イロト イポト イヨト イヨト 二日

Internal operators: Application to image fusion

Javier Fernandez, Humberto Bustince and Daniel Paternain Public University of Navarra, Spain Gleb Beliakov Deakin University, Australia

FSTA 2012

Javier Fernandez, Humberto Bustince, Daniel Paternain and Gleb Beliakov

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Outline

Introduction

Motivation

Internal fusion operators. Definition and main properties

Javier Fernandez, Humberto Bustince, Daniel Paternain and Gleb Beliakov Internal operators: Application to image fusion

イロト イポト イヨト イヨト 二日

Impulsive noise

Javier Fernandez, Humberto Bustince, Daniel Paternain and Gleb Beliakov

(ロ) (四) (三) (三) 三日

Impulsive noise

Javier Fernandez, Humberto Bustince, Daniel Paternain and Gleb Beliakov

・ロト ・ 聞 ト ・ ヨト ・ ヨト … ヨ

Impulsive noise

Additive noise

Javier Fernandez, Humberto Bustince, Daniel Paternain and Gleb Beliakov

Impulsive noise

Additive noise

Javier Fernandez, Humberto Bustince, Daniel Paternain and Gleb Beliakov Internal operators: Application to image fusion Motivation

Impulsive noise

Additive noise

Any other noise... Which filter?

Javier Fernandez, Humberto Bustince, Daniel Paternain and Gleb Beliakov Internal operators: Application to image fusion

Javier Fernandez, Humberto Bustince, Daniel Paternain and Gleb Beliakov

Javier Fernandez, Humberto Bustince, Daniel Paternain and Gleb Beliakov

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Definition

An internal fusion operator is a mapping

 $\mathit{IF}:[0,1]^n\to[0,1]$

such that $IF(x_1, \ldots, x_n) = x_j$ with $j \in \{1, \ldots, n\}$ for every $x_1, \ldots, x_n \in [0, 1]$.

Javier Fernandez, Humberto Bustince, Daniel Paternain and Gleb Beliakov

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Proposition

Let $IF : [0,1]^n \rightarrow [0,1]$ be an internal fusion operator. Then, the following items hold:

- 1. IF is idempotent: IF(x,...,x) = x for every $x \in [0,1]$;
- 2. IF is averaging: $min(x_1, \ldots, x_n) \leq IF(x_1, \ldots, x_n) \leq max(x_1, \ldots, x_n)$ for every $x_1, \ldots, x_n \in [0, 1].$

Javier Fernandez, Humberto Bustince, Daniel Paternain and Gleb Beliakov

イロン イロン イヨン イヨン 三日

Example

1. Let π_j denote the *j*-th projection; that is,

$$\pi_j(x_1,\ldots,x_n)=x_j$$

Then for every j = 1, ..., n, π_j is n internal fusion operator.

- 2. Assume that p is an odd number $(n = 2k + 1 \text{ for some } k \ge 1)$. Then, the median operator is an internal fusion operator.
- 3. Both the maximum and the minimum are internal fusion operators.

However, other properties are not satisfied. An internal fusion operator needs not to be:

- 1. Homogeneous;
- 2. Shift-invariant;
- 3. Monotone;
- 4. Migrative;
- 5. ...

Javier Fernandez, Humberto Bustince, Daniel Paternain and Gleb Beliakov

Let's denote by $\mathcal{IF}(n)$ the class of all internal fusion operators over $[0,1]^n$. Then we have the following result:

Proposition

 $(\mathcal{IF}(n), \max, \min)$ is a bounded lattice, with the operations max and min defined, for every $F, G \in \mathcal{IF}$ and $(x_1, \ldots, x_n) \in [0, 1]^n$, as:

$$\max(F,G)(x_1,\ldots,x_n)=\max(F(x_1,\ldots,x_n),G(x_1,\ldots,x_n))$$

and

$$\min(F,G)(x_1,\ldots,x_n)=\min(F(x_1,\ldots,x_n),G(x_1,\ldots,x_n))$$

Javier Fernandez, Humberto Bustince, Daniel Paternain and Gleb Beliakov

イロト イポト イヨト イヨト 二日

Proposition Let's denote by

$$F_{\infty} = \sup\{F: [0,1]^n \to [0,1] | F \in \mathcal{IF}(n)\}$$

and

$$F_{0} = \inf\{F : [0,1]^{n} \to [0,1] | F \in \mathcal{IF}(n)\}$$

Then $F_{\infty}(x_{1},...,x_{n}) = \max(x_{1},...,x_{n})$ and
 $F_{0}(x_{1},...,x_{n}) = \min(x_{1},...,x_{n}).$

Javier Fernandez, Humberto Bustince, Daniel Paternain and Gleb Beliakov

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Proposition

Let $F, G_1, \ldots, G_n \in \mathcal{IF}(n)$ be internal fusion operators. Let's denote by $F \circ G$ the operator

$$F \circ G(x_1,\ldots,x_n) = F(G_1(x_1,\ldots,x_n),\ldots,G_n(x_1,\ldots,x_n))$$

Then $F \circ G$ is also an internal fusion operator.

Javier Fernandez, Humberto Bustince, Daniel Paternain and Gleb Beliakov

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Definition

Consider a family of indexes *I*. A family $\{\varphi_i\}_{i \in I}$ with $\varphi : [0,1]^n \to \{0,1\}$ for every $i \in I$ is a partition if for every $(x_1,\ldots,x_n) \in [0,1]^n$ there exists $i_0 \in I$ such that $\varphi_{i_0}(x_1,\ldots,x_n) = 1$ and $\varphi_i(x_1,\ldots,x_n) = 0$ for every $i \neq i_0$.

Javier Fernandez, Humberto Bustince, Daniel Paternain and Gleb Beliakov

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Theorem

A mapping $F : [0,1]^n \to [0,1]$ is an internal fusion operator of dimension n if and only if there exists a partition of $[0,1]^n$ $\{\varphi_1, \ldots, \varphi_n\}$ such that $F(x_1, \ldots, x_n) = \varphi_1 \pi_1(x_1, \ldots, x_n) + \cdots + \varphi_n \pi_n(x_1, \ldots, x_n).$

Javier Fernandez, Humberto Bustince, Daniel Paternain and Gleb Beliakov

イロト 不得下 イヨト イヨト 二日

Corollary

1

Let $F:[0,1]^n\to [0,1]$ be an internal fusion operator. Then, if the identities

$$\mathsf{F}(x_1,\ldots,x_n)=\varphi_1\pi_1(x_1,\ldots,x_n)+\cdots+\varphi_n\pi_n(x_1,\ldots,x_n)$$

and

$$F(x_1,\ldots,x_n)=\psi_1\pi_1(x_1,\ldots,x_n)+\cdots+\psi_n\pi_n(x_1,\ldots,x_n)$$

hold for every $(x_1, \ldots, x_n) \in [0, 1]^n$ such that $(x_i \neq x_j$ whenever $i \neq j$, where $\{\varphi_j\}_{j=1,\ldots,n}$ and $\{\psi_j\}_{j=1,\ldots,n}$ are partitions of $[0, 1]^n$, then it follows that $\varphi_j = \psi_j$ for every $j = 1, \ldots, n$.

Javier Fernandez, Humberto Bustince, Daniel Paternain and Gleb Beliakov