Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

# Shall we find normal forms in orthomodular lattices? 

Jeannine Gabriëls

Center for Machine Perception, Department of Cybernetics Faculty of Electrical Engineering, Czech Technical University in Prague

Technická 2, 16627 Prague 6, Czech Republic

FSTA 2012, Liptovský Ján

## Outline

Jeannine Gabriëls

- Definitions
- Definitions
- Motivation of today's talk


## Outline

- Definitions
- Motivation of today's talk
- Tools


## Outline

- Definitions
- Motivation of today's talk
- Tools
- Results


## Outline

- Definitions
- Motivation of today's talk
- Tools
- Results
- Conclusion


## Definitions

ortholattice, modular lattice, modular orthoand orthomodular lattice

- an ortholattice is a lattice with an orthocomplementation

$$
\begin{array}{lrl}
\text { order-reversing } & a \leq b & \Rightarrow b^{\prime} \leq a^{\prime} \\
\text { involution law } & a^{\prime \prime} & =a \\
\text { complement law } & a^{\prime} \vee a & =1 \\
& a^{\prime} \wedge a & =0
\end{array}
$$

## Definitions

ortholattice, modular lattice, modular orthoand orthomodular lattice

- an ortholattice is a lattice with an orthocomplementation

$$
\begin{array}{lrl}
\text { order-reversing } & a \leq b & \Rightarrow b^{\prime} \leq a^{\prime} \\
\text { involution law } & a^{\prime \prime} & =a \\
\text { complement law } & a^{\prime} \vee a & =1 \\
& a^{\prime} \wedge a & =0
\end{array}
$$

- a modular lattice is a lattice in which the modular law holds

$$
a \vee(b \wedge(a \vee c))=(a \vee b) \wedge(a \vee c)
$$

## Definitions

ortholattice, modular lattice, modular orthoand orthomodular lattice

- an ortholattice is a lattice with an orthocomplementation

$$
\begin{aligned}
& \text { order-reversing } \\
& \text { involution law } \\
& \text { complement law } \\
& \begin{array}{l}
a^{\prime} \vee a=1 \\
a^{\prime} \wedge a=0
\end{array}
\end{aligned}
$$

- a modular lattice is a lattice in which the modular law holds

$$
a \vee(b \wedge(a \vee c))=(a \vee b) \wedge(a \vee c)
$$

- a modular ortholattice is a lattice which is orthocomplemented and modular


## Definitions

ortholattice, modular lattice, modular orthoand orthomodular lattice

- an ortholattice is a lattice with an orthocomplementation

$$
\begin{array}{lrl}
\text { order-reversing } & a \leq b & \Rightarrow b^{\prime} \leq a^{\prime} \\
\text { involution law } & a^{\prime \prime} & =a \\
\text { complement law } & a^{\prime} \vee a & =1 \\
& a^{\prime} \wedge a & =0
\end{array}
$$

- a modular lattice is a lattice in which the modular law holds

$$
a \vee(b \wedge(a \vee c))=(a \vee b) \wedge(a \vee c)
$$

- a modular ortholattice is a lattice which is orthocomplemented and modular
- an orthomodular lattice is a ortholattice in which the orthomodular law holds


# Definitions 

- In an algebraic sense a word is a formal expression or finite string of symbols build up in variables and algebraic operations


## Definitions

- In an algebraic sense a word is a formal expression or finite string of symbols build up in variables and algebraic operations
Each word represents a particular element of the algebra, which is generated by the given variables and which is closed with respect to the given operations


## Definitions

word problem, decidability, normal form

- A word problem is the problem of deciding, whether or not two given words represent the same element of the algebra.


## Definitions

- A word problem is the problem of deciding, whether or not two given words represent the same element of the algebra.
- If there exists such an algorithm, then we say the word problem is decidable (solvable), otherwise it is undecidable (unsolvable).


## Definitions

- A word problem is the problem of deciding, whether or not two given words represent the same element of the algebra.
- If there exists such an algorithm, then we say the word problem is decidable (solvable), otherwise it is undecidable (unsolvable).
- A normal form also called canonical form of an object is a standard way of presenting that object.


## Definitions

- A word problem is the problem of deciding, whether or not two given words represent the same element of the algebra.
- If there exists such an algorithm, then we say the word problem is decidable (solvable), otherwise it is undecidable (unsolvable).
- A normal form also called canonical form of an object is a standard way of presenting that object. Philip M. Whitman proved that for all equal elements in a free lattice, there is one of shortest length.

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

Max W. Dehn knew that the word problem was difficult, he wrote:

Solving the word problem for all groups may be as impossible as solving all mathematical problems.

Max W. Dehn knew that the word problem was difficult, he wrote:

Solving the word problem for all groups may be as impossible as solving all mathematical problems.
P. Novikov (1955) and independently, W. Boone (1958) proved that the word problem is in general not solvable.

Max W. Dehn knew that the word problem was difficult, he wrote:

Solving the word problem for all groups may be as impossible as solving all mathematical problems.
P. Novikov (1955) and independently, W. Boone (1958) proved that the word problem is in general not solvable.

Skolem (1920) solved the (uniform) word problem for finitely presented lattices.

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## What about quantum logic?

Is the word problem related to quantum logic decidable?

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## What about quantum logic?

Is the word problem related to quantum logic decidable?
First results:

## What about quantum logic?

Is the word problem related to quantum logic decidable?
First results:

- for free ortholattices the word problem is decidable (G. Bruns, A. Meinander)

First results:

- for free ortholattices the word problem is decidable (G. Bruns, A. Meinander)
- but for free modular lattices $M(n)$ it is undecidable when $n \geq 4$


## What about quantum logic?

Is the word problem related to quantum logic decidable? First results:

- for free ortholattices the word problem is decidable (G. Bruns, A. Meinander)
- but for free modular lattices $M(n)$ it is undecidable when $n \geq 4$
- the word problem remains an open challenge in the orthomodular as well as in the modular-ortho case (Herrmann, Micol and Roddy)


## What about quantum logic?

Is the word problem related to quantum logic decidable? First results:

- for free ortholattices the word problem is decidable (G. Bruns, A. Meinander)
- but for free modular lattices $M(n)$ it is undecidable when $n \geq 4$
- the word problem remains an open challenge in the orthomodular as well as in the modular-ortho case (Herrmann, Micol and Roddy)
- for the free orthomodular lattices over two generators, the problem is decidable


## Motivation of today's talk

The absence of distributivity in OMLs makes it difficult to find the normal forms of complex expressions. Some tools were developed to overcome this problem:

## Motivation of today's talk

The absence of distributivity in OMLs makes it difficult to find the normal forms of complex expressions. Some tools were developed to overcome this problem:
Foulis-Holland Theorem

## Motivation of today's talk

The absence of distributivity in OMLs makes it difficult to find the normal forms of complex expressions. Some tools were developed to overcome this problem:
Foulis-Holland Theorem
Focusing technique (Greechie)

## Motivation of today's talk

The absence of distributivity in OMLs makes it difficult to find the normal forms of complex expressions. Some tools were developed to overcome this problem:

Foulis-Holland Theorem
Focusing technique (Greechie)
Computation in $F(a, b)$ (Navara)

## Motivation of today's talk

The absence of distributivity in OMLs makes it difficult to find the normal forms of complex expressions. Some tools were developed to overcome this problem:
Foulis-Holland Theorem
Focusing technique (Greechie)
Computation in $F(a, b)$ (Navara)

In all three techniques the commuting elements play a crucial role

$$
x C y \quad \text { if } \quad x=(x \wedge y) \vee\left(x \wedge y^{\prime}\right)
$$

Shall we find normal forms in orthomodular lattices?

## Today's talk

For which of the 96 binary operations $*$ in an OML, the following implication holds:

$$
x \leq y \quad \Rightarrow \quad x * z \leq y * z
$$

where $x, y$ and $z$ are elements of an OML.

Shall we find normal forms in orthomodular lattices?

## Why this question?

Is it possible to find operations $*$ for which

$$
\left(a_{1} * b\right) \wedge\left(a_{2} * b\right) \wedge \ldots \wedge\left(a_{n} * b\right)=\left(a_{1} \wedge \ldots \wedge a_{n}\right) * b
$$

holds?

## Tools

- There are $2^{4}=16$ binary Boolean operations, each of them represents 6 OML operations (Megill, Pavičić)


## Tools

- There are $2^{4}=16$ binary Boolean operations, each of them represents 6 OML operations (Megill, Pavičić)
- Navara's computation in $F(a, b, c)$


## Tools

- There are $2^{4}=16$ binary Boolean operations, each of them represents 6 OML operations (Megill, Pavičić)
- Navara's computation in $F(a, b, c)$
- Kalmbach embedding


## Tools

- There are $2^{4}=16$ binary Boolean operations, each of them represents 6 OML operations (Megill, Pavičić)
- Navara's computation in $F(a, b, c)$
- Kalmbach embedding
- Computer program (Hyčko) http://www.mat.savba.sk/~hycko/oml

For which of the 16 binary operations $*$ in an Boolean algebra, the following implication holds:

$$
x \leq y \quad \Rightarrow \quad x * z \leq y * z
$$

for $x, y$ and $z$, elements of an Boolean algebra.

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Boolean algebra

From the Boolean operations only two do not fulfil the equation

$$
x \leq y \quad \Rightarrow \quad x * z \leq y * z
$$

Shall we find normal forms in orthomodular lattices?

From the Boolean operations only two do not fulfil the equation

$$
x \leq y \quad \Rightarrow \quad x * z \leq y * z
$$

the equivalence $\leftrightarrow$

$$
a \leftrightarrow b=(a \wedge b) \vee\left(a^{\prime} \wedge b^{\prime}\right)= \begin{cases}1 & \text { if } a=b \\ 0 & \text { otherwise }\end{cases}
$$

From the Boolean operations only two do not fulfil the equation

$$
x \leq y \quad \Rightarrow \quad x * z \leq y * z
$$

the equivalence $\leftrightarrow$

$$
a \leftrightarrow b=(a \wedge b) \vee\left(a^{\prime} \wedge b^{\prime}\right)= \begin{cases}1 & \text { if } a=b \\ 0 & \text { otherwise }\end{cases}
$$

and its complement $\leftrightarrow$

$$
a \nless b=\left(a \wedge b^{\prime}\right) \vee\left(a^{\prime} \wedge b\right)= \begin{cases}0 & \text { if } a=b \\ 1 & \text { otherwise }\end{cases}
$$

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Corresponding in an OML

These two operations correspond to 12 OML operations

## Corresponding in an OML

These two operations correspond to 12 OML operations

- For the equivalence $\leftrightarrow$

$$
\begin{aligned}
& (x \wedge y) \vee\left(x^{\prime} \wedge y^{\prime}\right) \quad \text { Beran } 8 \quad \circ . \\
& \left(x^{\prime} \vee y\right) \wedge\left[x \vee\left(x^{\prime} \wedge y^{\prime}\right)\right] \quad \text { Beran } 24 \quad \text { ! } \because \circ \\
& \left(x \vee y^{\prime}\right) \wedge\left[y \vee\left(x^{\prime} \wedge y^{\prime}\right)\right] \quad \text { Beran } 40 \quad \stackrel{\bullet}{\bullet} \cdot \\
& \left(x^{\prime} \vee y\right) \wedge\left[y^{\prime} \vee(x \wedge y)\right] \quad \text { Beran } 56 \quad \Gamma \\
& \left(x \vee y^{\prime}\right) \wedge\left[x^{\prime} \vee(x \wedge y)\right] \quad \text { Beran } 72 \quad \bar{\circ} \circ \\
& \left(x^{\prime} \vee y\right) \wedge\left(x \vee y^{\prime}\right) \\
& \text { Beran } 88
\end{aligned}
$$

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Corresponding in an OML

- For its complement $\leftrightarrow<$

$$
\begin{aligned}
& \left(x \wedge y^{\prime}\right) \vee\left(x^{\prime} \wedge y\right) \quad \text { Beran } 9 \quad \because \because \\
& \left(x^{\prime} \vee y^{\prime}\right) \wedge\left[x \vee\left(x^{\prime} \wedge y\right)\right] \quad \text { Beran } 25 \text { ํㅇ } \\
& \left(x^{\prime} \vee y^{\prime}\right) \wedge\left[y \vee\left(x \wedge y^{\prime}\right)\right] \quad \text { Beran } 41 \quad \stackrel{\circ \cdot \circ}{\circ} \cdot \\
& (x \vee y) \wedge\left[y^{\prime} \vee\left(x^{\prime} \wedge y\right)\right] \quad \text { Beran } 57 \underset{\circ \circ \cdot \circ}{\circ} \\
& (x \vee y) \wedge\left[x^{\prime} \vee\left(x \wedge y^{\prime}\right)\right] \quad \text { Beran } 73 \quad . \circ \cdot \circ \\
& (x \vee y) \wedge\left(x^{\prime} \vee y^{\prime}\right) \\
& \text { Beran } 89
\end{aligned}
$$

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Calculation in $F(a, b, c)$

For two elements $x, y$ of an OML, it is said $x$ commutes with $y$ and written $x C y$ if

$$
x=(x \wedge y) \vee\left(x \wedge y^{\prime}\right)
$$

Shall we find normal forms in orthomodular lattices?

## Calculation in $F(a, b, c)$

For two elements $x, y$ of an OML, it is said $x$ commutes with $y$ and written $x C y$ if

$$
x=(x \wedge y) \vee\left(x \wedge y^{\prime}\right)
$$

It is easy to show that the following holds:

$$
x \leq y \Rightarrow x C y
$$

## Calculation in $F(a, b, c)$

For two elements $x, y$ of an OML, it is said $x$ commutes with $y$ and written $x C y$ if

$$
x=(x \wedge y) \vee\left(x \wedge y^{\prime}\right)
$$

It is easy to show that the following holds:

$$
x \leq y \Rightarrow x C y
$$

M. Navara described the OML $F(a, b, c)$ generated by three generators $a, b, c$ where $c C a$ and $c C b$.

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Calculation in $F(a, b, c)$

The generators $a, b$ and $c$ can be expressed by Navara's notation:

$$
\begin{aligned}
& a=a(1 \cdot \circ \circ, \mid \stackrel{\circ}{\bullet \cdot}){ }_{c} b \\
& b=a\left(\underline{\circ_{\bullet}^{\circ} \bullet}, \stackrel{\circ}{\circ} \bullet \mid\right)_{c} b \\
& c=a\left(\circ^{\circ} \cdot 0,0 \cdot\right)_{c}^{\circ} b .
\end{aligned}
$$

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Calculation in $F(a, b, c)$

The generators $a, b$ and $c$ can be expressed by Navara's notation:

$$
\begin{aligned}
& a=a(\stackrel{\circ}{\circ}, \underline{\circ}, \stackrel{\circ}{\circ})_{c} b \\
& b=a\left(\underline{\circ^{\circ} \bullet}, \underline{\circ}, \stackrel{\circ}{\circ}\right)_{c} b \\
& c=a(\circ \circ \circ, \circ)_{c} b . \\
& a \wedge c \in[0, c] \\
& b \wedge c^{\prime} \in\left[0, c^{\prime}\right]
\end{aligned}
$$

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Calculation in $F(a, b, c)$

## Our initial question:

## Calculation in $F(a, b, c)$

Our initial question:
For which binary operations $*$ holds:

$$
x \leq y \quad \Rightarrow \quad x * z \leq y * z
$$

where $x, y$ and $z$ are elements of an OML,

## Calculation in $F(a, b, c)$

Our initial question:
For which binary operations $*$ holds:

$$
x \leq y \quad \Rightarrow \quad x * z \leq y * z
$$

where $x, y$ and $z$ are elements of an OML, becomes by substituting

## Calculation in $F(a, b, c)$

Our initial question:
For which binary operations $*$ holds:

$$
x \leq y \quad \Rightarrow \quad x * z \leq y * z
$$

where $x, y$ and $z$ are elements of an OML, becomes by substituting $x$ by $(a \wedge c)$,

## Calculation in $F(a, b, c)$

Our initial question:
For which binary operations $*$ holds:

$$
x \leq y \quad \Rightarrow \quad x * z \leq y * z
$$

where $x, y$ and $z$ are elements of an OML, becomes by substituting $x$ by $(a \wedge c), y$ by $c$

## Calculation in $F(a, b, c)$

Our initial question:
For which binary operations $*$ holds:

$$
x \leq y \quad \Rightarrow \quad x * z \leq y * z
$$

where $x, y$ and $z$ are elements of an OML, becomes by substituting $x$ by $(a \wedge c), y$ by $c$ and $z$ by $b$.

## Calculation in $F(a, b, c)$

Our initial question:
For which binary operations $*$ holds:

$$
x \leq y \quad \Rightarrow \quad x * z \leq y * z
$$

where $x, y$ and $z$ are elements of an OML, becomes by substituting $x$ by $(a \wedge c), y$ by $c$ and $z$ by $b$. For which binary operations $*$ holds:

$$
(a \wedge c) * b \leq c * b
$$

where $a, b$ and $c$ are the generators of $F(a, b, c)$.

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Calculation in $F(a, b, c)$

- By choosing $c=1$ :

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Calculation in $F(a, b, c)$

- By choosing $c=1$ :

$$
a * b \leq 1 * b
$$

Shall we find normal forms in orthomodular lattices?

## Calculation in $F(a, b, c)$

- By choosing $c=1$ :

$$
a * b \leq 1 * b
$$

We could eliminate further 40 operations from our list of candidates.

## Calculation in $F(a, b, c)$

- By choosing $c=1$ :

$$
a * b \leq 1 * b
$$

We could eliminate further 40 operations from our list of candidates.

Do the remaining 44 binary operations fulfil our equation?

Shall we find normal forms in orthomodular lattices?

## Kalmbach embedding

- A method of embedding any arbitrary poset $P$ into a concrete OML $L=K(L)$, used by Kalmbach and extended by Harding (1991) and Mayet and Navara (1995).
- A method of embedding any arbitrary poset $P$ into a concrete OML $L=K(L)$, used by Kalmbach and extended by Harding (1991) and Mayet and Navara (1995).
- Given any poset $P$, then there exists an OML $L$ and an embedding
$\phi: P \rightarrow L$
- A method of embedding any arbitrary poset $P$ into a concrete OML $L=K(L)$, used by Kalmbach and extended by Harding (1991) and Mayet and Navara (1995).
- Given any poset $P$, then there exists an OML $L$ and an embedding
$\phi: P \rightarrow L$ for $x, y \in P$
(1) $x \leq y \Leftrightarrow \phi(x) \leq \phi(y)$
(2) if $x \wedge y$ exists, then $\phi(x) \wedge \phi(y)=\phi(x \wedge y)$
(3) if $x \vee y$ exists, then $\phi(x) \vee \phi(y)=\phi(x \vee y)$


## Kalmbach embedding

- A method of embedding any arbitrary poset $P$ into a concrete OML $L=K(L)$, used by Kalmbach and extended by Harding (1991) and Mayet and Navara (1995).
- Given any poset $P$, then there exists an OML $L$ and an embedding
$\phi: P \rightarrow L$ for $x, y \in P$
(1) $x \leq y \Leftrightarrow \phi(x) \leq \phi(y)$
(2) if $x \wedge y$ exists, then $\phi(x) \wedge \phi(y)=\phi(x \wedge y)$
(3) if $x \vee y$ exists, then $\phi(x) \vee \phi(y)=\phi(x \vee y)$
- $L$ can then be embedded into a Boolean algebra by preserving the lattice operations.

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Kalmbach embedding



Figure: Greechie- and Hasse diagram of $2^{3} \oplus 2^{2}$


Figure: Greechie- and Hasse diagram of $2^{3} \oplus 2^{2}$

Which is the Kalmbach embedding of the pentagon.

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Kalmbach embedding

Monotony in the first argument


## Kalmbach embedding

Monotony in the first argument


This demonstrates that, for exploring the monotonicity in the first argument, we can discard all the operations * with Beran's number in $\{65, \ldots, 80\}$.

Shall we find normal forms in orthomodular lattices?

## Kalmbach embedding

Monotony in the first argument


## Kalmbach embedding

Monotony in the first argument


This demonstrates that, for exploring the monotonicity in the first argument, we can discard all the operations * with Beran's number in $\{65, \ldots, 80\}$.

## Kalmbach embedding

Monotony in the first argument


This demonstrates that, for exploring the monotonicity in the first argument, we can discard all the operations * with Beran's number in $\{65, \ldots, 80\}$.
Further, we can even discard all the binary operations containing $a^{\prime}$.

## Results

Monotony in the first argument

At the end only 17 binary operations come into question to be non-decreasing in the first argument, they are the operations with Beran's number and Navara's notation:

## Results

Monotony in the first argument

At the end only 17 binary operations come into question to be non-decreasing in the first argument, they are the operations with Beran's number and Navara's notation:


## Results

Monotony in the first argument

At the end only 17 binary operations come into question to be non-decreasing in the first argument, they are the operations with Beran's number and Navara's notation:

22, $\because \circ$

## Results

Monotony in the first argument

At the end only 17 binary operations come into question to be non-decreasing in the first argument, they are the operations with Beran's number and Navara's notation:

22,
$34 \underset{\circ}{\circ}$

## Results

Monotony in the first argument

At the end only 17 binary operations come into question to be non-decreasing in the first argument, they are the operations with Beran's number and Navara's notation:

1 "ْ
22,



## Results

Monotony in the first argument

At the end only 17 binary operations come into question to be non-decreasing in the first argument, they are the operations with Beran's number and Navara's notation:

22,




## Results

These are exactly the binary operations for which holds $x \leq y \quad \Rightarrow \quad x * z \leq y * z$

Shall we find normal forms in orthomodular lattices?

## Results

These are exactly the binary operations for which holds $x \leq y \quad \Rightarrow \quad x * z \leq y * z$
We found also 17 operations which are non-decreasing in the second argument,

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Results

6 operations are non-decreasing in both arguments,

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Results

6 operations are non-decreasing in both arguments, $0 \quad$ Beran's number $1 \quad \circ$.

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Results

6 operations are non-decreasing in both arguments, $0 \quad$ Beran's number $1 \quad .0 \circ$ $a \wedge b$ Beran's number 2
$\because$

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Results

6 operations are non-decreasing in both arguments, 0 Beran's number $1 \quad$.
$a \wedge b$ Beran's number 2 $.0^{\circ}$
a Beran's number 22
$\because \div$

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Results

6 operations are non-decreasing in both arguments, $0 \quad$ Beran's number $1 \quad . \circ$
$a \wedge b \quad$ Beran's number 2 $0^{\circ}$
a Beran's number 22
b Beran's number 39 ○○○

6 operations are non-decreasing in both arguments, 0 Beran's number 1
$a \wedge b \quad$ Beran's number 2 $.0^{\circ}$
a Beran's number 22
b Beran's number 39 ○○○
$a \vee b$ Beran's number 92
\%

6 operations are non-decreasing in both arguments, 0 Beran's number 1
$a \wedge b$ Beran's number $2 \quad . \circ 0^{\circ}$.
a Beran's number 22
$\stackrel{\circ}{\circ}$
b Beran's number 39
$\stackrel{\circ}{\circ} \cdot$
$a \vee b$ Beran's number 92
$\because \cdot$
1 Beran's number $96 \quad \circ$

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Results



Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Results

We also reversed our initial inequation For which of the 96 binary operations $*$ in an OML, the following inequality holds:

$$
x \leq y \quad \Rightarrow \quad x * z \geq y * z
$$

## Results

We also reversed our initial inequation For which of the 96 binary operations $*$ in an OML, the following inequality holds:

$$
\begin{aligned}
& x \leq y \quad \Rightarrow \quad x * z \geq y * z \\
& 0 \quad \text { Beran's number } 1 \quad \text {.ọ. }
\end{aligned}
$$

## Results

We also reversed our initial inequation For which of the 96 binary operations $*$ in an OML, the following inequality holds:

$$
\begin{gathered}
x \leq y \quad \Rightarrow \quad x * z \geq y * z \\
0 \quad \text { Beran's number } 1 \\
a^{\prime} \wedge b^{\prime} \quad \text { Beran's number } 5 \\
\ddots \circ \circ \\
\circ \circ \circ
\end{gathered}
$$

## Results

We also reversed our initial inequation For which of the 96 binary operations $*$ in an OML, the following inequality holds:

\[

\]

## Results

We also reversed our initial inequation For which of the 96 binary operations $*$ in an OML, the following inequality holds:

$$
x \leq y \quad \Rightarrow \quad x * z \geq y * z
$$

0 Beran's number $1 \quad$.
$a^{\prime} \wedge b^{\prime} \quad$ Beran's number 5
a' Beran's number $75 \quad \circ \quad \circ$
$b^{\prime} \quad$ Beran's number $58 \quad \Gamma \quad \circ_{\circ^{\circ}}$

## Results

We also reversed our initial inequation For which of the 96 binary operations $*$ in an OML, the following inequality holds:

$$
x \leq y \quad \Rightarrow \quad x * z \geq y * z
$$

0 Beran's number $1 \quad$.
$a^{\prime} \wedge b^{\prime} \quad$ Beran's number 5
a' Beran's number $75 \quad \circ \quad \circ$
$b^{\prime} \quad$ Beran's number $58 \quad \square_{\circ^{\circ}}^{\circ}$
$a^{\prime} \vee b^{\prime}$ Beran's number $95 \quad \circ \quad \circ$

## Results

We also reversed our initial inequation For which of the 96 binary operations $*$ in an OML, the following inequality holds:

$$
x \leq y \quad \Rightarrow \quad x * z \geq y * z
$$

0 Beran's number $1 \quad$.
$a^{\prime} \wedge b^{\prime} \quad$ Beran's number 5
a' Beran's number $75 \quad \circ \quad \circ$
$b^{\prime} \quad$ Beran's number $58 \quad \square_{\circ^{\circ}}^{\circ}$
$a^{\prime} \vee b^{\prime} \quad$ Beran's number $95 \quad \circ \circ$
1 Beran's number 96
官

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Results

After all there are 46 binary operations which fulfil

$$
\begin{aligned}
& x \leq y \Rightarrow x * z \leq y * z \\
& \text { or } \\
& x \leq y \Rightarrow x * z \geq y * z
\end{aligned}
$$

in the first or second argument

After all there are 46 binary operations which fulfil

$$
\begin{aligned}
& x \leq y \quad \Rightarrow \quad x * z \leq y * z \\
& \text { or } \\
& x \leq y \quad \Rightarrow \quad x * z \geq y * z
\end{aligned}
$$

in the first or second argument and if $a * b$ is one of them then also

$$
\begin{aligned}
& a^{\prime} * b \\
& b * a \\
& b^{\prime} * a
\end{aligned}
$$

## Conclusions

Our aim was to reduce the complexity of some OML operations and to find a way to write them in a unique normal form.

## Conclusions

Our aim was to reduce the complexity of some OML operations and to find a way to write them in a unique normal form.
Therefor we need to find two operations which satisfy the distributive law.

## Conclusions

Our aim was to reduce the complexity of some OML operations and to find a way to write them in a unique normal form.
Therefor we need to find two operations which satisfy the distributive law.
One of these operations need also to be associative and commutative.

## Conclusions

Our aim was to reduce the complexity of some OML operations and to find a way to write them in a unique normal form.
Therefor we need to find two operations which satisfy the distributive law.
One of these operations need also to be associative and commutative.
The only two operations which fulfil the three conditions are the join and the meet.

## Conclusions

Our aim was to reduce the complexity of some OML operations and to find a way to write them in a unique normal form.
Therefor we need to find two operations which satisfy the distributive law.
One of these operations need also to be associative and commutative.
The only two operations which fulfil the three conditions are the join and the meet.
so, we had to find the operations which distribute over the meet

$$
\left(a_{1} * b\right) \wedge\left(a_{2} * b\right) \wedge \ldots \wedge\left(a_{n} * b\right)=\left(a_{1} \wedge \ldots \wedge a_{n}\right) * b
$$

Shall we find normal forms in orthomodular lattices?

Jeannine Gabriëls

## Conclusions

## Conclusions

- Standard methods of Boolean algebras are not applicable in OMLs.


## Conclusions

- Standard methods of Boolean algebras are not applicable in OMLs.
- Shall we find normal forms in orthomodular lattices?
- Thank you for your attention!
- Thank you for your attention!
- Questions?


# Shall we find 

 normal forms in orthomodularlattices?
Jeannine Gabriëls

## Definitions

- an ortholattice is a lattice with an orthocomplementation

$$
\begin{array}{lrl}
\text { order-reversing } & a \leq b & \Rightarrow b^{\prime} \leq a^{\prime} \\
\text { involution law } & a^{\prime \prime} & =a \\
\text { complement law } & a^{\prime} \vee a & =1 \\
& a^{\prime} \wedge a & =0
\end{array}
$$

## Definitions

- an ortholattice is a lattice with an orthocomplementation

$$
\begin{array}{lrl}
\text { order-reversing } & a \leq b & \Rightarrow b^{\prime} \leq a^{\prime} \\
\text { involution law } & a^{\prime \prime} & =a \\
\text { complement law } & a^{\prime} \vee a & =1 \\
& a^{\prime} \wedge a & =0
\end{array}
$$

- a modular lattice is a lattice in which the modular law holds

$$
a \vee(b \wedge(a \vee c))=(a \vee b) \wedge(a \vee c)
$$

## Definitions

- an ortholattice is a lattice with an orthocomplementation

$$
\begin{array}{ll}
\text { order-reversing } & a \leq b \\
\text { involution law } & \Rightarrow b^{\prime} \leq a^{\prime} \\
a^{\prime \prime} & =a \\
\text { complement law } & a^{\prime} \vee a=1 \\
& a^{\prime} \wedge a=0
\end{array}
$$

- a modular lattice is a lattice in which the modular law holds

$$
a \vee(b \wedge(a \vee c))=(a \vee b) \wedge(a \vee c)
$$

- a modular ortholattice is a lattice which is orthocomplemented and modular


## Definitions

- an ortholattice is a lattice with an orthocomplementation

$$
\begin{array}{lrl}
\text { order-reversing } & a \leq b & \Rightarrow b^{\prime} \leq a^{\prime} \\
\text { involution law } & a^{\prime \prime} & =a \\
\text { complement law } & a^{\prime} \vee a & =1 \\
& a^{\prime} \wedge a & =0
\end{array}
$$

- a modular lattice is a lattice in which the modular law holds

$$
a \vee(b \wedge(a \vee c))=(a \vee b) \wedge(a \vee c)
$$

- a modular ortholattice is a lattice which is orthocomplemented and modular
- an orthomodular lattice is a ortholattice in which the orthomodular law holds

$$
a \leq b \Rightarrow b=a \vee\left(a^{\prime} \wedge b\right)
$$

