MIGRATIVE TYPE FUNCTIONAL EQUATIONS FOR TRIANGULAR NORMS

János FODOR

Óbuda University

FSTA 2012

J. FODOR (ÓBUDA UIVERSITY)

MIGRATIVE TYPE EQUATIONS

FSTA 2012 1 / 63

This talk is based on joint work and papers with

- Imre J. Rudas,
- Erich Peter Klement,
- Radko Mesiar.

Their contribution is greatly acknowledged and appreciated.

.

OUTLINE

MIGRATIVE T-NORMS

- Migrativity with respect to the minimum
- Migrativity with respect to strict t-norms
- Migrativity with respect to nilpotent t-norms
- Migrativity with respect to a continuous ordinal sum

CROSS-MIGRATIVE T-NORMS

- Cross-migrativity with respect to the minimum
- Cross-migrativity with respect to strict t-norms
- Cross-migrativity with respect to nilpotent t-norms

4 Concluding remarks

INTRODUCTION AND BACKGROUND

J. FODOR (ÓBUDA UIVERSITY)

MIGRATIVE TYPE EQUATIONS

▶ ▲ ≣ ▶ ≣ ∽ Q (?) FSTA 2012 4 / 63

AIM OF THIS TALK

To deliver results on (continuous) solutions of the following general functional equation ($x, y \in [0, 1]$, and $\alpha \in]0, 1[$ fixed)

$$T_1(T_2(\alpha, x), y) = T_3(x, T_4(\alpha, y)),$$

where T_1, T_2, T_3, T_4 are triangular norms, in two particular cases:

AIM OF THIS TALK

To deliver results on (continuous) solutions of the following general functional equation ($x, y \in [0, 1]$, and $\alpha \in]0, 1[$ fixed)

$$T_1(T_2(\alpha, x), y) = T_3(x, T_4(\alpha, y)),$$

where T_1, T_2, T_3, T_4 are triangular norms, in two particular cases:

$$T_1(T_2(\alpha, x), y) = T_1(x, T_2(\alpha, y))$$

J. FODOR (ÓBUDA UIVERSITY)

イロト 不得下 不良下 不良下 一度

AIM OF THIS TALK

To deliver results on (continuous) solutions of the following general functional equation ($x, y \in [0, 1]$, and $\alpha \in]0, 1[$ fixed)

$$T_1(T_2(\alpha, x), y) = T_3(x, T_4(\alpha, y)),$$

where T_1, T_2, T_3, T_4 are triangular norms, in two particular cases:

$$T_1(T_2(\alpha, x), y) = T_1(x, T_2(\alpha, y))$$

$$T_1(T_2(\alpha, x), y) = T_2(x, T_1(\alpha, y)).$$

J. FODOR (ÓBUDA UIVERSITY)

ASSOCIATIVITY

• A function $T: [0,1]^2 \rightarrow [0,1]$ is called associative if it satisfies T(T(x,y),z) = T(x,T(y,z)) for all $x, y, z \in [0,1]$.

(日) (同) (E) (E) (E)

ASSOCIATIVITY

- A function $T: [0,1]^2 \rightarrow [0,1]$ is called associative if it satisfies T(T(x,y),z) = T(x,T(y,z)) for all $x, y, z \in [0,1]$.
- An example is the product $T_{\mathbf{P}}(x, y) = xy$.

<ロト < 同ト < 臣ト < 臣ト 三 臣・

ASSOCIATIVITY

- A function $T: [0,1]^2 \rightarrow [0,1]$ is called associative if it satisfies T(T(x,y),z) = T(x,T(y,z)) for all $x, y, z \in [0,1]$.
- An example is the product $T_{\mathbf{P}}(x, y) = xy$.
- Let us fix $y = \alpha \in]0,1[$. Then we still have

 $T_{\mathbf{P}}(T_{\mathbf{P}}(x,\alpha),z) = T_{\mathbf{P}}(x,T_{\mathbf{P}}(\alpha,z)) \quad \text{for all } x,z \in [0,1].$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

• Keep T_P inside fixed, and consider a general T outside:

 $T(T_{\mathbf{P}}(x, \alpha), z) = T(x, T_{\mathbf{P}}(\alpha, z))$ for all $x, z \in [0, 1]$.

• Keep T_P inside fixed, and consider a general T outside:

$$T(T_{\mathbf{P}}(x, \alpha), z) = T(x, T_{\mathbf{P}}(\alpha, z))$$
 for all $x, z \in [0, 1]$.

• Keep T_P outside fixed, and consider a general T inside:

$$T_{\mathbf{P}}(T(x, \alpha), z) = T_{\mathbf{P}}(x, T(\alpha, z))$$
 for all $x, z \in [0, 1]$.

• Keep $T_{\mathbf{P}}$ inside fixed, and consider a general T outside:

$$T(T_{\mathbf{P}}(x, \alpha), z) = T(x, T_{\mathbf{P}}(\alpha, z))$$
 for all $x, z \in [0, 1]$.

• Keep T_P outside fixed, and consider a general T inside:

$$T_{\mathbf{P}}(T(x, \alpha), z) = T_{\mathbf{P}}(x, T(\alpha, z))$$
 for all $x, z \in [0, 1]$.

• Question 1: is there any solution *T* of the last equations that differs from *T*_P?

• Keep T_P inside fixed, and consider a general T outside:

$$T(T_{\mathbf{P}}(x, \alpha), z) = T(x, T_{\mathbf{P}}(\alpha, z))$$
 for all $x, z \in [0, 1]$.

• Keep T_P outside fixed, and consider a general T inside:

$$T_{\mathbf{P}}(T(x, \alpha), z) = T_{\mathbf{P}}(x, T(\alpha, z))$$
 for all $x, z \in [0, 1]$.

- Question 1: is there any solution *T* of the last equations that differs from *T*_P?
- Question 2: what is the link between solutions of the two equations (if any)?

EXAMPLE

• Consider T_{β} defined as follows:

$$T_{eta}(x,y) = \left\{egin{array}{cc} \min(x,y) & ext{if } \max(x,y) = 1, \ eta xy & ext{otherwise}, \end{array}
ight.$$

where β is an arbitrary number from [0, 1].

- T_{β} is a t-norm, and it satisfies $T_{\beta}(\alpha x, y) = T_{\beta}(x, \alpha y)$ for $(x, y) \in [0, 1[$.
- Notice the following particular cases:

• if
$$\beta = 0$$
 then $T_{\beta} = T_{\mathbf{D}}$ the drastic t-norm;

• if $\beta = 1$ then $T_{\beta} = T_{\mathbf{P}}$ the product.

MIGRATIVE T-NORMS

Migrative t-norms

J. FODOR (ÓBUDA UIVERSITY)

MIGRATIVE TYPE EQUATIONS

▶ ▲ ≣ ▶ ≣ ∽ Q (~ FSTA 2012 9 / 63

MIGRATIVE T-NORMS

DEFINITION

Let $\alpha \in]0,1[$ and T_1, T_2 be t-norms. We say that the pair (T_1, T_2) is α -migrative (or, equivalently, that T_1 is α -migrative with respect to T_2 , in symbols $T_1 \underset{\alpha}{\sim} T_2$) if the following functional equation holds:

$$T_1(T_2(lpha,x),y)=T_1(x,T_2(lpha,y)) \qquad ext{for all } (x,y)\in [0,1]^2.$$

MIGRATIVE T-NORMS

DEFINITION

Let $\alpha \in]0,1[$ and T_1, T_2 be t-norms. We say that the pair (T_1, T_2) is α -migrative (or, equivalently, that T_1 is α -migrative with respect to T_2 , in symbols $T_1 \underset{\alpha}{\sim} T_2$) if the following functional equation holds:

$$T_1(T_2(lpha,x),y)=T_1(x,T_2(lpha,y))$$
 for all $(x,y)\in [0,1]^2$.

Obviously, we have $T_1 \underset{\alpha}{\sim} T_1$ for any t-norm T and for each $\alpha \in]0,1[$. In other words: the relation $\underset{\alpha}{\sim}$ is reflexive on the set of all t-norms.

THEOREM

Let α be in]0,1[and T_1 , T_2 triangular norms. Then the following statements are equivalent.

(I) (T_1, T_2) is α -migrative: $T_1(T_2(\alpha, x), y) = T_1(x, T_2(\alpha, y));$

THEOREM

Let α be in]0,1[and T_1 , T_2 triangular norms. Then the following statements are equivalent.

(I) (T_1, T_2) is α -migrative: $T_1(T_2(\alpha, x), y) = T_1(x, T_2(\alpha, y));$

(II) (T_2, T_1) is α -migrative: $T_2(T_1(\alpha, x), y) = T_2(x, T_1(\alpha, y));$

THEOREM

Let α be in]0,1[and T_1 , T_2 triangular norms. Then the following statements are equivalent.

(I) (T_1, T_2) is α -migrative: $T_1(T_2(\alpha, x), y) = T_1(x, T_2(\alpha, y));$

(II) (T_2, T_1) is α -migrative: $T_2(T_1(\alpha, x), y) = T_2(x, T_1(\alpha, y));$

(III) $T_1(\alpha, x) = T_2(\alpha, x)$ for all $x \in [0, 1]$.

- * @ > * 注 > * 注 > … 注

THEOREM

Let α be in]0,1[and T_1 , T_2 triangular norms. Then the following statements are equivalent.

(I) (T_1, T_2) is α -migrative: $T_1(T_2(\alpha, x), y) = T_1(x, T_2(\alpha, y));$

(II) (T_2, T_1) is α -migrative: $T_2(T_1(\alpha, x), y) = T_2(x, T_1(\alpha, y));$

(III)
$$T_1(\alpha, x) = T_2(\alpha, x)$$
 for all $x \in [0, 1]$.

COROLLARY

The relation $\stackrel{\alpha}{\sim}$ is an equivalence relation on the set of all t-norms.

FURTHER PROPERTIES

• If $T_1 \underset{\alpha}{\sim} T_2$ and]a, b[is a non-empty subinterval of [0, 1], and $\alpha \in]a, b[$ then for the ordinal sums $(\langle a, b, T_1 \rangle)$ and $(\langle a, b, T_2 \rangle)$ we have $(\langle a, b, T_1 \rangle) \underset{\gamma}{\sim} (\langle a, b, T_2 \rangle)$, where $\gamma = \frac{\alpha - a}{b - a}$.

- (同) (ヨ) (ヨ) - ヨ

FURTHER PROPERTIES

• If $T_1 \underset{\alpha}{\sim} T_2$ and]a, b[is a non-empty subinterval of [0, 1], and $\alpha \in]a, b[$ then for the ordinal sums $(\langle a, b, T_1 \rangle)$ and $(\langle a, b, T_2 \rangle)$ we have $(\langle a, b, T_1 \rangle) \underset{\gamma}{\sim} (\langle a, b, T_2 \rangle)$, where $\gamma = \frac{\alpha - a}{b - a}$.

Recall that for each t-norm T and for each strictly increasing bijection $\varphi \colon [0,1] \to [0,1]$ the function $T_{\varphi} \colon [0,1]^2 \to [0,1]$ defined by

$$T_{\varphi}(x,y) = \varphi^{-1}(T(\varphi(x),\varphi(y)))$$

is also a t-norm.

• Let $\varphi : [0,1] \to [0,1]$ be a strictly increasing bijection, $\alpha \in]0,1[$ and T_1, T_2 be two t-norms. If (T_1, T_2) is α -migrative then $((T_1)_{\varphi}, (T_2)_{\varphi})$ is $\varphi(\alpha)$ -migrative.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

CASES CONSIDERED

- We study three particular cases of t-norms that are α-migrative with respect to a fixed T₀:
 - $T_0 = T_M$,
 - $T_0 = T_{\mathbf{P}}$,
 - $T_0 = T_L$.
- Using these results, as a fourth case we study α -migrativity with respect to arbitrary continuous t-norms:

•
$$T_0 = (\langle a_i, b_i, T_i \rangle)_{i \in \Gamma}$$
.

J. FODOR (ÓBUDA UIVERSITY)

- 不得下 イヨト イヨト 三日

Migrativity with respect to the minimum

J. Fodor (Óbuda Uiversity)

MIGRATIVE TYPE EQUATIONS

FSTA 2012 14 / 63

$T(\min(\alpha, x), y) = T(x, \min(\alpha, y))$

J. Fodor (Óbuda Uiversity)

MIGRATIVE TYPE EQUATIONS

FSTA 2012 15 / 63

3

MIGRATIVITY WITH RESPECT TO T_M Characterization

$$T(\min(\alpha, x), y) = T(x, \min(\alpha, y))$$

Theorem

A t-norm T is α -migrative with respect to T_M if and only if there exist two t-norms T_1 and T_2 such that T can be written in the following form:

$$T(x,y) = \begin{cases} \alpha T_1\left(\frac{x}{\alpha}, \frac{y}{\alpha}\right) & \text{if } x, y \in [0, \alpha], \\ \alpha + (1-\alpha)T_2\left(\frac{x-\alpha}{1-\alpha}, \frac{y-\alpha}{1-\alpha}\right) & \text{if } x, y \in [\alpha, 1], \\ \min(x, y) & \text{otherwise.} \end{cases}$$

MIGRATIVITY WITH RESPECT TO T_{M} Illustration

J. Fodor (Óbuda Uiversity)

FSTA 2012

イロト イポト イヨト イヨト

16 / 63

3

Migrativity with respect to strict t-norms

J. Fodor (Óbuda Uiversity)

MIGRATIVE TYPE EQUATIONS

FSTA 2012 17 / 63

$T(\alpha x, y) = T(x, \alpha y)$

J. Fodor (Óbuda Uiversity)

MIGRATIVE TYPE EQUATIONS

FSTA 2012 18 / 63

- 2

 $T(\alpha x,y)=T(x,\alpha y)$

- Historically, this is the notion introduced originally by Durante and Sarkoczi (2008).
- Rooted in an open problem of the 2nd FSTA, see Mesiar and Novák (1996).

CONTINUOUS CASE, NECESSARY CONDITIONS

3

イロト イヨト イヨト

CONTINUOUS CASE, NECESSARY CONDITIONS

Theorem

If a continuous t-norm T is α -migrative with respect to T_P then T is strict.

J. Fodor (Óbuda Uiversity)

MIGRATIVE TYPE EQUATIONS

FSTA 2012 19 / 63

CONTINUOUS CASE, NECESSARY CONDITIONS

Theorem

If a continuous t-norm T is α -migrative with respect to T_P then T is strict.

If t denotes an additive generator of an α -migrative continuous t-norm T then t satisfies the following functional equation for all $x \in [0, 1]$:

$$t(\alpha x) = t(\alpha) + t(x). \tag{1}$$

J. FODOR (ÓBUDA UIVERSITY)

CONTINUOUS CASE, CHARACTERIZATION AND CONSTRUCTION

Theorem

Suppose t is an additive generator of a strict t-norm T and α is in]0,1[. Then the following statements are equivalent:

(I) T is α -migrative with respect to $T_{\mathbf{P}}$;
CONTINUOUS CASE, CHARACTERIZATION AND CONSTRUCTION

Theorem

Suppose t is an additive generator of a strict t-norm T and α is in]0,1[. Then the following statements are equivalent:

- (I) T is α -migrative with respect to $T_{\mathbf{P}}$;
- (II) t satisfies the functional equation $t(\alpha x) = t(\alpha) + t(x)$;

CONTINUOUS CASE, CHARACTERIZATION AND CONSTRUCTION

Theorem

Suppose t is an additive generator of a strict t-norm T and α is in]0,1[. Then the following statements are equivalent:

- (I) T is α -migrative with respect to $T_{\mathbf{P}}$;
- (II) t satisfies the functional equation $t(\alpha x) = t(\alpha) + t(x)$;
- (III) there exists a continuous, strictly decreasing function t_0 from $[\alpha, 1]$ to the non-negative reals with $t_0(\alpha) < +\infty$ and $t_0(1) = 0$ such that

$$t(x) = k \cdot t_0(\alpha) + t_0\left(\frac{x}{\alpha^k}\right) \quad \text{if } x \in \left]\alpha^{k+1}, \alpha^k\right], \tag{2}$$

where k is any non-negative integer.

CONSTRUCTING AN ADDITIVE GENERATOR AN EXAMPLE

• Let
$$\alpha = \frac{3}{4}$$
 and
• $t_0(x) = 4 - 4x$ for $x \in \left[\frac{3}{4}, 1\right]$.
• Then $t\left(\left(\frac{3}{4}\right)^k\right) = k$, and linear in between.

J. Fodor (Óbuda Uiversity)

MIGRATIVE TYPE EQUATIONS

FSTA 2012 21 / 63

3

イロト イヨト イヨト

CONSTRUCTING AN ADDITIVE GENERATOR A graphical illustration

Migrativity with respect to nilpotent t-norms

J. Fodor (Óbuda Uiversity)

MIGRATIVE TYPE EQUATIONS

FSTA 2012 23 / 63

CONTINUOUS CASE, NECESSARY CONDITION

 $T(\max(\alpha + x - 1, 0), y) = T(x, \max(\alpha + y - 1, 0))$

J. Fodor (Óbuda Uiversity)

MIGRATIVE TYPE EQUATIONS

FSTA 2012 24 / 63

イロト 不得下 不良下 不良下 一度

CONTINUOUS CASE, NECESSARY CONDITION

$$T(\max(\alpha + x - 1, 0), y) = T(x, \max(\alpha + y - 1, 0))$$

Theorem

Assume that T is a continuous t-norm that is α -migrative with respect to T_L . Then there exists an automorphism φ of the unit interval such that $T = (T_L)_{\varphi}$. That is, we have

$$T(x,y) = (T_{\mathsf{L}})_{\varphi}(x,y) = \varphi^{-1}(\max(\varphi(x) + \varphi(y) - 1, 0)) \quad \text{for all } x, y \in [0,1].$$

J. FODOR (ÓBUDA UIVERSITY)

CONTINUOUS CASE, CHARACTERIZATION AND CONSTRUCTION

THEOREM

Let α be in]0,1[and $n = \max\{k \in \mathbb{N} \mid 1 - k(1 - \alpha) > 0\}$. A t-norm $T(x,y) = \varphi^{-1}(\max(\varphi(x) + \varphi(y) - 1, 0))$ $(x, y \in [0, 1])$ is α -migrative with respect to T_{L} if and only if there exist an automorphism ψ_{0} of the unit interval with

$$\psi_0\left(\frac{n-(n+1)\alpha}{1-\alpha}\right) = \frac{n-(n+1)\alpha}{1-\alpha},\tag{3}$$

such that

CONTINUOUS CASE, CHARACTERIZATION AND CONSTRUCTION

THEOREM (CONT'D)

$$\varphi(x) = 1 - k(1 - \alpha) + (1 - \alpha)\psi_0\left(\frac{x - 1 + k(1 - \alpha)}{1 - \alpha}\right)$$
(4)
if $x \in [1 - k(1 - \alpha), 1 - (k - 1)(1 - \alpha)]$ and $k \le n$,

and

$$\varphi(x) = 1 - (n+1)(1-\alpha) + (1-\alpha)\psi_0\left(\frac{x-1+(n+1)(1-\alpha)}{1-\alpha}\right)(5)$$

if $x \in [0, 1-n(1-\alpha)].$

J. FODOR (ÓBUDA UIVERSITY)

イロト イポト イヨト イヨ

GRAPHICAL CONSTRUCTION

Migrativity with respect to a continuous ordinal sum

J. Fodor (Óbuda Uiversity)

MIGRATIVE TYPE EQUATIONS

FSTA 2012 28 / 63

- We study continuous t-norms T that are α-migrative with respect to a fixed continuous t-norm T₀;
- T_{Co}: the set of all continuous t-norms;
- \mathcal{T}_{Ar} : the set of all continuous Archimedean t-norms;

•
$$T = (\langle a_i, b_i, T_i \rangle)_{i \in \Gamma}$$
, $T_0 = (\langle a_{0j}, b_{0j}, T_{0j} \rangle)_{j \in \Gamma_0}$,
where $T_i, T_{0j} \in \mathcal{T}_{Ar}$ for all $i \in \Gamma$ and $j \in \Gamma_0$.

- for any $\alpha \in]0,1[$ there are two exhaustive and mutually exclusive cases:
 - α is an idempotent element of T_0 ;
 - there exists a $k \in \Gamma$ such that $\alpha \in]a_{0k}, b_{0k}[$.

 $T_0(\alpha, \alpha) = \alpha$, CHARACTERIZATION

THEOREM

Suppose T_0 is a continuous t-norm and $\alpha \in]0,1[$ is an idempotent element of T_0 . Then the following statements are equivalent for a continuous t-norm T:

(I) T is α -migrative with respect to T_0 ;

(II) T is α -migrative with respect to T_{M} ;

(III) there exist continuous t-norms T_1 and T_2 such that T can be written as $T = (\langle 0, \alpha, T_1 \rangle, \langle \alpha, 1, T_2 \rangle).$

イロト イポト イヨト イヨト 二日

 $T_0(\alpha, \alpha) < \alpha$, CHARACTERIZATION

Theorem

Suppose $T_0 = (\langle a_{0j}, b_{0j}, T_{0j} \rangle)_{j \in \Gamma_0}$ is a continuous t-norm and $\alpha \in]a_{0k}, b_{0k}[$ for some $k \in \Gamma_0$. Then the following statements are equivalent for a continuous t-norm T.

(I) T is
$$\alpha$$
-migrative with respect to T_0 ;

(II) There exist t-norms $T_1, T_3 \in \mathcal{T}_{Co}$ and $T_2 \in \mathcal{T}_{Ar}$ such that

(A)
$$T = (\langle 0, a_{0k}, T_1 \rangle, \langle a_{0k}, b_{0k}, T_2 \rangle, \langle b_{0k}, 1, T_3 \rangle)$$
, and
(B) T_2 is $\left(\frac{\alpha - a_{0k}}{b_{0k} - a_{0k}}\right)$ -migrative with respect to T_{0k} .

J. FODOR (ÓBUDA UIVERSITY)

Remarks

- In the previous theorem $a_{0k} = 0$ (or $b_{0k} = 1$) is possible.
- α-migrativity is restrictive on a continuous T mainly in a neighbourhood of α. This is just α itself if α is an idempotent element of T₀, and it is the square]a_{0k}, b_{0k}[² otherwise.
- Outside this neighbourhood T can be defined arbitrarily in such a way that the resulting t-norm be continuous.
- The summand $T_2 \in \mathcal{T}_{Ar}$ in the "middle" of $T = (\langle 0, a_{0k}, T_1 \rangle, \langle a_{0k}, b_{0k}, T_2 \rangle, \langle b_{0k}, 1, T_3 \rangle)$ can be determined by the summand T_{0k} (details in Fodor and Rudas, 2011).

イロト イポト イラト イラト 二日

A T_0 FOR TWO EXAMPLES

The ordinal sum $T_0 = (\langle 1/6, 1/3, T_L \rangle, \langle 1/3, 2/3, T_P \rangle, \langle 5/6, 1, T_P \rangle).$

Example 1 T_0 with $\alpha = 2/3$ (idempotent element)

The ordinal sum T_0 , and $\alpha = 2/3$ (left). 2/3-migrative t-norm T with respect to T_0 (right).

EXAMPLE 2 T_0 with $\alpha = 5/12$ (non-idempotent element)

The ordinal sum T_0 , and $\alpha = 5/12$ (left). 5/12-migrative t-norm T with respect to T_0 (right).

Cross-migrative t-norms

J. FODOR (ÓBUDA UIVERSITY)

MIGRATIVE TYPE EQUATIONS

FSTA 2012 36 / 63

э

イロト イポト イヨト イヨト

CROSS-MIGRATIVE T-NORMS

DEFINITION

Let $\alpha \in]0,1[$ and T_1, T_2 be t-norms. We say that the pair (T_1, T_2) is α -cross-migrative (or, equivalently, that T_1 is α -cross-migrative with respect to T_2 , in symbols $T_1 \stackrel{\alpha}{\sim} T_2$) if the following functional equation holds:

$$T_1(T_2(lpha, x), y) = T_2(x, T_1(lpha, y))$$
 for all $(x, y) \in [0, 1]^2$. (6)

J. FODOR (ÓBUDA UIVERSITY)

MIGRATIVE TYPE EQUATIONS

FSTA 2012 37 / 63

CROSS-MIGRATIVE T-NORMS

DEFINITION

Let $\alpha \in]0, 1[$ and T_1, T_2 be t-norms. We say that the pair (T_1, T_2) is α -cross-migrative (or, equivalently, that T_1 is α -cross-migrative with respect to T_2 , in symbols $T_1 \stackrel{\alpha}{\sim} T_2$) if the following functional equation holds:

$$T_1(T_2(lpha, x), y) = T_2(x, T_1(lpha, y))$$
 for all $(x, y) \in [0, 1]^2$. (6)

Theorem

The relation $\stackrel{\alpha}{\sim}$ is reflexive and symmetric on the set of all t-norms.

CROSS-MIGRATIVE T-NORMS

FURTHER PROPERTIES

- For each $\alpha \in]0,1[$ and for each t-norm T, (T, T_D) is α -cross-migrative.
- The relation $\stackrel{\alpha}{\sim}$ on the set of t-norms is not transitive and, therefore, no equivalence relation: for each $\alpha \in]0,1[$ we have $T_{M} \stackrel{\alpha}{\sim} T_{D}$ and $T_{D} \stackrel{\alpha}{\sim} T_{P}$, but we do not have $T_{M} \stackrel{\alpha}{\sim} T_{P}$.
- For each t-norm T and for each $c \in [0, 1]$, the function $T^{(c)}: [0, 1]^2 \rightarrow [0, 1]$ defined by

$$T^{(c)}(x,y) = \begin{cases} T(x,y,c) & \text{if } (x,y) \in [0,1[^2, T(x,y)) \\ T(x,y) & \text{otherwise,} \end{cases}$$

is a t-norm (observe that $T^{(0)} = T_{\mathbf{D}}$ and $T^{(1)} = T$), and for each $\alpha \in]0, 1[$ we have $T^{(c)} \stackrel{\alpha}{\sim} T$.

A D A A B A A B A A B A

CROSS-MIGRATIVE T-NORMS Further properties

If T₁ ^α ⊂ T₂ and]a, b[is a non-empty subinterval of [0, 1], then for the ordinal sums (⟨a, b, T₁⟩) and (⟨a, b, T₂⟩) we have (⟨a, b, T₁⟩) ^γ (⟨a, b, T₂⟩), where γ = ^{α-a}/_{b-a}.

CROSS-MIGRATIVE T-NORMS Further properties

If T₁ ^α ⊂ T₂ and]a, b[is a non-empty subinterval of [0, 1], then for the ordinal sums (⟨a, b, T₁⟩) and (⟨a, b, T₂⟩) we have (⟨a, b, T₁⟩) ^γ (⟨a, b, T₂⟩), where γ = ^{α-a}/_{b-a}.

Recall that for each t-norm T and for each strictly increasing bijection $\varphi \colon [0,1] \to [0,1]$ the function $T_{\varphi} \colon [0,1]^2 \to [0,1]$ defined by

$$T_{\varphi}(x,y) = \varphi^{-1}(T(\varphi(x),\varphi(y)))$$

is also a t-norm.

• Let $\varphi \colon [0,1] \to [0,1]$ be a strictly increasing bijection, $\alpha \in]0,1[$ and T_1, T_2 be two t-norms. If (T_1, T_2) is α -cross-migrative then $((T_1)_{\varphi}, (T_2)_{\varphi})$ is $\varphi(\alpha)$ -cross-migrative.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Cross-migrativity with respect to the minimum

J. Fodor (Óbuda Uiversity)

MIGRATIVE TYPE EQUATIONS

FSTA 2012 40 / 63

Reminder

For a t-norm T and $\alpha \in]0,1[$, (T, T_M) being α -cross-migrative means that for all $(x, y) \in [0,1]^2$

$$T(\min(\alpha, x), y) = \min(x, T(\alpha, y)).$$

J. FODOR (ÓBUDA UIVERSITY)

MIGRATIVE TYPE EQUATIONS

FSTA 2012 41 / 63

- E - - E

CROSS-MIGRATIVITY WITH RESPECT TO T_{M} Characterization - general T

THEOREM

Let $\alpha \in]0,1[$ and T be a t-norm. Then (T, T_M) is α -cross-migrative if and only if there is a $\beta \in [0, \alpha]$ and a t-norm T_1 satisfying

(i) for all
$$(x, y) \in \left[0, \frac{\alpha - \beta}{1 - \beta}\right]^2$$
: $T_1(x, y) = 0$,

(ii) for all (x, y) with $0 \le x \le \frac{\alpha - \beta}{1 - \beta} \le y \le 1$:

$$T_1(x,y) = \min\left(x, T_1\left(\frac{\alpha-\beta}{1-\beta}, y\right)\right),$$

such that T can be written as

$$T=\left(\left<\beta,1,\,T_1\right>\right).$$

J. FODOR (ÓBUDA UIVERSITY)

CROSS-MIGRATIVITY WITH RESPECT TO T_{M} Consequences - general T

Let α ∈]0, 1[and T be a t-norm. Then we have:
(i) T(α, α) = α and (T, T_M) is α-cross-migrative if and only if (⟨α, 1, T_D⟩) ≤ T.
(ii) If T(α, α) = β < α and (T, T_M) is α-cross-migrative then T^(β)_{*} ≤ T ≤ T^{*}_(β), where the t-norms T^(β)_{*} and T^{*}_(β) are defined, respectively, by T^(β)_{*} = (⟨β, 1, T_D⟩) and

$$T^*_{(\beta)}(x,y) = \begin{cases} \beta & \text{if } (x,y) \in [\beta,\alpha]^2 \\ T_{\mathsf{M}}(x,y) & \text{otherwise.} \end{cases}$$

• The converse is not true.

• These boundaries are sharp because of $T_*^{(\beta)} \stackrel{\alpha}{\sim} T_M$ and $T_{(\beta)}^* \stackrel{\alpha}{\sim} T_M$.

CROSS-MIGRATIVITY WITH RESPECT TO T_{M} Characterization - continuous T

THEOREM

Let $\alpha \in]0,1[$ and T be a continuous t-norm. Then the following are equivalent:

- (i) (T, T_M) is α -cross-migrative.
- (ii) For all $x \in [0, \alpha]$ we have T(x, x) = x, i.e., $T = (\langle \alpha, 1, T_1 \rangle)$ for some continuous t-norm T_1 .

Cross-migrativity with respect to strict t-norms

J. Fodor (Óbuda Uiversity)

MIGRATIVE TYPE EQUATIONS

FSTA 2012 45 / 63

Reminder

For a t-norm T and $\alpha \in]0,1[$, (T, T_P) being α -cross-migrative means that for all $(x, y) \in [0,1]^2$

$$T(\alpha x, y) = x T(\alpha, y).$$

We restrict ourselves to continuous solutions only.

Solution

THEOREM

Let $\alpha \in]0,1[$ and T be a continuous t-norm. Then (T, T_P) is α -cross-migrative if and only if there exist

- a $\beta \in [\alpha, 1]$,
- a strict t-norm T₁ with an additive generator t₁: [0, 1] → [0,∞] satisfying t₁(x) = δ · (d − log x) for all x ∈ [0, α/β] with some constants δ ∈]0,∞[and d ∈]log α/β,∞[, and
- a continuous t-norm T_2 such that

$$T = (\langle 0, \beta, T_1 \rangle, \langle \beta, 1, T_2 \rangle).$$

J. FODOR (ÓBUDA UIVERSITY)

SOLUTION REWRITTEN

THEOREM

Let $\alpha \in]0, 1[, T_0 \text{ be a strict t-norm with additive generator}$ $t_0: [0,1] \rightarrow [0,\infty]$, and T be a continuous t-norm. Then (T, T_0) is α -cross-migrative if and only if

$$T = (\langle 0, \beta, T_1 \rangle, \langle \beta, 1, T_2 \rangle),$$

where $\beta \in [\alpha, 1]$, T_2 is an arbitrary continuous t-norm and T_1 is a strict t-norm with an additive generator $t_1 \colon [0, 1] \to [0, \infty]$ such that there are constants $d \in]-t_0(\frac{\alpha}{\beta}), \infty[$ and $\delta \in]0, \infty[$ and we have $t_1(x) = \delta \cdot (t_0(x) + d)$ for all $x \in [0, \frac{\alpha}{\beta}]$.

イロト 不得下 不足下 不足下 一足

Solution in another form

THEOREM

Let $\alpha \in]0, 1[, T_0 \text{ be a strict t-norm with additive generator}$ $t_0: [0,1] \rightarrow [0,\infty]$, and T be a strict t-norm. Then the following are equivalent:

- (i) (T, T_0) is α -cross-migrative.
- (ii) The function $t \colon [0,1] \to [0,\infty]$ defined by

$$t(x) = egin{cases} t_0(x) + c & \textit{if } x \in [0, lpha], \ t_1(x) & \textit{otherwise}, \end{cases}$$

where $c \in]-t_0(\alpha), \infty[$ and $t_1: [\alpha, 1] \rightarrow [0, \infty]$ is a continuous, strictly decreasing function satisfying $t_1(1) = 0$ and $t_1(\alpha) = t_0(\alpha) + c$, is an additive generator of T.

・ロト ・ 同ト ・ ヨト ・ ヨト

(8)

CONSEQUENCES FOR ALL STRICT T-NORMS

- (i) For each $\alpha \in]0,1[$, the relation $\stackrel{\alpha}{\sim}$ is transitive on the class of all strict t-norms, i.e., $\stackrel{\alpha}{\sim}$ is an equivalence relation on the class of all strict t-norms.
- (ii) For all $\alpha, \beta \in]0, 1[$ with $\beta \leq \alpha$ and for all strict t-norms T_1 and T_2 we have that $T_1 \stackrel{\alpha}{\sim} T_2$ implies $T_1 \stackrel{\beta}{\sim} T_2$, i.e., the partition of the class of strict t-norms induced by the equivalence relation $\stackrel{\alpha}{\sim}$ is a refinement of the partition induced by $\stackrel{\beta}{\sim}$.
- (iii) For a fixed $\alpha \in]0,1[$ and a fixed strict t-norm T_0 the equivalence class (with respect to $\stackrel{\alpha}{\sim}$) { $T \mid T$ is a strict t-norm and $T \stackrel{\alpha}{\sim} T_0$ } consists of all strict t-norms satisfying, for some constants $\eta, \vartheta \in]0,1]$ and for all $(x, y) \in [0, \alpha]^2$, the equality $T(x, y, \eta) = T(x, y, \vartheta)$.

EXAMPLE 1

Consider the family of Dubois-Prade t-norms $(T_{\lambda}^{DP})_{\lambda \in [0,1]}$ given by

$$T_{\lambda}^{\mathsf{DP}} = (\langle 0, \lambda, T_{\mathsf{P}} \rangle).$$

Evidently, for each $\alpha \in [0, \lambda]$ we have $T_{\lambda}^{\mathbf{DP}} \stackrel{\alpha}{\sim} T_{\mathbf{P}}$. Observe that $T_{\lambda}^{\mathbf{DP}}(x, y, \lambda^2) = T_{\mathbf{P}}(x, y, 1)$ for all $(x, y) \in [0, \alpha]^2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ●
EXAMPLE 2

Consider the Hamacher product $T_{\mathbf{H}}$ which is generated by the additive generator $t_{\mathbf{H}}(x) = \frac{1}{x} - 1$:

$$T_{\mathbf{H}}(x,y) = \frac{x \cdot y}{x + y - x \cdot y}$$

for all $(x, y) \in [0, 1]^2 \setminus \{(0, 0)\}$).

Define the function $t \colon [0,1] \to [0,\infty]$ by

$$t(x) = \begin{cases} \frac{1}{x} - 1 & \text{if } x \in \left[0, \frac{1}{2}\right], \\ 2 - 2x & \text{otherwise.} \end{cases}$$

Then t is an additive generator of the strict t-norm T given by

イロト 不得下 不足下 不足下 一足

EXAMPLE 2 (CONT.)

$$T(x,y) = \begin{cases} T_{\mathbf{H}}(x,y) & \text{if } (x,y) \in \left[0,\frac{1}{2}\right]^2, \\ \frac{x}{1+2x-2x \cdot y} & \text{if } (x,y) \in \left[0,\frac{1}{2}\right[\times]\frac{1}{2},1], \\ \frac{y}{1+2y-2x \cdot y} & \text{if } (x,y) \in \left]\frac{1}{2},1\right] \times \left[0,\frac{1}{2}\right[, \\ \frac{1}{5-2x-2y} & \text{if } (x,y) \in \left]\frac{1}{2},1\right]^2 \text{ and } x+y < \frac{3}{2}, \\ x+y-1 & \text{otherwise,} \end{cases}$$

and we have $T \stackrel{\frac{1}{2}}{\sim} T_{\mathbf{H}}$. Obviously, $T(x, y, 1) = T_{\mathbf{H}}(x, y, 1)$ for all $(x, y) \in [0, \frac{1}{2}]^2$.

J. Fodor (Óbuda Uiversity)

FSTA 2012 53 / 63

Cross-migrativity with respect to nilpotent t-norms

J. Fodor (Óbuda Uiversity)

MIGRATIVE TYPE EQUATIONS

FSTA 2012 54 / 63

Reminder

For a t-norm T and $\alpha \in]0,1[$, (T, T_L) being α -cross-migrative means that for all $(x,y) \in [0,1]^2$

$$T(\max(x+\alpha-1,0),y) = \max(x+T(\alpha,y)-1,0).$$

We restrict ourselves to continuous solutions only.

Solution

THEOREM

Let $\alpha \in]0,1[$ and T be a continuous t-norm. Then (T, T_L) is α -cross-migrative if and only if there exist

- a $\beta \in [\alpha, 1]$,
- a nilpotent t-norm T_1 whose normed additive generator $t_1: [0,1] \rightarrow [0,\infty]$ satisfies $t_1(x) = 1 - c \cdot x$ for some constant $c \in]0,\infty[$ and all $x \in [0,\frac{\alpha}{\beta}]$, and
- a continuous t-norm T₂ such that

$$T = (\langle 0, \beta, T_1 \rangle, \langle \beta, 1, T_2 \rangle).$$

J. FODOR (ÓBUDA UIVERSITY)

STRICT AND NILPOTENT CASES DIFFER

- For the product t-norm T_P, a continuous t-norm T satisfies T ~ T_P if and only if there is a c ∈]0, ¹/_α[such that T(x, y) = c · x · y for all (x, y) ∈ [0, α]².
- For the Łukasiewicz t-norm T_L , if a continuous t-norm T satisfies $T \stackrel{\alpha}{\sim} T_L$ then there is a constant $c \in [\alpha, 1]$ such that $T(x, y) = \max(x + y c, 0)$ for all $(x, y) \in [0, \alpha]^2$.
- The opposite implication may not hold: for the Yager t-norm $T_2^{\mathbf{Y}}$ given by $T_2^{\mathbf{Y}}(x, y) = \max(1 \sqrt{(1 x)^2 + (1 y)^2}, 0)$ we have $T_2^{\mathbf{Y}}(x, y) = 0 = \max(x + y 1, 0)$ for all $(x, y) \in [0, \frac{1}{5}]^2$, but $T_2^{\mathbf{Y}}$ is not $\frac{1}{5}$ -cross-migrative with respect to $T_{\mathbf{L}}$.

CHARACTERIZATION

Theorem

Let $\alpha \in]0, 1[, T_0 \text{ be a nilpotent t-norm with additive generator}$ $t_0: [0,1] \rightarrow [0,\infty]$, and T be a continuous t-norm. Then (T, T_0) is α -cross-migrative if and only if

$$T = (\langle 0, \beta, T_1 \rangle, \langle \beta, 1, T_2 \rangle),$$

where $\beta \in [\alpha, 1]$, T_2 is an arbitrary continuous t-norm and T_1 is a nilpotent t-norm with an additive generator $t_1 \colon [0, 1] \to [0, \infty]$ such that there are constants $d \in \left] -t_0(\frac{\alpha}{\beta}), \infty\right[$ and $\delta \in \left] 0, \infty\right[$ and we have $t_1(x) = \delta \cdot (t_0(x) + d)$ for all $x \in \left[0, \frac{\alpha}{\beta} \right]$.

イロト イポト イヨト イヨト 二日

CONSEQUENCES

- For each α ∈]0, 1[, the relation ~ is transitive on the class of all nilpotent t-norms, i.e., ~ is an equivalence relation on the class of all nilpotent t-norms.
- For all $\alpha, \beta \in]0, 1[$ with $\beta \leq \alpha$ and for all nilpotent t-norms T_1 and T_2 we have that $T_1 \stackrel{\alpha}{\sim} T_2$ implies $T_1 \stackrel{\beta}{\sim} T_2$, i.e., the partition of the class of nilpotent t-norms induced by the equivalence relation $\stackrel{\alpha}{\sim}$ is a refinement of the partition induced by $\stackrel{\beta}{\sim}$.

Concluding remarks

J. FODOR (ÓBUDA UIVERSITY)

MIGRATIVE TYPE EQUATIONS

FSTA 2012 60 / 63

э

イロト イポト イヨト イヨト

Remarks 1

- Migrativity (T₁(T₂(α, x), y) = T₁(x, T₂(α, y))) and cross-migrativity (T₁(T₂(α, x), y) = T₂(x, T₁(α, y))) of t-norms are interesting properties expressed in the form of functional equations.
- We have given characterizations for the basic continuous Archimedean t-norms and for the minimum.
- Constructions could be illustrated graphically. This also supports the term "migrative" (characterized by migration; undergoing periodic migration).
- While migrativity defines an equivalence relation on the set of t-norms, cross-migrativity implies an equivalence relation only in the classes of strict and nilpotent t-norms.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Remarks 2

• The α -cross-migrativity can be seen as a special kind of *commuting* of t-norms T_1 and T_2 , if we rewrite the equation into the equivalent form

$$T_1(T_2(x, \alpha), T_2(1, y)) = T_2(T_1(x, 1), T_1(\alpha, y)).$$

It seems to be interesting to study the functional equation (valid for all $(x,y) \in [0,1]^2$)

$$T_1(T_2(x, \alpha), T_2(\beta, y)) = T_2(T_1(x, \beta), T_1(\alpha, y)).$$

Concluding remarks

THANK YOU FOR YOUR ATTENTION!

J. FODOR (ÓBUDA UIVERSITY)

MIGRATIVE TYPE EQUATIONS

FSTA 2012 63

63 / 63