Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague
Technická 2, 166 27 Prague 6, Czech Republic

FSTA 2012, Liptovský Ján
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Outline

• Definitions
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Outline

• Definitions
• Motivation of today’s talk
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Outline

• Definitions

• Motivation of today’s talk

• Tools
Shall we find normal forms in orthomodular lattices?

Outline

• Definitions
• Motivation of today’s talk
• Tools
• Results
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Outline

• Definitions

• Motivation of today’s talk

• Tools

• Results

• Conclusion
Definitions

ortholattice, modular lattice, modular ortho-
and orthomodular lattice

• an ortholattice is a lattice with an ortho-
complementation

 order-reversing \(a \leq b \Rightarrow b' \leq a' \)
 involution law \(a''' = a \)
 complement law \(a' \lor a = 1 \)
 \(a' \land a = 0 \)
Definitions

ortholattice, modular lattice, modular ortho-
and orthomodular lattice

• an ortholattice is a lattice with an ortho-
complementation

 \begin{align*}
 \text{order-reversing} & : a \leq b \implies b' \leq a' \\
 \text{involution law} & : a'' = a \\
 \text{complement law} & : a' \lor a = 1 \\
 & : a' \land a = 0
 \end{align*}

• a modular lattice is a lattice in which the modular
law holds

\[a \lor (b \land (a \lor c)) = (a \lor b) \land (a \lor c) \]
Definitions

ortholattice, modular lattice, modular ortho-
and orthomodular lattice

• an ortholattice is a lattice with an ortho-
 complementation

 order-reversing \[a \leq b \implies b' \leq a' \]

 involution law \[a'' = a \]

 complement law \[a' \lor a = 1 \]
 \[a' \land a = 0 \]

• a modular lattice is a lattice in which the modular
 law holds

 \[a \lor (b \land (a \lor c)) = (a \lor b) \land (a \lor c) \]

• a modular ortholattice is a lattice which is
 orthocomplemented and modular
Definitions

ortholattice, modular lattice, modular ortho-
and orthomodular lattice

• an ortholattice is a lattice with an ortho-
complementation

 order-reversing \(a \leq b \Rightarrow b' \leq a' \)
 involution law \(a'' = a \)
 complement law \(a' \lor a = 1 \)
 \(a' \land a = 0 \)

• a modular lattice is a lattice in which the modular
law holds

 \[a \lor (b \land (a \lor c)) = (a \lor b) \land (a \lor c) \]

• a modular ortholattice is a lattice which is
orthocomplemented and modular

• an orthomodular lattice is a ortholattice in which
the orthomodular law holds
Definitions

• In an algebraic sense a *word* is a formal expression or finite string of symbols build up in variables and algebraic operations.
• In an algebraic sense a *word* is a formal expression or finite string of symbols build up in variables and algebraic operations. Each word represents a particular element of the algebra, which is generated by the given variables and which is closed with respect to the given operations.
Definitions

word problem, decidability, normal form

- A *word problem* is the problem of deciding, whether or not two given words represent the same element of the algebra.
Definitions
word problem, decidability, normal form

- A word problem is the problem of deciding, whether or not two given words represent the same element of the algebra.
- If there exists such an algorithm, then we say the word problem is **decidable** (solvable), otherwise it is **undecidable** (unsolvable).
Definitions

word problem, decidability, normal form

• A **word problem** is the problem of deciding, whether or not two given words represent the same element of the algebra.

• If there exists such an algorithm, then we say the word problem is **decidable (solvable)**, otherwise it is **undecidable (unsolvable)**.

• A **normal form** also called **canonical form** of an object is a standard way of presenting that object.
Definitions

word problem, decidability, normal form

- A **word problem** is the problem of deciding, whether or not two given words represent the same element of the algebra.

- If there exists such an algorithm, then we say the word problem is **decidable** (**solvable**), otherwise it is **undecidable** (**unsolvable**).

- A **normal form** also called **canonical form** of an object is a standard way of presenting that object. Philip M. Whitman proved that for all equal elements in a free lattice, there is one of shortest length.
Max W. Dehn knew that the word problem was difficult, he wrote:

Solving the word problem for all groups may be as impossible as solving all mathematical problems.
Max W. Dehn knew that the word problem was difficult, he wrote:

Solving the word problem for all groups may be as impossible as solving all mathematical problems.

P. Novikov (1955) and independently, W. Boone (1958) proved that the word problem is in general not solvable.
Max W. Dehn knew that the word problem was difficult, he wrote:

Solving the word problem for all groups may be as impossible as solving all mathematical problems.

P. Novikov (1955) and independently, W. Boone (1958) proved that the word problem is in general not solvable.

Skolem (1920) solved the (uniform) word problem for finitely presented lattices.
What about quantum logic?

Is the word problem related to quantum logic decidable?
What about quantum logic?

Is the word problem related to quantum logic decidable?

First results:
What about quantum logic?

Is the word problem related to quantum logic decidable?

First results:

- for free ortholattices the word problem is decidable (G. Bruns, A. Meinander)
What about quantum logic?

Is the word problem related to quantum logic decidable?

First results:

- for free ortholattices the word problem is decidable (G. Bruns, A. Meinander)
- but for free modular lattices $M(n)$ it is undecidable when $n \geq 4$
What about quantum logic?

Is the word problem related to quantum logic decidable?

First results:

- for free ortholattices the word problem is decidable (G. Bruns, A. Meinander)
- but for free modular lattices $M(n)$ it is undecidable when $n \geq 4$
- the word problem remains an open challenge in the orthomodular as well as in the modular-ortho case (Herrmann, Micol and Roddy)
What about quantum logic?

Is the word problem related to quantum logic decidable?

First results:

- for **free ortholattices** the word problem is decidable (G. Bruns, A. Meinander)
- but for **free modular lattices** $M(n)$ it is undecidable when $n \geq 4$
- the word problem remains an open challenge in the **orthomodular** as well as in the **modular-ortho** case (Herrmann, Micol and Roddy)
- for the **free orthomodular lattices over two generators**, the problem is decidable
Motivation of today’s talk

The absence of distributivity in OMLs makes it difficult to find the normal forms of complex expressions. Some tools were developed to overcome this problem:
Motivation of today’s talk

The absence of distributivity in OMLs makes it difficult to find the normal forms of complex expressions. Some tools were developed to overcome this problem:

Foulis-Holland Theorem
Motivation of today’s talk

The absence of distributivity in OMLs makes it difficult to find the normal forms of complex expressions. Some tools were developed to overcome this problem:

Foulis-Holland Theorem
Focusing technique (Greechie)
Shall we find normal forms in orthomodular lattices?

Motivation of today’s talk

The absence of distributivity in OMLs makes it difficult to find the normal forms of complex expressions. Some tools were developed to overcome this problem:

Foulis-Holland Theorem
Focusing technique (Greechie)
Computation in \(F(a, b) \) (Navara)
Motivation of today’s talk

The absence of distributivity in OMLs makes it difficult to find the normal forms of complex expressions. Some tools were developed to overcome this problem:

- Foulis-Holland Theorem
- Focusing technique (Greechie)
- Computation in $F(a, b)$ (Navara)

In all three techniques the commuting elements play a crucial role

$$xCy \text{ if } x = (x \land y) \lor (x \land y')$$
For which of the 96 binary operations \(\ast \) in an OML, the following implication holds:

\[
x \leq y \quad \Rightarrow \quad x \ast z \leq y \ast z
\]

where \(x, y \) and \(z \) are elements of an OML.
Why this question?

Is it possible to find operations \ast for which

$$(a_1 \ast b) \land (a_2 \ast b) \land \ldots \land (a_n \ast b) = (a_1 \land \ldots \land a_n) \ast b$$

holds?
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Tools

- There are $2^4 = 16$ binary Boolean operations, each of them represents 6 OML operations (Megill, Pavičić)
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Tools

- There are $2^4 = 16$ binary Boolean operations, each of them represents 6 OML operations (Megill, Pavičić)

- Navara’s computation in $F(a, b, c)$
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Tools

• There are $2^4 = 16$ binary Boolean operations, each of them represents 6 OML operations (Megill, Pavičić)

• Navara’s computation in $F(a, b, c)$

• Kalmbach embedding
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Tools

• There are $2^4 = 16$ binary Boolean operations, each of them represents 6 OML operations (Megill, Pavičić)

• Navara’s computation in $F(a, b, c)$

• Kalmbach embedding

• Computer program (Hyčko)
 http://www.mat.savba.sk/~hycko/oml
Shall we find normal forms in orthomodular lattices?

Boolean algebra

For which of the 16 binary operations $*$ in an Boolean algebra, the following implication holds:

$$x \leq y \implies x * z \leq y * z$$

for x, y and z, elements of an Boolean algebra.
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Boolean algebra

From the Boolean operations only two do not fulfil the equation

\[x \leq y \implies x \ast z \leq y \ast z \]
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Boolean algebra

From the Boolean operations only two do not fulfil the equation

\[x \leq y \implies x \ast z \leq y \ast z \]

the equivalence \(\leftrightarrow \)

\[a \leftrightarrow b = (a \land b) \lor (a' \land b') = \begin{cases} 1 & \text{if } a = b, \\ 0 & \text{otherwise}, \end{cases} \]
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Boolean algebra

From the Boolean operations only two do not fulfil the equation

\[x \leq y \implies x \ast z \leq y \ast z \]

the equivalence \(\leftrightarrow \)

\[a \leftrightarrow b = (a \land b) \lor (a' \land b') = \begin{cases} 1 & \text{if } a = b, \\ 0 & \text{otherwise}, \end{cases} \]

and its complement \(\not\leftrightarrow \)

\[a \not\leftrightarrow b = (a \land b') \lor (a' \land b) = \begin{cases} 0 & \text{if } a = b, \\ 1 & \text{otherwise}. \end{cases} \]
Corresponding in an OML

These two operations correspond to 12 OML operations
Corresponding in an OML

These two operations correspond to 12 OML operations

- For the equivalence \leftrightarrow

$\begin{align*}
(x \land y) \lor (x' \land y') & \quad \text{Beran 8} \\
(x' \lor y) \land [x \lor (x' \land y')] & \quad \text{Beran 24} \\
(x \lor y') \land [y \lor (x' \land y')] & \quad \text{Beran 40} \\
(x' \lor y) \land [y' \lor (x \land y)] & \quad \text{Beran 56} \\
(x \lor y') \land [x' \lor (x \land y)] & \quad \text{Beran 72} \\
(x' \lor y) \land (x \lor y') & \quad \text{Beran 88}
\end{align*}$
Corresponding in an OML

- For its complement \leftrightarrow

$$\begin{align*}
(x \land y') \lor (x' \land y) & \quad \text{Beran 9} \\
(x' \lor y') \land [x \lor (x' \land y)] & \quad \text{Beran 25} \\
(x' \lor y') \land [y \lor (x \land y')] & \quad \text{Beran 41} \\
(x \lor y) \land [y' \lor (x' \land y)] & \quad \text{Beran 57} \\
(x \lor y) \land [x' \lor (x \land y')] & \quad \text{Beran 73} \\
(x \lor y) \land (x' \lor y') & \quad \text{Beran 89}
\end{align*}$$
Calculation in $F(a, b, c)$

For two elements x, y of an OML, it is said x commutes with y and written xCy if

$$x = (x \land y) \lor (x \land y'),$$

where

cCa and cCb.

M. Navara described the OML $F(a, b, c)$ generated by three generators a, b, c.
Calculation in $F(a, b, c)$

For two elements x, y of an OML, it is said x commutes with y and written xCy if

$$x = (x \land y) \lor (x \land y'),$$

It is easy to show that the following holds:

$$x \leq y \Rightarrow xCy.$$
Calculation in $F(a, b, c)$

For two elements x, y of an OML, it is said x commutes with y and written xCy if

$$x = (x \land y) \lor (x \land y'),$$

It is easy to show that the following holds:

$$x \leq y \Rightarrow xCy.$$

M. Navara described the OML $F(a, b, c)$ generated by three generators a, b, c where cCa and cCb.
Calculation in $F(a, b, c)$

The generators a, b and c can be expressed by Navara’s notation:

\[
\begin{align*}
 a &= a \left(\begin{array}{c}
 \bigcirc \\
 \bigcirc
 \end{array}, \begin{array}{c}
 \bigcirc \\
 \bigcirc
 \end{array} \right)_c b \\
 b &= a \left(\begin{array}{c}
 \bigcirc \\
 \bigcirc
 \end{array}, \begin{array}{c}
 \bigcirc \\
 \bigcirc
 \end{array} \right)_c b \\
 c &= a \left(\begin{array}{c}
 \bigcirc \\
 \bigcirc
 \end{array}, \begin{array}{c}
 \bigcirc \\
 \bigcirc
 \end{array} \right)_c b.
\end{align*}
\]
Calculation in $F(a, b, c)$

The generators a, b and c can be expressed by Navara’s notation:

\[a = a \left(\begin{array}{c|c} \circ & \circ \\ \hline \circ & \circ \end{array} \right)_c b \]

\[b = a \left(\begin{array}{c|c} \circ & \circ \\ \hline \circ & \circ \end{array} \right)_c b \]

\[c = a \left(\begin{array}{c|c} \circ & \circ \\ \hline \circ & \circ \end{array} \right)_c b. \]

\[a \land c \in [0, c] \]

\[b \land c' \in [0, c'] \]
Calculation in $F(a, b, c)$

Our initial question:
Calculation in $F(a, b, c)$

Our initial question:
For which binary operations \ast holds:

$$x \leq y \Rightarrow x \ast z \leq y \ast z$$

where x, y and z are elements of an OML,
Our initial question:
For which binary operations \ast holds:

$$x \leq y \implies x \ast z \leq y \ast z$$

where x, y and z are elements of an OML, becomes by substituting
Calculation in $F(a, b, c)$

Our initial question:
For which binary operations \ast holds:

$$x \leq y \implies x \ast z \leq y \ast z$$

where x, y and z are elements of an OML, becomes by substituting x by $(a \land c)$,
Calculation in $F(a, b, c)$

Our initial question:
For which binary operations \ast holds:

$$x \leq y \Rightarrow x \ast z \leq y \ast z$$

where x, y and z are elements of an OML, becomes by substituting x by $(a \land c)$, y by c
Our initial question:
For which binary operations \(* \) holds:

\[
x \leq y \implies x * z \leq y * z
\]

where \(x, y \) and \(z \) are elements of an OML,
becomes by substituting \(x \) by \((a \land c) \), \(y \) by \(c \) and \(z \) by \(b \).
Our initial question:
For which binary operations $*$ holds:

$$x \leq y \implies x \ast z \leq y \ast z$$

where x, y and z are elements of an OML, becomes by substituting x by $(a \land c)$, y by c and z by b.
For which binary operations $*$ holds:

$$(a \land c) \ast b \leq c \ast b$$

where a, b and c are the generators of $F(a, b, c)$.
Calculation in $F(a, b, c)$

• By choosing $c = 1$:

By choosing $c = 1$:

We could eliminate further 40 operations from our list of candidates.

Do the remaining 44 binary operations fulfil our equation?
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Calculation in $F(a, b, c)$

- By choosing $c = 1$:

 $$a \ast b \leq 1 \ast b$$
Calculation in $F(a, b, c)$

- By choosing $c = 1$:

$$a \ast b \leq 1 \ast b$$

We could eliminate further 40 operations from our list of candidates.
Shall we find normal forms in orthomodular lattices?

Calculation in $F(a, b, c)$

- By choosing $c = 1$:

$$a \ast b \leq 1 \ast b$$

We could eliminate further 40 operations from our list of candidates.

Do the remaining 44 binary operations fulfil our equation?
Kalmbach embedding

- A method of embedding any arbitrary poset P into a concrete OML $L = K(L)$, used by Kalmbach and extended by Harding (1991) and Mayet and Navara (1995).
Kalmbach embedding

- A method of embedding any arbitrary poset P into a concrete OML $L = K(L)$, used by Kalmbach and extended by Harding (1991) and Mayet and Navara (1995).
- Given any poset P, then there exists an OML L and an embedding
 $\phi : P \rightarrow L$
Kalmbach embedding

- A method of embedding any arbitrary poset P into a concrete OML $L = K(L)$, used by Kalmbach and extended by Harding (1991) and Mayet and Navara (1995).
- Given any poset P, then there exists an OML L and an embedding
 \[\phi : P \rightarrow L \]
 for $x, y \in P$

 1. $x \leq y \iff \phi(x) \leq \phi(y)$
 2. if $x \land y$ exists, then $\phi(x) \land \phi(y) = \phi(x \land y)$
 3. if $x \lor y$ exists, then $\phi(x) \lor \phi(y) = \phi(x \lor y)$
• A method of embedding any arbitrary poset P into a concrete OML $L = K(L)$, used by Kalmbach and extended by Harding (1991) and Mayet and Navara (1995).

• Given any poset P, then there exists an OML L and an embedding
 $$\phi : P \rightarrow L$$
for $x, y \in P$

 1. $x \leq y \iff \phi(x) \leq \phi(y)$
 2. if $x \wedge y$ exists, then $\phi(x) \wedge \phi(y) = \phi(x \wedge y)$
 3. if $x \vee y$ exists, then $\phi(x) \vee \phi(y) = \phi(x \vee y)$

• L can then be embedded into a Boolean algebra by preserving the lattice operations.
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Kalmbach embedding

Figure: Greechie- and Hasse diagram of $2^3 \oplus 2^2$
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Kalmbach embedding

Figure: Greechie- and Hasse diagram of $2^3 \oplus 2^2$

Which is the Kalmbach embedding of the pentagon.
Shall we find normal forms in orthomodular lattices?

Kalmbach embedding
Monotony in the first argument

This demonstrates that, for exploring the monotonicity in the first argument, we can discard all the operations with Beran’s number in \(\{65, 66, 67, \ldots, 80\} \).
Kalmbach embedding
Monotony in the first argument

This demonstrates that, for exploring the monotonicity in the first argument, we can discard all the operations \(\ast \) with Beran’s number in \(\{65, \ldots, 80\} \).
Shall we find normal forms in orthomodular lattices?

Kalmbach embedding
Monotony in the first argument
Kalmbach embedding
Monotony in the first argument

This demonstrates that, for exploring the monotonicity in the first argument, we can discard all the operations $*$ with Beran’s number in $\{65, \ldots, 80\}$.
This demonstrates that, for exploring the monotonicity in the first argument, we can discard all the operations \ast with Beran’s number in $\{65, \ldots, 80\}$. Further, we can even discard all the binary operations containing a'.
Results

Monotony in the first argument

At the end only 17 binary operations come into question to be non-decreasing in the first argument, they are the operations with Beran’s number and Navara’s notation:
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Results

Monotony in the first argument

At the end only 17 binary operations come into question to be non-decreasing in the first argument, they are the operations with Beran’s number and Navara’s notation:

1 \(\clubsuit \odot \), 2 \(\clubsuit \odot \), 3 \(\bullet \odot \), 6 \(\bullet \odot \),
At the end only 17 binary operations come into question to be non-decreasing in the first argument, they are the operations with Beran’s number and Navara’s notation:

\[\begin{align*}
1 & \quad 2 \quad 3 \quad 6 \quad 22 \quad 34 \quad 38 \quad 44 \quad 51 \quad 54 \quad 58 \quad 61 \quad 86 \quad 92 \quad 93 \quad 96
\end{align*} \]
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Results

Monotony in the first argument

At the end only 17 binary operations come into question to be non-decreasing in the first argument, they are the operations with Beran’s number and Navara’s notation:

1, 2, 3, 6, 22, 34, 38, 39, 44, 86, 92, 93, 96.
Results

Monotony in the first argument

At the end only 17 binary operations come into question to be non-decreasing in the first argument, they are the operations with Beran’s number and Navara’s notation:

1 \[\text{\textbullet\textbullet\textbullet\textbullet}\], 2 \[\text{\textbullet\textbullet\textbullet\textbullet}\], 3 \[\text{\textbullet\textbullet\textbullet\textbullet}\], 6 \[\text{\textbullet\textbullet\textbullet\textbullet}\],

22, \[\text{\textbullet\textbullet\textbullet\textbullet}\]

34 \[\text{\textbullet\textbullet\textbullet\textbullet}\], 38 \[\text{\textbullet\textbullet\textbullet\textbullet}\], 39 \[\text{\textbullet\textbullet\textbullet\textbullet}\], 44 \[\text{\textbullet\textbullet\textbullet\textbullet}\],

51 \[\text{\textbullet\textbullet\textbullet\textbullet}\], 54 \[\text{\textbullet\textbullet\textbullet\textbullet}\], 58 \[\text{\textbullet\textbullet\textbullet\textbullet}\], 61 \[\text{\textbullet\textbullet\textbullet\textbullet}\].
Results

Monotony in the first argument

At the end only 17 binary operations come into question to be non-decreasing in the first argument, they are the operations with Beran’s number and Navara’s notation:

1 $\circ\circ \cdot \circ\circ$, 2 $\circ\circ \cdot \circ\bullet$, 3 $\circ\bullet \cdot \circ\circ$, 6 $\circ\bullet \cdot \circ\bullet$,
22, $\circ\circ\circ\circ$
34 $\circ\bullet\bullet\circ$, 38 $\bullet\circ\bullet\circ$, 39 $\circ\bullet\bullet\bullet$, 44 $\circ\bullet\bullet\circ$,
51 $\circ\bullet\bullet\circ\circ$, 54 $\bullet\circ\bullet\bullet$, 58 $\bullet\bullet\bullet\circ$, 61 $\bullet\bullet\bullet\bullet$
86 $\bullet\bullet\circ\circ$, 92 $\bullet\bullet\circ\bullet$, 93 $\bullet\bullet\bullet\circ$ and 96 $\bullet\bullet\bullet\bullet$.
Results

These are exactly the binary operations for which holds

\[x \leq y \implies x \ast z \leq y \ast z \]
These are exactly the binary operations for which holds
\[x \leq y \implies x \ast z \leq y \ast z \]

We found also 17 operations which are non-decreasing in the second argument,
Shall we find normal forms in orthomodular lattices?

Results

6 operations are non-decreasing in both arguments,
Shall we find normal forms in orthomodular lattices?

Results

6 operations are non-decreasing in both arguments,

0 Beran's number 1 """"

"""" """" """" ••••
6 operations are non-decreasing in both arguments,

0 Beran's number 1

\(a \land b \) Beran's number 2
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Results

6 operations are non-decreasing in both arguments,

0 Beran’s number 1

\(a \land b \) Beran’s number 2

\(a \) Beran’s number 22
Shall we find normal forms in orthomodular lattices?

Results

6 operations are non-decreasing in both arguments,

0 Beran's number 1

\[a \wedge b \]
Beran's number 2

\[a \]
Beran's number 22

\[b \]
Beran's number 39
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Results

6 operations are non-decreasing in both arguments,

- 0 Beran’s number 1
- $a \land b$ Beran’s number 2
- a Beran’s number 22
- b Beran’s number 39
- $a \lor b$ Beran’s number 92
Results

6 operations are non-decreasing in both arguments,

0 Beran’s number 1

\(a \land b\) Beran’s number 2

\(a\) Beran’s number 22

\(b\) Beran’s number 39

\(a \lor b\) Beran’s number 92

1 Beran’s number 96
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Results
We also reversed our initial inequation For which of the 96 binary operations $*$ in an OML, the following inequality holds:

$$x \leq y \implies x * z \geq y * z$$
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Results

We also reversed our initial inequation For which of the 96 binary operations \ast in an OML, the following inequality holds:

$$x \leq y \Rightarrow x \ast z \geq y \ast z$$

0 Beran’s number 1
Results

We also reversed our initial inequation. For which of the 96 binary operations \ast in an OML, the following inequality holds:

$$x \leq y \implies x \ast z \geq y \ast z$$

0 Beran’s number 1

$a' \land b'$ Beran’s number 5
Results

We also reversed our initial inequation. For which of the 96 binary operations \ast in an OML, the following inequality holds:

$$x \leq y \Rightarrow x \ast z \geq y \ast z$$

- 0 Beran’s number 1
- $a' \land b'$ Beran’s number 5
- a' Beran’s number 75
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Results

We also reversed our initial inequation For which of the 96 binary operations $*$ in an OML, the following inequality holds:

$$x \leq y \Rightarrow x \ast z \geq y \ast z$$

- 0 Beran’s number 1
- $a' \land b'$ Beran’s number 5
- a' Beran’s number 75
- b' Beran’s number 58
We also reversed our initial inequation. For which of the 96 binary operations \ast in an OML, the following inequality holds:

$$x \leq y \implies x \ast z \geq y \ast z$$

0 Beran’s number 1

$a' \land b'$ Beran’s number 5

a' Beran’s number 75

b' Beran’s number 58

$a' \lor b'$ Beran’s number 95
Results

We also reversed our initial inequation. For which of the 96 binary operations \(\star \) in an OML, the following inequality holds:

\[
x \leq y \implies x \star z \geq y \star z
\]

\[
\begin{align*}
0 & \quad \text{Beran’s number 1} \\
\text{Beran’s number 5} & \quad a’ \land b’ \\
\text{Beran’s number 75} & \quad a’ \\
\text{Beran’s number 58} & \quad b’ \\
\text{Beran’s number 95} & \quad a’ \lor b’ \\
1 & \quad \text{Beran’s number 96}
\end{align*}
\]
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Results

After all there are 46 binary operations which fulfil

\[x \leq y \implies x \ast z \leq y \ast z \]

or

\[x \leq y \implies x \ast z \geq y \ast z \]

in the first or second argument
After all there are 46 binary operations which fulfil

\[x \leq y \implies x \ast z \leq y \ast z \]

or

\[x \leq y \implies x \ast z \geq y \ast z \]

in the first or second argument

and if \(a \ast b \) is one of them then also

\[a' \ast b \]

\[b \ast a \]

\[b' \ast a \]
Conclusions

Our aim was to reduce the complexity of some OML operations and to find a way to write them in a unique normal form.
Conclusions

Our aim was to reduce the complexity of some OML operations and to find a way to write them in a unique normal form. Therefore we need to find two operations which satisfy the distributive law.
Conclusions

Our aim was to reduce the complexity of some OML operations and to find a way to write them in a unique normal form. Therefore we need to find two operations which satisfy the distributive law. One of these operations need also to be associative and commutative.
Conclusions

Our aim was to reduce the complexity of some OML operations and to find a way to write them in a unique normal form.
Therefor we need to find two operations which satisfy the distributive law.
One of these operations need also to be associative and commutative.
The only two operations which fulfil the three conditions are the join and the meet.
Conclusions

Our aim was to reduce the complexity of some OML operations and to find a way to write them in a unique normal form. Therefore we need to find two operations which satisfy the distributive law. One of these operations need also to be associative and commutative. The only two operations which fulfil the three conditions are the join and the meet. so, we had to find the operations which distribute over the meet

\[(a_1 \ast b) \land (a_2 \ast b) \land \ldots \land (a_n \ast b) = (a_1 \land \ldots \land a_n) \ast b\]
Shall we find normal forms in orthomodular lattices?

Conclusions

• Standard methods of Boolean algebras are not applicable in OMLs.
• Shall we find normal forms in orthomodular lattices?
Conclusions

- Standard methods of Boolean algebras are not applicable in OMLs.
Conclusions

• Standard methods of Boolean algebras are not applicable in OMLs.

• Shall we find normal forms in orthomodular lattices?
• Thank you for your attention!
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

- Thank you for your attention!
- Questions?
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls
Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Definitions

- an **ortholattice** is a lattice with an ortho-complementation

 order-reversing \(a \leq b \Rightarrow b' \leq a' \)

 involution law \(a'' = a \)

 complement law \(a' \lor a = 1 \)

 \(a' \land a = 0 \)

Definitions

- an **ortholattice** is a lattice with an ortho-complementation

 order-reversing \(a \leq b \Rightarrow b' \leq a' \)

 involution law \(a''' = a \)

 complement law \(a' \lor a = 1 \)
 \(a' \land a = 0 \)

- a **modular lattice** is a lattice in which the modular law holds

 \[a \lor (b \land (a \lor c)) = (a \lor b) \land (a \lor c) \]
Definitions

- an **ortholattice** is a lattice with an orthocomplementation

 order-reversing \(a \leq b \Rightarrow b' \leq a' \)

 involution law \(a'' = a \)

 complement law \(a' \lor a = 1 \)
 \(a' \land a = 0 \)

- a **modular lattice** is a lattice in which the modular law holds

 \[a \lor (b \land (a \lor c)) = (a \lor b) \land (a \lor c) \]

- a **modular ortholattice** is a lattice which is orthocomplemented and modular
Definitions

- an **ortholattice** is a lattice with an ortho-complementation

 order-reversing \(a \leq b \Rightarrow b' \leq a' \)

 involution law \(a''' = a \)

 complement law \(a' \lor a = 1 \)
 \(a' \land a = 0 \)

- a **modular lattice** is a lattice in which the modular law holds

 \[a \lor (b \land (a \lor c)) = (a \lor b) \land (a \lor c) \]

- a **modular ortholattice** is a lattice which is orthocomplemented and modular

- an **orthomodular lattice** is a ortholattice in which the orthomodular law holds

 \[a \leq b \Rightarrow b = a \lor (a' \land b) \]