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Introduction and background

Aim of this talk

To deliver results on (continuous) solutions of the following general
functional equation (x , y ∈ [0, 1], and α ∈ ]0, 1[ fixed)

T1(T2(α, x), y) = T3(x ,T4(α, y)),

where T1,T2,T3,T4 are triangular norms, in two particular cases:
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Introduction and background

Associativity

A function T : [0, 1]2 → [0, 1] is called associative if it satisfies

T (T (x , y), z) = T (x ,T (y , z)) for all x , y , z ∈ [0, 1].
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Associativity

A function T : [0, 1]2 → [0, 1] is called associative if it satisfies

T (T (x , y), z) = T (x ,T (y , z)) for all x , y , z ∈ [0, 1].

An example is the product TP(x , y) = xy .

Let us fix y = α ∈ ]0, 1[. Then we still have

TP(TP(x , α), z) = TP(x ,TP(α, z)) for all x , z ∈ [0, 1].
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Introduction and background

Associativity modified

Keep TP inside fixed, and consider a general T outside:

T (TP(x , α), z) = T (x ,TP(α, z)) for all x , z ∈ [0, 1].

J. Fodor (Óbuda Uiversity) Migrative type equations FSTA 2012 7 / 63



Introduction and background

Associativity modified

Keep TP inside fixed, and consider a general T outside:

T (TP(x , α), z) = T (x ,TP(α, z)) for all x , z ∈ [0, 1].

Keep TP outside fixed, and consider a general T inside:

TP(T (x , α), z) = TP(x ,T (α, z)) for all x , z ∈ [0, 1].

J. Fodor (Óbuda Uiversity) Migrative type equations FSTA 2012 7 / 63



Introduction and background

Associativity modified

Keep TP inside fixed, and consider a general T outside:

T (TP(x , α), z) = T (x ,TP(α, z)) for all x , z ∈ [0, 1].

Keep TP outside fixed, and consider a general T inside:

TP(T (x , α), z) = TP(x ,T (α, z)) for all x , z ∈ [0, 1].

Question 1: is there any solution T of the last equations that differs
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Introduction and background

Associativity modified

Keep TP inside fixed, and consider a general T outside:

T (TP(x , α), z) = T (x ,TP(α, z)) for all x , z ∈ [0, 1].

Keep TP outside fixed, and consider a general T inside:

TP(T (x , α), z) = TP(x ,T (α, z)) for all x , z ∈ [0, 1].

Question 1: is there any solution T of the last equations that differs
from TP?

Question 2: what is the link between solutions of the two equations
(if any)?
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Introduction and background

Example

Consider Tβ defined as follows:

Tβ(x , y) =

{

min(x , y) if max(x , y) = 1,
βxy otherwise,

where β is an arbitrary number from [0, 1].

Tβ is a t-norm, and it satisfies Tβ(αx , y) = Tβ(x , αy) for
(x , y) ∈ [0, 1[.

Notice the following particular cases:

if β = 0 then Tβ = TD the drastic t-norm;
if β = 1 then Tβ = TP the product.

J. Fodor (Óbuda Uiversity) Migrative type equations FSTA 2012 8 / 63
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Migrative t-norms
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Migrative t-norms

Migrative t-norms

Definition

Let α ∈ ]0, 1[ and T1,T2 be t-norms. We say that the pair (T1,T2) is
α-migrative (or, equivalently, that T1 is α-migrative with respect to T2, in
symbols T1∼

α
T2) if the following functional equation holds:

T1(T2(α, x), y) = T1(x ,T2(α, y)) for all (x , y) ∈ [0, 1]2.
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Migrative t-norms

Migrative t-norms

Definition

Let α ∈ ]0, 1[ and T1,T2 be t-norms. We say that the pair (T1,T2) is
α-migrative (or, equivalently, that T1 is α-migrative with respect to T2, in
symbols T1∼

α
T2) if the following functional equation holds:

T1(T2(α, x), y) = T1(x ,T2(α, y)) for all (x , y) ∈ [0, 1]2.

Obviously, we have T1∼
α
T1 for any t-norm T and for each α ∈ ]0, 1[.

In other words: the relation ∼
α

is reflexive on the set of all t-norms.
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Migrative t-norms

Equivalent forms of α-migrativity

Theorem

Let α be in ]0, 1[ and T1,T2 triangular norms. Then the following

statements are equivalent.

(i) (T1,T2) is α-migrative: T1(T2(α, x), y) = T1(x ,T2(α, y));
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Migrative t-norms

Equivalent forms of α-migrativity

Theorem

Let α be in ]0, 1[ and T1,T2 triangular norms. Then the following

statements are equivalent.

(i) (T1,T2) is α-migrative: T1(T2(α, x), y) = T1(x ,T2(α, y));

(ii) (T2,T1) is α-migrative: T2(T1(α, x), y) = T2(x ,T1(α, y));

(iii) T1(α, x) = T2(α, x) for all x ∈ [0, 1].

Corollary

The relation
α
∼ is an equivalence relation on the set of all t-norms.
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Migrative t-norms

Further properties

If T1 ∼
α
T2 and ]a, b[ is a non-empty subinterval of [0, 1], and

α ∈ ]a, b[ then for the ordinal sums (〈a, b,T1〉) and (〈a, b,T2〉) we
have (〈a, b,T1〉)∼

γ
(〈a, b,T2〉), where γ = α−a

b−a
.
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Further properties

If T1 ∼
α
T2 and ]a, b[ is a non-empty subinterval of [0, 1], and

α ∈ ]a, b[ then for the ordinal sums (〈a, b,T1〉) and (〈a, b,T2〉) we
have (〈a, b,T1〉)∼

γ
(〈a, b,T2〉), where γ = α−a

b−a
.

Recall that for each t-norm T and for each strictly increasing bijection
ϕ : [0, 1] → [0, 1] the function Tϕ : [0, 1]2 → [0, 1] defined by

Tϕ(x , y) = ϕ−1(T (ϕ(x), ϕ(y)))

is also a t-norm.

Let ϕ : [0, 1] → [0, 1] be a strictly increasing bijection, α ∈ ]0, 1[ and
T1,T2 be two t-norms. If (T1,T2) is α-migrative then ((T1)ϕ, (T2)ϕ)
is ϕ(α)-migrative.
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Migrative t-norms

Cases considered

We study three particular cases of t-norms that are α-migrative with
respect to a fixed T0:

T0 = TM,

T0 = TP,

T0 = TL.

Using these results, as a fourth case we study α-migrativity with
respect to arbitrary continuous t-norms:

T0 = (〈ai , bi ,Ti〉)i∈Γ .
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Migrative t-norms Migrativity with respect to the minimum

Migrativity with respect to the minimum
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Migrative t-norms Migrativity with respect to the minimum

Migrativity with respect to TM

Characterization

T (min(α, x), y) = T (x ,min(α, y))
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Migrative t-norms Migrativity with respect to the minimum

Migrativity with respect to TM

Characterization

T (min(α, x), y) = T (x ,min(α, y))

Theorem

A t-norm T is α-migrative with respect to TM if and only if there exist

two t-norms T1 and T2 such that T can be written in the following form:

T (x , y) =



























αT1

( x

α
,
y

α

)

if x , y ∈ [0, α],

α+ (1 − α)T2

(

x − α

1 − α
,
y − α

1 − α

)

if x , y ∈ [α, 1],

min(x , y) otherwise.
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Migrative t-norms Migrativity with respect to the minimum

Migrativity with respect to TM

Illustration

alpha

alpha0

1

1

min

minT1

T2
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Migrative t-norms Migrativity with respect to strict t-norms

Migrativity with respect to TP

T (αx , y) = T (x , αy)
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Migrative t-norms Migrativity with respect to strict t-norms

Migrativity with respect to TP

T (αx , y) = T (x , αy)

Historically, this is the notion introduced originally by Durante and
Sarkoczi (2008).

Rooted in an open problem of the 2nd FSTA, see Mesiar and Novák
(1996).
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Migrative t-norms Migrativity with respect to strict t-norms

Migrativity with respect to TP

Continuous case, necessary conditions
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Migrativity with respect to TP

Continuous case, necessary conditions

Theorem

If a continuous t-norm T is α-migrative with respect to TP then T is

strict.
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Migrative t-norms Migrativity with respect to strict t-norms

Migrativity with respect to TP

Continuous case, necessary conditions

Theorem

If a continuous t-norm T is α-migrative with respect to TP then T is

strict.

If t denotes an additive generator of an α-migrative continuous t-norm T

then t satisfies the following functional equation for all x ∈ [0, 1]:

t(αx) = t(α) + t(x). (1)
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Migrative t-norms Migrativity with respect to strict t-norms

Migrativity with respect to TP

Continuous case, characterization and construction

Theorem

Suppose t is an additive generator of a strict t-norm T and α is in ]0, 1[.
Then the following statements are equivalent:

(i) T is α-migrative with respect to TP;
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Migrative t-norms Migrativity with respect to strict t-norms

Migrativity with respect to TP

Continuous case, characterization and construction

Theorem

Suppose t is an additive generator of a strict t-norm T and α is in ]0, 1[.
Then the following statements are equivalent:

(i) T is α-migrative with respect to TP;

(ii) t satisfies the functional equation t(αx) = t(α) + t(x);

(iii) there exists a continuous, strictly decreasing function t0 from [α, 1] to
the non-negative reals with t0(α) < +∞ and t0(1) = 0 such that

t(x) = k · t0(α) + t0

( x

αk

)

if x ∈
]

αk+1, αk
]

, (2)

where k is any non-negative integer.
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Migrative t-norms Migrativity with respect to strict t-norms

Constructing an additive generator
An example

Let α =
3

4
and

t0(x) = 4 − 4x for x ∈

[

3

4
, 1

]

.

Then t

(

(

3

4

)k
)

= k , and linear in between.
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Migrative t-norms Migrativity with respect to strict t-norms

Constructing an additive generator
A graphical illustration

t(x) = k · t0(α) + t0

( x

αk

)

if x ∈
]

αk+1, αk
]

1

1

2

3

4

5

3/4(3/4)2(3/4)3(3/4)4
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Migrativity with respect to nilpotent t-norms
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Migrative t-norms Migrativity with respect to nilpotent t-norms

Migrativity with respect to TL

Continuous case, necessary condition

T (max(α + x − 1, 0), y) = T (x ,max(α + y − 1, 0))

J. Fodor (Óbuda Uiversity) Migrative type equations FSTA 2012 24 / 63



Migrative t-norms Migrativity with respect to nilpotent t-norms

Migrativity with respect to TL

Continuous case, necessary condition

T (max(α + x − 1, 0), y) = T (x ,max(α + y − 1, 0))

Theorem

Assume that T is a continuous t-norm that is α-migrative with respect to

TL. Then there exists an automorphism ϕ of the unit interval such that

T = (TL)ϕ. That is, we have

T (x , y) = (TL)ϕ (x , y) = ϕ−1(max(ϕ(x)+ϕ(y)−1, 0)) for all x , y ∈ [0, 1].
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Migrative t-norms Migrativity with respect to nilpotent t-norms

Migrativity with respect to TL

Continuous case, characterization and construction

Theorem

Let α be in ]0, 1[ and n = max{k ∈ N | 1 − k(1 − α) > 0}.

A t-norm T (x , y) = ϕ−1(max(ϕ(x) + ϕ(y) − 1, 0)) (x , y ∈ [0, 1]) is

α-migrative with respect to TL if and only if there exist an automorphism

ψ0 of the unit interval with

ψ0

(

n − (n + 1)α

1 − α

)

=
n− (n + 1)α

1 − α
, (3)

such that
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Migrative t-norms Migrativity with respect to nilpotent t-norms

Migrativity with respect to TL

Continuous case, characterization and construction

Theorem (cont’d)

ϕ(x) = 1 − k(1 − α) + (1 − α)ψ0

(

x − 1 + k(1 − α)

1 − α

)

(4)

if x ∈ ]1 − k(1 − α), 1 − (k − 1)(1 − α)] and k ≤ n,

and

ϕ(x) = 1 − (n + 1)(1 − α) + (1 − α)ψ0

(

x − 1 + (n + 1)(1 − α)

1 − α

)

(5)

if x ∈ [0, 1 − n(1 − α)].
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Migrative t-norms Migrativity with respect to nilpotent t-norms

Migrativity with respect to TL

Graphical construction
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Migrative t-norms Migrativity with respect to a continuous ordinal sum

Migrativity with respect to a continuous ordinal
sum
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Migrative t-norms Migrativity with respect to a continuous ordinal sum

Migrativity with respect to a continuous
ordinal sum

We study continuous t-norms T that are α-migrative with respect to
a fixed continuous t-norm T0;

TCo: the set of all continuous t-norms;

TAr: the set of all continuous Archimedean t-norms;

T = (〈ai , bi ,Ti 〉)i∈Γ, T0 = (〈a0j , b0j ,T0j〉)j∈Γ0 ,

where Ti ,T0j ∈ TAr for all i ∈ Γ and j ∈ Γ0.

for any α ∈ ]0, 1[ there are two exhaustive and mutually exclusive
cases:

α is an idempotent element of T0;

there exists a k ∈ Γ such that α ∈ ]a0k , b0k [.
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Migrative t-norms Migrativity with respect to a continuous ordinal sum

Migrativity with respect to a continuous
ordinal sum
T0(α, α) = α, characterization

Theorem

Suppose T0 is a continuous t-norm and α ∈ ]0, 1[ is an idempotent

element of T0. Then the following statements are equivalent for a

continuous t-norm T:

(i) T is α-migrative with respect to T0;

(ii) T is α-migrative with respect to TM;

(iii) there exist continuous t-norms T1 and T2 such that T can be written

as T = (〈0, α,T1〉, 〈α, 1,T2〉).
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Migrative t-norms Migrativity with respect to a continuous ordinal sum

Migrativity with respect to a continuous
ordinal sum
T0(α, α) < α, characterization

Theorem

Suppose T0 = (〈a0j , b0j ,T0j 〉)j∈Γ0 is a continuous t-norm and α ∈]a0k , b0k [
for some k ∈ Γ0. Then the following statements are equivalent for a

continuous t-norm T.

(i) T is α-migrative with respect to T0;

(ii) There exist t-norms T1,T3 ∈ TCo and T2 ∈ TAr such that

(a) T = (〈0, a0k ,T1〉, 〈a0k , b0k ,T2〉, 〈b0k , 1,T3〉), and

(b) T2 is

(

α− a0k

b0k − a0k

)

-migrative with respect to T0k .
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Migrative t-norms Migrativity with respect to a continuous ordinal sum

Migrativity with respect to a continuous
ordinal sum
Remarks

In the previous theorem a0k = 0 (or b0k = 1) is possible.

α-migrativity is restrictive on a continuous T mainly in a
neighbourhood of α. This is just α itself if α is an idempotent
element of T0, and it is the square ]a0k , b0k [2 otherwise.

Outside this neighbourhood T can be defined arbitrarily in such a way
that the resulting t-norm be continuous.

The summand T2 ∈ TAr in the “middle” of
T = (〈0, a0k ,T1〉, 〈a0k , b0k ,T2〉, 〈b0k , 1,T3〉) can be determined by
the summand T0k (details in Fodor and Rudas, 2011).
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Migrative t-norms Migrativity with respect to a continuous ordinal sum

A T0 for two examples

The ordinal sum T0 = (〈1/6, 1/3,TL〉, 〈1/3, 2/3,TP〉, 〈5/6, 1,TP〉).
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Migrative t-norms Migrativity with respect to a continuous ordinal sum

Example 1
T0 with α = 2/3 (idempotent element)

The ordinal sum T0, and α = 2/3 (left). 2/3-migrative t-norm T with
respect to T0 (right).
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Migrative t-norms Migrativity with respect to a continuous ordinal sum

Example 2
T0 with α = 5/12 (non-idempotent element)

The ordinal sum T0, and α = 5/12 (left). 5/12-migrative t-norm T with
respect to T0 (right).

J. Fodor (Óbuda Uiversity) Migrative type equations FSTA 2012 35 / 63



Cross-migrative t-norms

Cross-migrative t-norms
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Cross-migrative t-norms

Cross-migrative t-norms

Definition

Let α ∈ ]0, 1[ and T1,T2 be t-norms. We say that the pair (T1,T2) is
α-cross-migrative (or, equivalently, that T1 is α-cross-migrative with
respect to T2, in symbols T1

α
∼T2) if the following functional equation

holds:

T1(T2(α, x), y) = T2(x ,T1(α, y)) for all (x , y) ∈ [0, 1]2. (6)
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Cross-migrative t-norms

Cross-migrative t-norms

Definition

Let α ∈ ]0, 1[ and T1,T2 be t-norms. We say that the pair (T1,T2) is
α-cross-migrative (or, equivalently, that T1 is α-cross-migrative with
respect to T2, in symbols T1

α
∼T2) if the following functional equation

holds:

T1(T2(α, x), y) = T2(x ,T1(α, y)) for all (x , y) ∈ [0, 1]2. (6)

Theorem

The relation
α
∼ is reflexive and symmetric on the set of all t-norms.

J. Fodor (Óbuda Uiversity) Migrative type equations FSTA 2012 37 / 63



Cross-migrative t-norms

Cross-migrative t-norms
Further properties

For each α ∈ ]0, 1[ and for each t-norm T , (T ,TD) is
α-cross-migrative.

The relation
α
∼ on the set of t-norms is not transitive and, therefore,

no equivalence relation: for each α ∈ ]0, 1[ we have TM
α
∼TD and

TD
α
∼TP, but we do not have TM

α
∼TP.

For each t-norm T and for each c ∈ [0, 1], the function
T (c) : [0, 1]2 → [0, 1] defined by

T (c)(x , y) =

{

T (x , y , c) if (x , y) ∈ [0, 1[2 ,

T (x , y) otherwise,

is a t-norm (observe that T (0) = TD and T (1) = T ), and for each
α ∈ ]0, 1[ we have T (c) α

∼T .
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Cross-migrative t-norms
Further properties

If T1
α
∼T2 and ]a, b[ is a non-empty subinterval of [0, 1], then for the

ordinal sums (〈a, b,T1〉) and (〈a, b,T2〉) we have

(〈a, b,T1〉)
γ
∼(〈a, b,T2〉), where γ = α−a

b−a
.
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Cross-migrative t-norms

Cross-migrative t-norms
Further properties

If T1
α
∼T2 and ]a, b[ is a non-empty subinterval of [0, 1], then for the

ordinal sums (〈a, b,T1〉) and (〈a, b,T2〉) we have

(〈a, b,T1〉)
γ
∼(〈a, b,T2〉), where γ = α−a

b−a
.

Recall that for each t-norm T and for each strictly increasing bijection
ϕ : [0, 1] → [0, 1] the function Tϕ : [0, 1]2 → [0, 1] defined by

Tϕ(x , y) = ϕ−1(T (ϕ(x), ϕ(y)))

is also a t-norm.

Let ϕ : [0, 1] → [0, 1] be a strictly increasing bijection, α ∈ ]0, 1[ and
T1,T2 be two t-norms. If (T1,T2) is α-cross-migrative then
((T1)ϕ, (T2)ϕ) is ϕ(α)-cross-migrative.

J. Fodor (Óbuda Uiversity) Migrative type equations FSTA 2012 39 / 63



Cross-migrative t-norms Cross-migrativity with respect to the minimum

Cross-migrativity with respect to the minimum
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Cross-migrative t-norms Cross-migrativity with respect to the minimum

Reminder

For a t-norm T and α ∈ ]0, 1[, (T ,TM) being α-cross-migrative means
that for all (x , y) ∈ [0, 1]2

T (min(α, x), y) = min(x ,T (α, y)).

J. Fodor (Óbuda Uiversity) Migrative type equations FSTA 2012 41 / 63



Cross-migrative t-norms Cross-migrativity with respect to the minimum

Cross-migrativity with respect to TM

Characterization - general T

Theorem

Let α ∈ ]0, 1[ and T be a t-norm. Then (T ,TM) is α-cross-migrative if

and only if there is a β ∈ [0, α] and a t-norm T1 satisfying

(i) for all (x , y) ∈
[

0, α−β
1−β

]2
: T1(x , y) = 0,

(ii) for all (x , y) with 0 ≤ x ≤ α−β
1−β

≤ y ≤ 1:

T1(x , y) = min

(

x ,T1

(

α− β

1 − β
, y

))

,

such that T can be written as

T = (〈β, 1,T1〉) . (7)
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Cross-migrative t-norms Cross-migrativity with respect to the minimum

Cross-migrativity with respect to TM

Consequences - general T

Let α ∈ ]0, 1[ and T be a t-norm. Then we have:

(i) T (α, α) = α and (T ,TM) is α-cross-migrative if and only if
(〈α, 1,TD〉) ≤ T .

(ii) If T (α, α) = β < α and (T ,TM) is α-cross-migrative then

T
(β)
∗ ≤ T ≤ T ∗

(β), where the t-norms T
(β)
∗ and T ∗

(β) are defined,

respectively, by T
(β)
∗ = (〈β, 1,TD〉) and

T ∗

(β)(x , y) =

{

β if (x , y) ∈ [β, α]2 ,

TM(x , y) otherwise.

The converse is not true.

These boundaries are sharp because of T
(β)
∗

α
∼TM and T ∗

(β)
α
∼TM.
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Cross-migrativity with respect to TM

Characterization - continuous T

Theorem

Let α ∈ ]0, 1[ and T be a continuous t-norm. Then the following are

equivalent:

(i) (T ,TM) is α-cross-migrative.

(ii) For all x ∈ [0, α] we have T (x , x) = x, i.e., T = (〈α, 1,T1〉) for some

continuous t-norm T1.

J. Fodor (Óbuda Uiversity) Migrative type equations FSTA 2012 44 / 63



Cross-migrative t-norms Cross-migrativity with respect to strict t-norms

Cross-migrativity with respect to strict t-norms
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Cross-migrative t-norms Cross-migrativity with respect to strict t-norms

Reminder

For a t-norm T and α ∈ ]0, 1[, (T ,TP) being α-cross-migrative means
that for all (x , y) ∈ [0, 1]2

T (αx , y) = x T (α, y).

We restrict ourselves to continuous solutions only.
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Cross-migrative t-norms Cross-migrativity with respect to strict t-norms

Solution

Theorem

Let α ∈ ]0, 1[ and T be a continuous t-norm. Then (T ,TP) is

α-cross-migrative if and only if there exist

a β ∈ [α, 1],

a strict t-norm T1 with an additive generator t1 : [0, 1] → [0,∞]
satisfying t1(x) = δ · (d − log x) for all x ∈

[

0, α
β

]

with some

constants δ ∈ ]0,∞[ and d ∈
]

log α
β
,∞
[

, and

a continuous t-norm T2 such that

T = (〈0, β,T1〉, 〈β, 1,T2〉).
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Cross-migrative t-norms Cross-migrativity with respect to strict t-norms

Solution rewritten

Theorem

Let α ∈ ]0, 1[, T0 be a strict t-norm with additive generator

t0 : [0, 1] → [0,∞], and T be a continuous t-norm. Then (T ,T0) is

α-cross-migrative if and only if

T = (〈0, β,T1〉, 〈β, 1,T2〉),

where β ∈ [α, 1], T2 is an arbitrary continuous t-norm and T1 is a strict

t-norm with an additive generator t1 : [0, 1] → [0,∞] such that there are

constants d ∈
]

−t0(α
β

),∞
[

and δ ∈ ]0,∞[ and we have

t1(x) = δ · (t0(x) + d) for all x ∈
[

0, α
β

]

.
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Cross-migrative t-norms Cross-migrativity with respect to strict t-norms

Solution in another form

Theorem

Let α ∈ ]0, 1[, T0 be a strict t-norm with additive generator

t0 : [0, 1] → [0,∞], and T be a strict t-norm. Then the following are

equivalent:

(i) (T ,T0) is α-cross-migrative.

(ii) The function t : [0, 1] → [0,∞] defined by

t(x) =

{

t0(x) + c if x ∈ [0, α],

t1(x) otherwise,
(8)

where c ∈ ]−t0(α),∞[ and t1 : [α, 1] → [0,∞] is a continuous,

strictly decreasing function satisfying t1(1) = 0 and

t1(α) = t0(α) + c, is an additive generator of T .
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Cross-migrative t-norms Cross-migrativity with respect to strict t-norms

Consequences for all strict t-norms

(i) For each α ∈ ]0, 1[, the relation
α
∼ is transitive on the class of all

strict t-norms, i.e.,
α
∼ is an equivalence relation on the class of all

strict t-norms.

(ii) For all α, β ∈ ]0, 1[ with β ≤ α and for all strict t-norms T1 and T2

we have that T1
α
∼T2 implies T1

β
∼T2, i.e., the partition of the class

of strict t-norms induced by the equivalence relation
α
∼ is a

refinement of the partition induced by
β
∼.

(iii) For a fixed α ∈ ]0, 1[ and a fixed strict t-norm T0 the equivalence
class (with respect to

α
∼) {T | T is a strict t-norm and T

α
∼T0}

consists of all strict t-norms satisfying, for some constants
η, ϑ ∈ ]0, 1] and for all (x , y) ∈ [0, α]2, the equality
T (x , y , η) = T (x , y , ϑ).
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Cross-migrative t-norms Cross-migrativity with respect to strict t-norms

Example 1

Consider the family of Dubois-Prade t-norms (TDP
λ )λ∈[0,1] given by

TDP
λ = (〈0, λ,TP〉).

Evidently, for each α ∈ ]0, λ] we have TDP
λ

α
∼TP.

Observe that TDP
λ (x , y , λ2) = TP(x , y , 1) for all (x , y) ∈ [0, α]2.
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Cross-migrative t-norms Cross-migrativity with respect to strict t-norms

Example 2

Consider the Hamacher product TH which is generated by the additive
generator tH(x) = 1

x
− 1:

TH(x , y) =
x · y

x + y − x · y

for all (x , y) ∈ [0, 1]2 \ {(0, 0)}).

Define the function t : [0, 1] → [0,∞] by

t(x) =

{

1
x
− 1 if x ∈

[

0, 12
]

,

2 − 2x otherwise.

Then t is an additive generator of the strict t-norm T given by
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Cross-migrative t-norms Cross-migrativity with respect to strict t-norms

Example 2 (cont.)

T (x , y) =































TH(x , y) if (x , y) ∈
[

0, 12
]2
,

x
1+2x−2x ·y if (x , y) ∈

[

0, 12
[

×
]

1
2 , 1
]

,
y

1+2y−2x ·y if (x , y) ∈
]

1
2 , 1
]

×
[

0, 12
[

,
1

5−2x−2y if (x , y) ∈
]

1
2 , 1
]2

and x + y < 3
2 ,

x + y − 1 otherwise,

and we have T
1
2∼TH. Obviously, T (x , y , 1) = TH(x , y , 1) for all

(x , y) ∈
[

0, 12
]2

.
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Cross-migrative t-norms Cross-migrativity with respect to nilpotent t-norms

Reminder

For a t-norm T and α ∈ ]0, 1[, (T ,TL) being α-cross-migrative means
that for all (x , y) ∈ [0, 1]2

T (max(x + α− 1, 0), y) = max(x + T (α, y) − 1, 0).

We restrict ourselves to continuous solutions only.
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Cross-migrative t-norms Cross-migrativity with respect to nilpotent t-norms

Solution

Theorem

Let α ∈ ]0, 1[ and T be a continuous t-norm. Then (T ,TL) is

α-cross-migrative if and only if there exist

a β ∈ [α, 1],

a nilpotent t-norm T1 whose normed additive generator

t1 : [0, 1] → [0,∞] satisfies t1(x) = 1 − c · x for some constant

c ∈ ]0,∞[ and all x ∈
[

0, α
β

]

, and

a continuous t-norm T2 such that

T = (〈0, β,T1〉, 〈β, 1,T2〉).
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Cross-migrative t-norms Cross-migrativity with respect to nilpotent t-norms

Strict and nilpotent cases differ

For the product t-norm TP, a continuous t-norm T satisfies T
α
∼TP if

and only if there is a c ∈
]

0, 1
α

[

such that T (x , y) = c · x · y for all

(x , y) ∈ [0, α]2.

For the  Lukasiewicz t-norm TL, if a continuous t-norm T satisfies
T

α
∼TL then there is a constant c ∈ [α, 1] such that

T (x , y) = max(x + y − c , 0) for all (x , y) ∈ [0, α]2.

The opposite implication may not hold: for the Yager t-norm TY
2

given by TY
2 (x , y) = max(1 −

√

(1 − x)2 + (1 − y)2, 0) we have

TY
2 (x , y) = 0 = max(x + y − 1, 0) for all (x , y) ∈

[

0, 15
]2

, but TY
2 is

not 1
5 -cross-migrative with respect to TL.
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Cross-migrative t-norms Cross-migrativity with respect to nilpotent t-norms

Characterization

Theorem

Let α ∈ ]0, 1[, T0 be a nilpotent t-norm with additive generator

t0 : [0, 1] → [0,∞], and T be a continuous t-norm. Then (T ,T0) is

α-cross-migrative if and only if

T = (〈0, β,T1〉, 〈β, 1,T2〉),

where β ∈ [α, 1], T2 is an arbitrary continuous t-norm and T1 is a

nilpotent t-norm with an additive generator t1 : [0, 1] → [0,∞] such that

there are constants d ∈
]

−t0(α
β

),∞
[

and δ ∈ ]0,∞[ and we have

t1(x) = δ · (t0(x) + d) for all x ∈
[

0, α
β

]

.
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Cross-migrative t-norms Cross-migrativity with respect to nilpotent t-norms

Consequences

For each α ∈ ]0, 1[, the relation
α
∼ is transitive on the class of all

nilpotent t-norms, i.e.,
α
∼ is an equivalence relation on the class of all

nilpotent t-norms.

For all α, β ∈ ]0, 1[ with β ≤ α and for all nilpotent t-norms T1 and

T2 we have that T1
α
∼T2 implies T1

β
∼T2, i.e., the partition of the

class of nilpotent t-norms induced by the equivalence relation
α
∼ is a

refinement of the partition induced by
β
∼.

J. Fodor (Óbuda Uiversity) Migrative type equations FSTA 2012 59 / 63



Concluding remarks

Concluding remarks
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Concluding remarks

Remarks 1

Migrativity (T1(T2(α, x), y) = T1(x ,T2(α, y))) and cross-migrativity
(T1(T2(α, x), y) = T2(x ,T1(α, y))) of t-norms are interesting
properties expressed in the form of functional equations.

We have given characterizations for the basic continuous
Archimedean t-norms and for the minimum.

Constructions could be illustrated graphically. This also supports the
term “migrative” (characterized by migration; undergoing periodic
migration).

While migrativity defines an equivalence relation on the set of
t-norms, cross-migrativity implies an equivalence relation only in the
classes of strict and nilpotent t-norms.
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Concluding remarks

Remarks 2

The α-cross-migrativity can be seen as a special kind of commuting

of t-norms T1 and T2, if we rewrite the equation into the equivalent
form

T1(T2(x , α),T2(1, y)) = T2(T1(x , 1),T1(α, y)).

It seems to be interesting to study the functional equation (valid for
all (x , y) ∈ [0, 1]2)

T1(T2(x , α),T2(β, y)) = T2(T1(x , β),T1(α, y)).
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Concluding remarks

THANK YOU FOR YOUR ATTENTION!
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