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Definition
An internal fusion operator is a mapping

IF : [0, 1]n → [0, 1]

such that IF (x1, . . . , xn) = xj with j ∈ {1, . . . , n} for every
x1, . . . , xn ∈ [0, 1].
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Proposition

Let IF : [0, 1]n → [0, 1] be an internal fusion operator. Then, the
following items hold:

1. IF is idempotent: IF (x , . . . , x) = x for every x ∈ [0, 1];

2. IF is averaging:
min(x1, . . . , xn) ≤ IF (x1, . . . , xn) ≤ max(x1, . . . , xn) for every
x1, . . . , xn ∈ [0, 1].
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Example

1. Let πj denote the j-th projection; that is,

πj(x1, . . . , xn) = xj

Then for every j = 1, . . . , n, πj is n internal fusion operator.

2. Assume that p is an odd number (n = 2k + 1 for some k ≥ 1).
Then, the median operator is an internal fusion operator.

3. Both the maximum and the minimum are internal fusion
operators.
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However, other properties are not satisfied. An internal fusion
operator needs not to be:

1. Homogeneous;

2. Shift-invariant;

3. Monotone;

4. Migrative;

5. ...
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Let’s denote by IF(n) the class of all internal fusion operators
over [0, 1]n. Then we have the following result:

Proposition

(IF(n),max,min) is a bounded lattice, with the operations max
and min defined, for every F ,G ∈ IF and (x1, . . . , xn) ∈ [0, 1]n, as:

max(F ,G )(x1, . . . , xn) = max(F (x1, . . . , xn),G (x1, . . . , xn))

and

min(F ,G )(x1, . . . , xn) = min(F (x1, . . . , xn),G (x1, . . . , xn))
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Proposition

Let’s denote by

F∞ = sup{F : [0, 1]n → [0, 1]|F ∈ IF(n)}

and
F0 = inf{F : [0, 1]n → [0, 1]|F ∈ IF(n)}

Then F∞(x1, . . . , xn) = max(x1, . . . , xn) and
F0(x1, . . . , xn) = min(x1, . . . , xn).
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Proposition

Let F ,G1, . . . ,Gn ∈ IF(n) be internal fusion operators. Let’s
denote by F ◦ G the operator

F ◦ G (x1, . . . , xn) = F (G1(x1, . . . , xn), . . . ,Gn(x1, . . . , xn))

Then F ◦ G is also an internal fusion operator.
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Definition
Consider a family of indexes I . A family {ϕi}i∈I with
ϕ : [0, 1]n → {0, 1} for every i ∈ I is a partition if for every
(x1, . . . , xn) ∈ [0, 1]n there exists i0 ∈ I such that
ϕi0(x1, . . . , xn) = 1 and ϕi (x1, . . . , xn) = 0 for every i 6= i0.
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Theorem
A mapping F : [0, 1]n → [0, 1] is an internal fusion operator of
dimension n if and only if there exists a partition of [0, 1]n

{ϕ1, . . . , ϕn} such that
F (x1, . . . , xn) = ϕ1π1(x1, . . . , xn) + · · ·+ ϕnπn(x1, . . . , xn).
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Corollary

Let F : [0, 1]n → [0, 1] be an internal fusion operator. Then, if the
identities

F (x1, . . . , xn) = ϕ1π1(x1, . . . , xn) + · · ·+ ϕnπn(x1, . . . , xn)

and

F (x1, . . . , xn) = ψ1π1(x1, . . . , xn) + · · ·+ ψnπn(x1, . . . , xn)

hold for every (x1, . . . , xn) ∈ [0, 1]n such that (xi 6= xj whenever
i 6= j , where {ϕj}j=1,...,n and {ψj}j=1,...,n are partitions of [0, 1]n,
then it follows that ϕj = ψj for every j = 1, . . . , n.
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