$

イロト イ団ト イヨト イヨト

æ

The concept of interval-capacity The Robust Choquet Integral (RCI) An illustrative example Integral characterization

• • • • • • • • • • • • •

Integral characterization

The RCI is a function aggregating interval evaluations in a single number. In order to get an axiomatic characterization we need to extend the notions of

- additivity,
- monotonicity,
- co-monotonicity

Introduction	
Imprecise evaluations	The Robust Choquet Integral (RCI)
Other robust integrals	
References	Integral characterization

Definition

For every $\alpha, \beta \in \mathbb{R}$ and $[x_1, y_1], [x_2, y_2] \in I_{[a,b]}$ we define the following interval mixture operation:

$$\alpha \cdot [\mathbf{x}_1, \mathbf{y}_1] + \beta \cdot [\mathbf{x}_2, \mathbf{y}_2] = [\alpha \mathbf{x}_1 + \beta \mathbf{x}_2, \alpha \mathbf{y}_1 + \beta \mathbf{y}_2].$$

Thus, for all vectors (alternative) $\boldsymbol{x}, \boldsymbol{y} \in I_{[a,b]}^n$ and for all $\alpha, \beta \in \mathbb{R}$,

$$(\alpha \boldsymbol{x} + \beta \boldsymbol{y}) \in \boldsymbol{I}^n_{[a,b]}$$

is the vector defined by

$$(\alpha x + \beta y)_i = \alpha x_i + \beta y_i$$
 for all $i \in N$

Introduction The concept of interval-capacity Imprecise evaluations The Robust Choquet Integral (RC Other robust integrals An illustrative example References Integral characterization

Definition

We define $[\alpha, \beta] \leq [\alpha_1, \beta_1]$ whenever $\alpha \leq \alpha_1$ and $\beta \leq \beta_1$.

Remark

 $(I_{[a,b]}, \leq)$ is a partial ordered set, not complete, e.g. we are not able to establish the preference between [2,5] and [3,4].

 $\boldsymbol{x} \leq \boldsymbol{y}$ means $x_i \leq y_i$ for all $i \in N$.

< ロ > < 同 > < 三 > < 三 >

Introduction The concept of interval-capacit Imprecise evaluations The Robust Choquet Integral (Other robust integrals An illustrative example References Integral characterization

Definition

$$\boldsymbol{x} = \left(\begin{bmatrix} \underline{x}_1, \overline{x}_1 \end{bmatrix}, \dots, \begin{bmatrix} \underline{x}_n, \overline{x}_n \end{bmatrix} \right)$$
$$\boldsymbol{y} = \left(\begin{bmatrix} \underline{y}_1, \overline{y}_1 \end{bmatrix}, \dots, \begin{bmatrix} \underline{y}_n, \overline{y}_n \end{bmatrix} \right)$$

are comonotonic (or comonotone) if they are, in \mathbb{R}^{2n} ,

$$\boldsymbol{x}^* = (\underline{x}_1, \dots, \underline{x}_n, \dots, \overline{x}_1, \dots, \overline{x}_n)$$
$$\boldsymbol{y}^* = (\underline{y}_i, \dots, \underline{y}_n, \dots, \overline{y}_1, \dots, \overline{y}_n)$$

イロト イ団ト イヨト イヨト

æ

The concept of interval-capacity The Robust Choquet Integral (RCI) An illustrative example Integral characterization

• □ > • # # > • = > •

Remark

if **x** and **y** are co-monotonic, then both \underline{x} and \underline{y} are co-monotonic as well as \overline{x} and \overline{y} are co-monotonic. The reverse is generally false, for example if $N = \{1, 2\}$, x = ([1,3], [2,4]) and y = ([1,3], [4,5]) are non co-monotonic, although \underline{x} is co-monotonic with \underline{y} and \overline{x} is co-monotonic with \overline{y} . Introduction The concept of interval-capacity
Imprecise evaluations The Robust Choquet Integral (RCI)
Other robust integrals An illustrative example
References Integral characterization

For all $(A, B) \in Q$ we define a generalized indicator function

$$1_{(A,B)}: N \to \{[0,0], [0,1], [1,1]\}$$

by means of

$$1_{(A,B)}(i) = \begin{cases} [1,1] = 1 & i \in A \\ [0,1] & i \in B \setminus A \\ [0,0] = 0 & i \in N \setminus B \end{cases}$$
(12)

(日) (同) (三) (三)

Clearly, if A = B,

$$\mathbf{1}_{(A,A)} = \mathbf{1}_A$$

For any interval capacity μ_r , by definition :

$$Ch_r(\mathbf{1}_{(A,B)},\mu_r) = \mu_r(A,B)$$

The concept of interval-capacity The Robust Choquet Integral (RCI) An illustrative example Integral characterization

Properties of the RCI

• Idempotency. For all $\mathbf{k} = (k, k, \dots, k)$ with $k \in \mathbb{R}$,

 $Ch_r(\mathbf{k}, \mu_r) = k$

• Positive homogeneity. Let a > 0 and $x \in I^n_{[a,b]}$,

$$Ch_r(a \cdot \mathbf{x}, \mu_r) = a \cdot Ch_r(\mathbf{x}, \mu_r)$$

• Monotonicity. Let $\boldsymbol{x}, \boldsymbol{y} \in I_{[\boldsymbol{a},\boldsymbol{b}]}^n$ with $\boldsymbol{x} \leq \boldsymbol{y}$,

$$Ch_{r}(\mathbf{x},\mu_{r}) \leq Ch_{r}(\mathbf{y},\mu_{r})$$

• Co-monotonic additivity. if $x, y \in I_{[a,b]}^n$ are co-monotonic,

$$Ch_{r}\left(\boldsymbol{x}+\boldsymbol{y},\mu_{r}\right)=Ch_{r}\left(\boldsymbol{x},\mu_{r}\right)+Ch_{r}\left(\boldsymbol{y},\mu_{r}\right)$$

(日) (同) (三) (三)

Introduction The concept of interval-capacity Imprecise evaluations The Robust Choquet Integral (R0 Other robust integrals An illustrative example References Integral characterization

The above properties are characterizing for the RCI.

Theorem

Let $G: I_{[a,b]}^n \to \mathbb{R}$ be a an (generalized) aggregation function satisfying

- $G(\mathbf{1}_{(N,N)}) = 1$
- (P3) Monotonicity
- (P4) Co-monotonic additivity

thus, by setting

$$\mu_r(A, B) = G(\mathbf{1}_{(A,B)})$$
 for all $(A, B) \in Q$

it follows that:

$$G(\mathbf{x}, \mu_r) = Ch_r(\mathbf{x}, \mu_r), \text{ for all } \mathbf{x} \in I^n_{[a,b]}$$

(日) (同) (三) (三)

The concept of interval-capacity The Robust Choquet Integral (RCI) An illustrative example Integral characterization

< □ > < □ > < □ > < □ >

Generalizing the concept of interval to m-points interval

Oztürk *et al.* (2011) generalized the concept of interval (allowing the presence of more than two points). Image that on each criterion an alternative \mathbf{x} is evaluated m times.

$$\boldsymbol{x} = (x_1, \ldots, x_n)$$

being for all $i = 1, \ldots, n$ and for all $j = 1, \ldots, m-1$

$$x_i = (f_1(x_i), \dots, f_m(x_i)), \qquad f_j(x_i) \le f_{j+1}(x_i)$$

E.g. m=3 corresponds to have on each criterion a pessimistic, a realistic and an optimistic evaluation.

Introduction The concept of interval-capacity Imprecise evaluations The Robust Choquet Integral (RC Other robust integrals An illustrative example References Integral characterization

Let us define

$$\mathcal{Q}_m = \{(A_1,\ldots,A_m) \mid A_1 \subseteq A_2 \ldots \subseteq A_m \subseteq N\}$$

Definition

An m-interval capacity is a function $\mu_m : \mathcal{Q}_m \rightarrow [0, 1]$ such that

•
$$\mu_m(\emptyset,\ldots,\emptyset) = 0$$

•
$$\mu_m(N,\ldots,N) = 1$$

• $\mu_m(A_1,\ldots,A_m) \leq \mu_m(B_1,\ldots,B_m)$, with $A_i \subseteq B_i \subseteq N, \forall i = 1,\ldots,m$

Definition

The Robust Choquet Integral of \mathbf{x} (m-points interval valued) w.r.t. the m-interval capacity μ_m is

$$\int_{\min_{i} f_{1}(x_{i})}^{\max_{i} f_{m}(x_{i})} \mu_{m}\left(\{j \in N \mid f_{1}(x_{j}) \geq t\}, \dots, \{j \in N \mid f_{m}(x_{j}) \geq t\}dt\} + \min_{i} f_{1}(x_{i})$$

The concept of interval-capacity The Robust Choquet Integral (RCI) An illustrative example Integral characterization

The RCI and Möbius inverse

The following proposition gives the closed formula of the Möbius inverse of a function on \mathcal{Q} .

Proposition

Suppose $f,g:\mathcal{Q} \to \mathbb{R}$ are two real valued functions on $\mathcal{Q}.$ Then

$$f(A,B) = \sum_{(C,D) \leq (A,B)} g(C,D)$$
(13)

(日) (同) (三) (三)

if and only if

$$g(A,B) = \sum_{\varnothing \subseteq X \subseteq A} (-1)^{|X|} \sum_{(C,D) \lesssim (A \setminus X, B \setminus X)} (-1)^{|B \setminus A| - |D \setminus C|} f(C,D)$$
(14)

Introduction The concept of interval-capacity Imprecise evaluations The Robust Choquet Integral (F Other robust integrals An illustrative example References Integral characterization

Proposition

 $\mu_r: Q \to \mathbb{R}$ is an interval capacity if and only if its Möbius inverse $m: Q \to \mathbb{R}$ satisfies:

 $\bigcirc m(\emptyset, \emptyset) = 0$

$$\sum_{(A,B)\in\mathcal{Q}} m(A,B) = 1$$

Proposition

Let $\mu_r : \mathcal{Q} \to [0,1]$ be an interval capacity and let $m : \mathcal{Q} \to [0,1]$ be its Möbius inverse, then for all $\mathbf{x} \in \mathcal{F}$

$$Ch_{r}(\mathbf{x},\mu_{r}) = \sum_{(A,B)\in\mathcal{Q}} \min\left(\min_{i\in A} \underline{x}_{i}, \min_{i\in B} \overline{x}_{i}\right) m(A,B)$$
(15)

The Robust Sugeno Integral The Robust Shilkret Integral Other possible extension of robustness

The Robust Sugeno Integral

Suppose that \boldsymbol{x} is evaluated on the scale [0, 1] on each criterion,

$$\mathbf{x} = (x_1, x_2, \dots, x_n) \in [0, 1]^n$$

The Sugeno Integral (Sugeno (1974)) of \boldsymbol{x} w.r.t. the capacity μ is

$$S(\boldsymbol{x},\mu) = \max_{i \in N} \left\{ \min \left\{ x_i, \mu \left(j \in N \mid x_j \ge x_i \right) \right\} \right\}$$
(16)

$$S(\mathbf{x},\mu) = \max_{A \subseteq N} \left\{ \min \left\{ \min_{i \in A} x_i, \mu(A) \right\} \right\}$$
(17)

(日) (同) (三) (三)

In the case of imprecise interval evaluations, we suppose that

$$\boldsymbol{x} = \left(\left[\underline{x}_1, \overline{x}_1 \right], \dots, \left[\underline{x}_n, \overline{x}_n \right] \right), \qquad \left[\underline{x}_1, \overline{x}_1 \right] \subseteq \left[0, 1 \right]$$

The Robust Sugeno Integral The Robust Shilkret Integral Other possible extension of robustness

Considering the 2n vector

$$(x_1,\ldots,x_n,x_{n+1},\ldots,x_{2n}) = (\underline{x}_1,\ldots,\underline{x}_n,\overline{x}_1,\ldots,\overline{x}_n)$$

Definition

The robust Sugeno integral of **x** w.r.t. the interval capacity μ_r is

$$S_{r}(\mathbf{x},\mu_{r}) = \max_{i \in \{1,...,2n\}} \left\{ \min \left\{ x_{i},\mu_{r}\left(\left\{ j \in \mathbf{N} \mid \underline{x}_{j} \ge x_{i} \right\}, \left\{ j \in \mathbf{N} \mid \overline{x}_{j} \ge x_{i} \right\} \right) \right\} \right\}$$

$$Or, equivalently$$
(18)

$$S_{r}(\mathbf{x},\mu_{r}) = \max_{(\mathbf{A},B)\in\mathcal{Q}} \left\{ \min\left\{ \min_{i\in\mathcal{A}} \underline{x}_{i}, \min_{i\in\mathcal{B}-\mathcal{A}} \overline{x}_{i}, \mu_{r}(\mathbf{A},B) \right\} \right\}$$
(19)

• • • • • • • • • • • • •

The Robust Sugeno Integral The Robust Shilkret Integral Other possible extension of robustness

(日) (同) (三) (三)

An applicative examples

Example

This example shows the equivalence of formulation (18) and (19).

Let us suppose that $N = \{1, 2\}$ and consider

x = ([5,9], [2,4])

Let be given the following interval capacity on \mathcal{Q} :

 $\mu_r(\varnothing, \varnothing) = \mathbf{0}, \ \mu_r(\varnothing, \mathbf{1}) = \mathbf{3}, \ \mu_r(\varnothing, \mathbf{2}) = \mathbf{2}, \ \mu_r(\varnothing, \mathbf{12}) = \mathbf{5}, \ \mu_r(\mathbf{1}, \mathbf{1}) = \mathbf{4},$

 $\mu_r(1, 12) = 6, \ \mu_r(2, 2) = 4, \ \mu_r(2, 12) = 7, \ \mu_r(12, 12) = 10$

Both using the (18) as well as the (18),

$$S_r(\boldsymbol{x}, \mu_r) = 4$$

The Robust Sugeno Integral The Robust Shilkret Integral Other possible extension of robustness

The Robust Shilkret integral

Suppose that **x** is evaluated on a nonnegative scale on each criterion,

$$\boldsymbol{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n_+$$

The Shilkret integral (Shilkret (1971)) of \boldsymbol{x} w.r.t. the capacity μ is

$$Sh(x,\mu) = \max_{A \subseteq N} \left\{ \min_{i \in A} x_i \cdot \mu(A) \right\}$$

In the case of imprecise interval evaluations, we suppose that

$$\boldsymbol{x} = \left(\left[\underline{x}_1, \overline{x}_1 \right], \dots, \left[\underline{x}_n, \overline{x}_n \right] \right), \qquad \left[\underline{x}_1, \overline{x}_1 \right] \subseteq \mathbb{R}_+^n$$

Definition

The robust Shilkret integral of **x** w.r.t. the interval capacity μ_r is

$$Sh_{r}(x,\mu_{r}) = \max_{(A,B)\in\mathcal{Q}} \left\{ \min\left(\min_{i\in A} \underline{x}_{i}, \min_{i\in B\smallsetminus A} \overline{x}_{i}\right) \cdot \mu_{r}(A,B) \right\}$$
(20)

The Robust Sugeno Integral The Robust Shilkret Integral Other possible extension of robustness

• □ > • # # > • = > •

Other possible extension of robustness

- the robust concave integral, generalizing the concave integral (Lehrer (2009))
- the robust universal integral generalizing the universal integral (Klement *et al.* (2010))
- robust bipolar integrals
- robust integral w.r.t. a level dependent interval capacity

The Robust Sugeno Integral The Robust Shilkret Integral Other possible extension of robustness

イロト イヨト イヨト イヨト

3

THANKS FOR YOUR ATTENTION

References I

Choquet, G. (1953). Theory of capacities. *Ann. Inst. Fourier*, 5(131-295), 54.
Grabisch, M. (1996). The application of fuzzy integrals in multicriteria decision making. *European journal of operational research*, 89(3), 445–456.

- Klement, E., Mesiar, R., and Pap, E. (2010). A universal integral as common frame for choquet and sugeno integral. *Fuzzy Systems, IEEE Transactions* on, **18**(1), 178–187.
- Lehrer, E. (2009). A new integral for capacities. *Economic Theory*, **39**(1), 157–176.
- Oztürk, M., Pirlot, M., and Tsoukiàs, A. (2011). Representing Preferences Using Intervals. *Artificial Intelligence*, **175**(7-8), 1194–1222.
- Schmeidler, D. (1986). Integral representation without additivity. *Proceedings* of the American Mathematical Society, **97**(2), 255–261.
- Shilkret, N. (1971). Maxitive measure and integration. In *Indagationes Mathematicae (Proceedings)*, volume 74, pages 109–116. Elsevier.

Sugeno, M. (1974). Theory of fuzzy integrals and its applications. Ph.D. Thesis, Tokyo institute of Technology.