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Introduction

In the middle of XX century - interest to investigate uncertainties
whose nature is not probabilistic:

Fuzzy sets (Zadeh 1965), later L-fuzzy sets (Goguen 1967)
Rough sets (Pawlak 1983)
Soft sets (Molodtsov 1999)
Fuzzy rough sets, rough fuzzy sets, etc (Dubois, Prade,
Pavlowski, Yao, et al.)
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The aim of this talk
To study families of L-fuzzy rough sets generated by L-fuzzy
relations with main attention to the lattice and categorical
properties of these families.

In our work the following concepts play an important role:

1 A lattice L that serves as the range for our constructions.
2 L-fuzzy sets and L-powersets of sets.
3 Relations and L-fuzzy relations on a set.
4 Rough sets and L-fuzzy rough sets
5 Approximate systems
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Monoidal type structure

A complete infinitely distributive lattice

(L,≤,∧,∨)

with the smallest and the largest elements 0L and 1L respectively.
∗,� : L× L→ L are commutative associative monotone operations
on L, distributing over arbitrary joins, and 1L ∗ α = α, 1L � α = α
for every α ∈ L.
There is a further binary operation - residium 7→ on a lattice

α 7→ β =
∨
{γ | γ � α ≤ β, γ ∈ L}

for every α, β ∈ L.
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L-sets

1 An L-subset A of a set X is a mapping A : X → L.

2 The family of all L-sets on X is denoted by LX .
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L-relations

An L-relation ρ on X is a mapping ρ : X × X → L .

An L-relation ρ on X is called

1 reflexive if ρ(x , x) = 1,
2 serial if for all x ∈ X ∃y ∈ X s.t. ρ(x , y) = 1,
3 symmetric if ρ(x , y) = ρ(y , x),
4 transitive if ρ(x , y) ∗ ρ(y , z) ≤ ρ(x , z) for all x , y , z ∈ X .
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Category of sets with L-relations

Let L be fixed. Given sets equipped with L-relations (X , ρ), (Y , σ),
we consider mappings f : X → Y respecting this relations:

σ(f (x), f (x ′)) ≥ ρ(x , x ′) ∀x , x ′ ∈ X

In the result we obtain a category REL(L).
This and some related categories were studied by different authors.
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L-rough sets

Let an L be given and let X be a set, A ∈ LX .
Further let an L-relation ρ : X × X → L on a set X be given.

1 We construct a lower approximation operator: lρ : LX → LX

lρ(A)(x) = inf
x ′∈X

(ρ(x , x ′) 7→ A(x ′)).

α 7→ β =
∨
{γ | γ � α ≤ β, γ ∈ L}

2 We construct an upper approximation operator: uρ : LX → LX

uρ(A)(x) = sup
x ′∈X

(ρ(x , x ′) ∗ A(x ′)).

3 We call the triple (A, lρ(A), uρ(A)) an L-rough set and study
its properties.
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Example: Classical rough sets
In case L = {0, 1} we obtain Pawlak model of rough sets:
Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341-356

1 Let A ⊆ X be a set under research .
2 Let an equivalence relation ρ : X × X → 2 be given.
3 Relation ρ partitions the set X into equivalence classes:

R(x) = {x ′ ∈ X | xρx ′}.
4 Define a lower approximation of A:

lρ(A) = {x ∈ X | R(x) ⊆ A}

5 Define an upper approximation of A:

uρ(A) = {x ∈ X | R(x) ∩ A 6= ∅}

6 The triple (A, lρ(A), uρ(A)) is a rough set in Pawlak’s sense.
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Example: L-rough sets with Łukasiewicz t-norm

1 Let A ∈ LX be a set under research .

2 Let an L-relation ρ : X × X → L be given.
3 Let Łukasiewicz t-norm TL(a, b) = max(a+ b − 1, 0) be used.
4 Define a lower approximation of A:

lρ(A)(x) = inf
x ′∈X

(ρ(x , x ′) 7→ A(x ′)) = inf
x ′∈X

(min(1−ρ(x , x ′)+A(x ′), 1)).

5 Define an upper approximation of A:

uρ(A)(x) = sup
x ′∈X

(ρ(x , x ′)∗A(x ′)) = sup
x ′∈X

(max(ρ(x , x ′)+A(x ′)−1, 0)).

6 The triple (A, lρ(A), uρ(A)) is an L-rough set defined with
Łukasiewicz t-norm.
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(ρ(x , x ′)∗A(x ′)) = sup
x ′∈X

(max(ρ(x , x ′)+A(x ′)−1, 0)).

6 The triple (A, lρ(A), uρ(A)) is an L-rough set defined with
Łukasiewicz t-norm.
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Example: L-rough sets with product t-norm and
Łukasiewicz t-norm

1 Let A ∈ LX be a set under research .

2 Let an L-relation ρ : X × X → L be given.
3 Let product t-norm TP(a, b) = a · b is used for lower

approximation and Łukasiewicz t-norm
TL(a, b) = max(a+b− 1, 0) be used for upper approximation.

4 Define a lower approximation of A:

lρ(A)(x) = inf
x ′∈X

{
1, ρ(x , x ′) ≤ A(x ′)

A(x ′)/ρ(x , x ′), ρ(x , x ′) > A(x ′)
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Example: L-rough sets with Łukasiewicz t-norm and
product t-norm II

Define an upper approximation of A:

uρ(A)(x) = sup
x ′∈X

(max(ρ(x , x ′) + A(x ′)− 1, 0)).

The triple (A, lρ(A), uρ(A)) is an L-rough set, where the upper
approximation is obtained with Łukasiewicz t-norm and the
lower approximation is obtained by means of the product
t-norm.
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Example: L-rough sets with Łukasiewicz t-norm and
product t-norm II

Define an upper approximation of A:

uρ(A)(x) = sup
x ′∈X

(max(ρ(x , x ′) + A(x ′)− 1, 0)).

The triple (A, lρ(A), uρ(A)) is an L-rough set, where the upper
approximation is obtained with Łukasiewicz t-norm and the
lower approximation is obtained by means of the product
t-norm.
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Approximate system I

The concept of an approximate system was introduced in
A.Šostak, On approximative fuzzy operators, 1st Czech-Latvian Seminar on Fuzzy Sets and Soft Computing, 2008

Trojanice, Czech Republic, Abstracts 7-8

and further studied in
A.Šostak, Towards the theory of M-approximate systems: Fundamentals and examples, Fuzzy Sets and Syst. 161

(2010), 2440 - 2461.

Approximate systems make a common background for describing
and studying fuzzy sets, (fuzzy) topological structures and (fuzzy)
rough sets.
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Approximate system II

Definition
Given a lattice L; a pair of mappings u, l : LX → LX is called an
approximation operators if they satisfying the following conditions:

1 l(1L) = 1L;

2 a ≥ l(a) ∀a ∈ LX ;

3 l(a ∧ b) = l(a) ∧ l(b) ∀a, b ∈ LX ;

4 l(l(a)) = l(a) ∀a ∈ LX .

5 u(0L) = 0L;

6 a ≤ u(a) ∀a ∈ LX

7 u(a ∨ b) = u(a) ∨ u(b) ∀a, b ∈ LX ;

8 u(u(a)) = u(a) ∀a ∈ LX .
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Approximate system II

Definition
Given a lattice L; a pair of mappings u, l : LX → LX is called an
approximation operators if they satisfying the following conditions:
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Approximate system III

In this case l : LX → LX and u : LX → LX are called respectively an
upper approximation operator and a lower approximation operators
on the lattice L. The triple (LX , l , u) is approximate system.
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Approximate system as L-rough sets

Theorem
If L-relation ρ is transitive and reflexive then L-rough set
(A, lρ(A), uρ(A)), where A ∈ LX determines an approximate system
(LX , lρ(A), uρ(A)).
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Lattice of approximate structures on fixed lattice L

Given two approximate systems (l , u) and (l ′, u′) we say
(l , u) � (l ′, u′) iff l ≤ l ′ and u ≥ u′.

A.Elkin, A.Shostak Rough sets generated by a pair of monoidal type structures



Introduction
Preliminaries

L-rough sets and approximate systems
Lattice properties of approximate systems

L-rough systems as approximate systems

Let AR (L) be the family of all L-rough sets generated by
L-relations.
We introduce an oder on the family AR (L) by pointwise extending
it from the order of lattice L:

ρ ≤ σ ⇐⇒ ρ(x , x ′) ≤ σ(x , x ′) for every x , x ′ ∈ X

Theorem
Given two L-relations ρ, σ : X × X → L on a set X

ρ ≤ σ ⇐⇒ (lρ, uρ) � (lσ, uσ).
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Lattice structure of ASR
ASR (L) be subfamily of AR (L) generated by L-reflexive and transitive relations on X.

Theorem
Let a family R = {ρi | i ∈ I} of reflexive, transitive L-relations on
a set X be given. Then

1

l∧i∈Iρi (A)(x) ≥
∧
i∈I

lρi (A)(x),

u∧i∈Iρi (A)(x) ≤
∧
i∈I

uρi (A)(x), ∀A ∈ LX , ∀x ∈ X ;

2

l∨i∈Iρi (A)(x) =
∧
i∈I

lρi (A)(x)

u∨i∈Iρi (A)(x) =
∨
i∈I

uρi (A)(x) ∀A ∈ LX , ∀x ∈ X
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Lattice structure of ASR II

Theorem
There is a isomorphism between the lattice of the transitive and
reflexive L-relations R = {ρ : X × X → L} and the lattice of the
approximation systems defined by this relation and, respectively,
corresponding L-rough sets.
AR = {(l , u) | l : LX → LX ; u : LX → LX}.
This isomorphism is given by

(X , ρ) 7−→ (LX , lρ, uρ).
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Approximate system with different t-norms

Theorem
Given t-norms ∗1,∗2, �1, �2 an L-relation ρ on X.
If ∗1 ≤ ∗2 and �1 ≤ �2 then it means that lρ(A,�1) ≥ lρ(A,�2)
and uρ(A, ∗1) ≤ uρ(A, ∗2) for every A ∈ LX .
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Thank you for your attention!
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