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States on M V-algebras

M - MV-algebra, we define a partial operation
+,Vviaa+bisdefinediffa <b*iffa® b =0,
thena+b:=a®b.
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States on M V-algebras

M - MV-algebra, we define a partial operation
+,Vviaa+bisdefinediffa <b*iffa® b =0,
thena + 0 :=a®0D.

+ restriction of the /-group addition
state- s : M — [0,1], (i) s(a + b) = s(a) + s(b),
(i) s(1) = 1.
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States on M V-algebras

M - MV-algebra, we define a partial operation
+,Vviaa+bisdefinediffa <b*iffa® b =0,
thena + 0 :=a®0D.

+ restriction of the /-group addition

state- s : M — [0,1], (i) s(a + b) = s(a) + s(b),
(ii) s(1) = 1.

S(M) -set of states. S(M) # ().
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States on M V-algebras

M - MV-algebra, we define a partial operation
+,Vviaa+bisdefinediffa <b*iffa® b =0,
thena + 0 :=a®0D.

+ restriction of the /-group addition

state- s : M — [0,1], (i) s(a + b) = s(a) + s(b),
(ii) s(1) = 1.

S(M) -set of states. S(M) # ().

extremal state s = As; + (1 — \)so for
A€ (0,1) = s =s1 = so.
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{sq} — sifflim, s,(a) = s(a), a € M.
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{sq} — sifflim, s,(a) = s(a), a € M.

S(F) - Hausdorff compact topological space,
0.S (M)
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{sq} — sifflim, s,(a) = s(a), a € M.

S(F) - Hausdorff compact topological space,
0.S (M)

Krein-Mi'man S(M) = Cl(ConHul(0,S(M))
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{sq} — sifflim, s,(a) = s(a), a € M.

S(F) - Hausdorff compact topological space,
0.S (M)

Krein-Mi'man S(M) = Cl(ConHul(0,S(M))

s Is extremal iff s(a A b) = min{s(a), s(b)} iff s
is MV-homomorphism iff Ker(s) is a maximal
Ideal.
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{sq} — sifflim, s,(a) = s(a), a € M.

S(F) - Hausdorff compact topological space,
0.S (M)

Krein-Mi'man S(M) = Cl(ConHul(0,S(M))

s Is extremal iff s(a A b) = min{s(a), s(b)} iff s
is MV-homomorphism iff Ker(s) is a maximal
Ideal.

s <> Ker(s), 1-1 correspondence
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every maximal ideal is a kernel of a unique
state
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every maximal ideal is a kernel of a unique
state

Kernel-hull topology = 0.5 (F) set of extremal
states
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every maximal ideal is a kernel of a unique
state

Kernel-hull topology = 0.5 (F) set of extremal
states

Kroupa- Panti a — a, a(s) := s(a),

s(a) = /@ o AO(0
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every maximal ideal is a kernel of a unique
state

Kernel-hull topology = 0.5 (F) set of extremal
states

Kroupa- Panti a — a, a(s) := s(a),

s(a) = /@ o AO(0

s - unique Borel regular o-additive probability

measure on B(S(M)) such that
(A A — T )
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State M V-algebras

MV-algebras with a state are not universal
algebras, and therefore, the do not provide an
algebraizable logic for probability reasoning
over many-valued events
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State M V-algebras

MV-algebras with a state are not universal
algebras, and therefore, the do not provide an
algebraizable logic for probability reasoning
over many-valued events

Flaminio-Montagna - introduce an
algebraizable logic whose equivalent
algebraic semantics Is the variety of state
MV-algebras
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State M V-algebras

MV-algebras with a state are not universal
algebras, and therefore, the do not provide an
algebraizable logic for probability reasoning
over many-valued events

Flaminio-Montagna - introduce an
algebraizable logic whose equivalent
algebraic semantics Is the variety of state
MV-algebras

A state MV-algebra is a pair (M, 1), M -
MV-algebra, 7 unary operation on A s.t.
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T(z) @ 7(y S (2 Oy))
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) =
>I<) — (1 *
(z) ®7(y))
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(1) =1

Tz @y)=7(@) ®T(yS (T OY))
T(z*) = 7(z)*

T(T(x) ®7(y)) = 7(x) ® 7(y)

7 -Internal operator, state operator
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Properties
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Properties

=

7(M) is an MV-algebra and 7 on 7(M) -
identity
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Properties
=17

7(M) is an MV-algebra and 7 on 7(M) -
identity

T(z +y) = 7(x) +7(y)
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Properties
=17

7(M) is an MV-algebra and 7 on 7(M) -
identity

T(x+y)=71(x)+ 7(y)
T(xOy)=7(x)07(y) ifx©y=0.

e
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Properties
=17

7(M) is an MV-algebra and 7 on 7(M) -
identity

T(z+y) =71(2) +7(y)
T(xOy)=7(x)07(y) ifx©y=0.
if (M, 7)is s.i., then 7(M) is a chain
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Properties
7(M) is an MV-algebra and 7 on 7(M) -
identity
T(z +y) = 7(x) +7(y)
T(rOy)=1(r)0T(y)ifzrOy =0.
if (M, 7)is s.i., then 7(M) is a chain
)

if (M, 1
chain

IS S.1., then M Is not necessarily a
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F -filter, r-filter if 7(F") C F.

State-morohism MV-alaebras and Their Generalizations — p. 8



F -filter, r-filter if 7(F") C F.

1-1 correspondence congruences and
T-filters
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F -filter, r-filter if 7(F") C F.

1-1 correspondence congruences and
T-filters

M =10,1] x [0,1], 7(z,y) = (x,x) S.i. - not
chain
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F -filter, r-filter if 7(F") C F.

1-1 correspondence congruences and
T-filters

M =10,1] x [0,1], 7(z,y) = (x,x) S.i. - not
chain

state-morphism (M, 7), 7 is an idempotent
endomorphism
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F -filter, r-filter if 7(F") C F.

1-1 correspondence congruences and
T-filters

M =10,1] x [0,1], 7(z,y) = (x,x) S.i. - not
chain

state-morphism (M, 7), 7 is an idempotent
endomorphism

s state on M, [0,1] ® M,
s(a®a) :=a-s(a)®1
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(10, 1]®, 75) iIs an SMV-algebra.
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(10,1]®, 75) is an SMV-algebra.

([0, 1]®, 75) is an SMMV-algebra iff s is an
extremal state
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(10,1]®, 75) is an SMV-algebra.

([0, 1]®, 75) is an SMMV-algebra iff s is an
extremal state

if M is a chain, every SMV-algebra (M, ) is
an SMMV-algebra
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(10,1]®, 75) is an SMV-algebra.
([0, 1]®, 75) is an SMMV-algebra iff s is an
extremal state

if M is a chain, every SMV-algebra (M, ) is
an SMMV-algebra

if 7(M) e V(5,,...,5,) forsome n > 1, then
(M, ) is an SMMV-algebra
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(10,1]®, 75) is an SMV-algebra.

([0, 1]®, 75) is an SMMV-algebra iff s is an
extremal state

if M is a chain, every SMV-algebra (M, ) is
an SMMV-algebra

if 7(M) e V(5,,...,5,) forsome n > 1, then
(M, ) is an SMMV-algebra

Iff 7((n + 1)x) = 7(nx)
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Other examples

Let (G, u) be a unital Riesz space and let
A =T(G,u). Choose an endomorphism
s: A— Asuchthat sos=sandfix areal
number \ € [0, 1]. Define a mapping

Sy - A2 5 A by

sa(z,y) = As(z) + (1 = N)s(y), (z,y) € A,
and set 7, : A° — A° by

TA,S(xv Y, Z) — (S)\(.I‘, y)v S)\(l’, y)? SA(xv y))v (QZ, Y,
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Then D(A),, := (A%, 7\) is a state
MV-algebra such that it is a state morphism
MV-algebra iff A € {0,1}.

Ker(s) x Ker(s) x A if A e (0,1),
Ker(Tyhs) = ¢ A X Ker(s) x A if A\ =0,
Ker(s) x A x A if A =1.

Hence, If A Is a subdirectly irreducible
MV-algebra and s Is faithful, then neither

(A, 7195) Nor (A, 1) is a subdirectly irreducible
<tate mornhiem MV-alaehra ... B .




whilst if A € (0,1), D(A, ) is a subdirectly
Irreducible state MV-algebra.
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whilst if A € (0,1), D(A, ) is a subdirectly
Irreducible state MV-algebra.

Let A = |0, 1] be the standard MV-algebra and
let s be the identity on A. If A € {0, 1}, then

D([0,1]; s) generates the variety of state
morphism MV-algebras
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whilst if A € (0,1), D(A, ) is a subdirectly
Irreducible state MV-algebra.

Let A = |0, 1] be the standard MV-algebra and
let s be the identity on A. If A € {0, 1}, then
D([0,1]; s) generates the variety of state
morphism MV-algebras

Does D(|[0, 1], ) for a fixed A € (0,1) and the
identity s on |0, 1] generate the variety of state
MV-algebras ?
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State BL -algebras

M - BL-algebra. Amap 7 : M — M s.t.
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N 7~ N 7 N 7/ N 7/ N

=~ o N =
S— N N NS

Ot

State BL -algebras

M - BL-aIgebra Amapr7: M — M s.t.

pr 7(0) =

BL T(T = ) T(z) = 7(T A y);

BL T(x ©y) =7(x) ©7(z = (O y));
L T(7(z) © 7(y)) = 7(z) © 7(y);

sr T(7(z) = 7(y)) = 7(x) — 7(y)

state-operator on M, pair (M, 7) - state BL-algebra

If -: M — M Is a BL-endomorphism s.t.
T o T = T, - state-morphism operator and the
couple (M, 7) - state-morphism BL-algebra.
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every state operator on a linear BL-algebra Is
a state-morphism
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every state operator on a linear BL-algebra Is
a state-morphism

Example 0.2 Let M be a BL-algebra. On M x M
we define two operators, 71 and 7, as follows

71(a,b) = (a,a), 7(a,b) = (b,b), (a,b) € MxM.
(2.0)
Then 71 and 7y are two state-morphism operators on

M x M.
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every state operator on a linear BL-algebra Is
a state-morphism

Example 0.3 Let M be a BL-algebra. On M x M
we define two operators, 71 and 7, as follows

71(a,b) = (a,a), 7(a,b) = (b,b), (a,b) € MxM.
(2.0)
Then 71 and 7y are two state-morphism operators on

M x M.
Ker(7) ={a € M :7(a) =1}.

State-moronhism MV-alaebras and Their Generalizations — p. 14




We say that two subhoops, A and B, of a
BL-algebra M have the disjunction property If
forallz € Aandy € B,ifxVvy =1, then
eitherz =1ory = 1.
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We say that two subhoops, A and B, of a
BL-algebra M have the disjunction property If
forallz € Aandy € B,ifxVvy =1, then
eitherz =1ory = 1.

Lemma 0.5 Suppose that (M, 7) is a state
BL-algebra. Then:

1) If 7 is faithful, then (M, 7) is a subdirectly
Irreducible state BL-algebra if and only if
7(M) is a subdirectly irreducible
BL-algebra.

Now let (M, 7) be subdirectly irreducible.

Then: A et

State-morohism MV-alaebras and Their Generalizations — p. 15



(2) Ker(7) is (either trivial or) a subdirectly
Irreducible hoop.

(3) Ker(7) and 7(M) have the disjunction
property.
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(2) Ker(7) is (either trivial or) a subdirectly
Irreducible hoop.

(3) Ker(7) and 7(M) have the disjunction
property.

Theorem 0.7 Let (M, 1) be a state

BL-algebra satisfying conditions (1), (2) and (3)

in the last Lemma. Then (M, 7) is subdirectly

Irreducible.
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Theorem 0.8 A state-morphism BL-algebra
(M, 7) is subdirectly irreducible irreducible if
and only if one of the following three
possibilities holds.
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Theorem 0.9 A state-morphism BlL-algebra
(M, 7) is subdirectly irreducible irreducible if
and only if one of the following three
possibilities holds.

() M is linear, 7 = idy;, and the BL-reduct M
IS a subdirectly irreducible BL-algebra.
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Theorem 0.10 A state-morphism BL-algebra
(M, 7) is subdirectly irreducible irreducible if
and only if one of the following three
possibilities holds.

() M is linear, 7 = idy;, and the BL-reduct M
IS a subdirectly irreducible BL-algebra.

(i) The state-morphism operator 7 Is not
faithful, M has no nontrivial Boolean
elements, and the BL-reduct M of (M, 1) is a
local BL-algebra, Ker(7) is a subdirectly
irreducible irreducible hoop, and Ker(7) and
(M) have the disjunction property. =~ °
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Theorem 0.11 A state-morphism BL-algebra
(M, 7) is subdirectly irreducible irreducible if
and only if one of the following three
possibilities holds.

() M is linear, 7 = idy;, and the BL-reduct M
IS a subdirectly irreducible BL-algebra.

(i) The state-morphism operator 7 Is not
faithful, M has no nontrivial Boolean
elements, and the BL-reduct M of (M, 1) is a
local BL-algebra, Ker(7) is a subdirectly
irreducible irreducible hoop, and Ker(7) and
(M) have the disjunction property. =~ °
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Theorem 0.12 A state-morphism BL-algebra
(M, 7) is subdirectly irreducible irreducible if
and only if one of the following three
possibilities holds.

() M is linear, 7 = idy;, and the BL-reduct M
IS a subdirectly irreducible BL-algebra.

(i) The state-morphism operator 7 Is not
faithful, M has no nontrivial Boolean
elements, and the BL-reduct M of (M, 1) is a
local BL-algebra, Ker(7) is a subdirectly
irreducible irreducible hoop, and Ker(7) and
(M) have the disjunction property. =~ °
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Theorem 0.13 A state-morphism BL-algebra
(M, 7) is subdirectly irreducible irreducible if
and only if one of the following three
possibilities holds.

() M is linear, 7 = idy;, and the BL-reduct M
IS a subdirectly irreducible BL-algebra.

(i) The state-morphism operator 7 Is not
faithful, M has no nontrivial Boolean
elements, and the BL-reduct M of (M, 1) is a
local BL-algebra, Ker(7) is a subdirectly
irreducible irreducible hoop, and Ker(7) and
(M) have the disjunction property. =~ °
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Moreover, M is linearly ordered if and only if
Rad; (M) is linearly ordered, and in such a
case, M Is a subdirectly irreducible
BL-algebra such that if F'is the smallest
nontrivial state-filter for (M, 7), then F'is the
smallest nontrivial BL-filter for M.
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Moreover, M is linearly ordered if and only if
Rad; (M) is linearly ordered, and in such a
case, M Is a subdirectly irreducible
BL-algebra such that if F'is the smallest
nontrivial state-filter for (M, 7), then F'is the
smallest nontrivial BL-filter for M.

If Rad(M ) = Ker(7), then M is linearly ordered.
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(i) The state-morphism operator 7 Is not
faithful, M has a nontrivial Boolean element.
There are a linearly ordered BL-algebra A, a
subdirectly irreducible BL-algebra B, and an
Injective BL-homomorphism 2 : A — B such
that (M, 7) is isomorphic as a state-morphism
BL-algebra with the state-morphism
BL-algebra (A x B, 1), where

m(z,y) = (z,h(x)) forany (z,y) € A x B.
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Varieties of SMM V-algebras

Komori - countably many subvarieties of
MV-algebras
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MV-algebras

V-variety of MV-algebras, V, -system of
SMMV-algebras (M, 7)st M €V e V.
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Varieties of SMM V-algebras

Komori - countably many subvarieties of
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V-variety of MV-algebras, V, -system of
SMMV-algebras (M, 7)st M €V e V.

D(M) := (M x M, )
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Varieties of SMM V-algebras

Komori - countably many subvarieties of
MV-algebras

V-variety of MV-algebras, V, -system of
SMMV-algebras (M, 7)st M €V e V.

D(M) := (M x M,7y)
V(D) = V(M),
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Varieties of SMM V-algebras

Komori - countably many subvarieties of
MV-algebras

V-variety of MV-algebras, V, -system of
SMMV-algebras (M, 7)st M €V e V.

D(M) := (M x M, )
V(D) = V(M),
SMMYV = V(D([0,1]))
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Varieties of SMM V-algebras

Komori - countably many subvarieties of
MV-algebras

V-variety of MV-algebras, V, -system of
SMMV-algebras (M, 7)st M €V e V.

D(M) := (M x M, )
V(D) = V(M),
SMMYV = V(D([0,1]))

P. =V (D(C)), P perfect MV-algebras, C-
Chang
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Theorem: VZ C VR C VL C V.. and all
Inclusions are proper of V is not finitely
generated.
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Theorem: VZ C VR C VL C V.. and all
Inclusions are proper of V is not finitely
generated.

Theorem: Representable SMMV-algebras:
T(z)V (z = (1(y) < y)) = 1.
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Theorem: VZ C VR C VL C V.. and all
Inclusions are proper of V is not finitely
generated.

Theorem: Representable SMMV-algebras:
T(z)V (z = (1(y) < y)) = 1.

also for BL-algebra
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Theorem: VZ C VR C VL C V.. and all
Inclusions are proper of V is not finitely
generated.

Theorem: Representable SMMV-algebras:
T(z)V (z = (1(y) < y)) = 1.

also for BL-algebra

Theorem: VL - generated by those (M, 1), M
IS local
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Theorem: VZ C VR C VL C V.. and all
Inclusions are proper of V is not finitely
generated.

Theorem: Representable SMMV-algebras:
T(z)V (z = (1(y) < y)) = 1.

also for BL-algebra

Theorem: VL - generated by those (M, 1), M
IS local
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Uncountable many subvarieties

0, 1]* ultrapower, for positive infinitesimal
e € (0,1]*
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Uncountable many subvarieties

0, 1]* ultrapower, for positive infinitesimal
e € |0,1]*

X subset of prime numbers, A(X)
MV-algebra generated by ¢ and - s.t
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Uncountable many subvarieties

0, 1]* ultrapower, for positive infinitesimal
e € |0,1]*

X subset of prime numbers, A(X)
MV-algebra generated by ¢ and - s.t

(1) either n =0 or g.c.d(n,m) =1
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Uncountable many subvarieties

0, 1]* ultrapower, for positive infinitesimal
e € |0,1]*

X subset of prime numbers, A(X)
MV-algebra generated by ¢ and - s.t

(1) either n =0 or g.c.d(n,m) =1
Vp € X, p does not divide m
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Uncountable many subvarieties

0, 1]* ultrapower, for positive infinitesimal
e € |0,1]*

X subset of prime numbers, A(X)
MV-algebra generated by ¢ and - s.t

(1) either n =0 or g.c.d(n,m) =1
Vp € X, p does not divide m
7(x)= standard part of =
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Uncountable many subvarieties

0, 1]* ultrapower, for positive infinitesimal
e € |0,1]*

X subset of prime numbers, A(X)
MV-algebra generated by ¢ and - s.t

(1) either n =0 or g.c.d(n,m) =1

Vp € X, p does not divide m

7(x)= standard part of =

(A(X), 7) is linearly ordered SMMV-algebra
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if X £, then V(A(X)) # V(A(Y))
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if X £, then V(A(X)) # V(A(Y))

Theorem: Between MVZ and MVR there is
uncountably many varieties
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Generatorsof SMBL -algebras

t-norm- function ¢ : [0, 1] x [0, 1] — [0, 1] such
that (1) ¢t Is commutative, associative, (ii)
t(x,1) =z, x € |0, 1], and (iii)  is
nondecreasing.
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Generatorsof SMBL -algebras

t-norm- function ¢ : [0, 1] x [0, 1] — [0, 1] such
that (1) ¢t Is commutative, associative, (ii)
t(x,1) =z, x € |0, 1], and (iii)  is
nondecreasing.

If ¢ is continuous, we define z ©; y = t(z, y)
and x —; y =sup{z € |0,1] : t(z,2z) < y} for
z,y € |0,1], then

I; := (|0, 1], min, max, ®¢, —,0,1) is a
BL-algebra.
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Generatorsof SMBL -algebras

t-norm- function ¢ : [0, 1] x [0, 1] — [0, 1] such
that (1) ¢t Is commutative, associative, (ii)
t(x,1) =z, x € |0, 1], and (iii)  is
nondecreasing.

If ¢ is continuous, we define z ©; y = t(z, y)
and x —; y =sup{z € |0,1] : t(z,2z) < y} for
z,y € |0,1], then

I; := (|0, 1], min, max, ®¢, —,0,1) is a
BL-algebra.

The variety of all BL-algebras is generated by
all I, with a continupus.t—nprm.t. :
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7 denotes the system of all BL-algebras
D(I;), where t is a continuous t-norm on the
interval [0, 1],
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7 denotes the system of all BL-algebras
D(I;), where t is a continuous t-norm on the
interval [0, 1],

Theorem 0.15 The variety of all
state-morphism BL-algebras Is generated by
the class 7.
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General Approach - State-M or phism Al

A an algebra of type F', 7 an idempotent
endomorphism of A, (A, 7) state-morphism
algebra
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General Approach - State-M or phism Al

A an algebra of type F', 7 an idempotent
endomorphism of A, (A, 7) state-morphism
algebra

0, ={(x,y) e AxA:7(x)=71(y)},
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General Approach - State-M or phism Al

A an algebra of type F', 7 an idempotent
endomorphism of A, (A, 7) state-morphism
algebra

0, ={(x,y) e AxA:7(x)=71(y)},

¢ C A% ®(¢p), ,(¢) congruence generated by
¢pon Aand (A, 1)
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General Approach - State-M or phism Al

A an algebra of type F', 7 an idempotent
endomorphism of A, (A, 7) state-morphism
algebra

0. ={(z,y) e AxA:7(x)="1(y)},

¢ C A% ®(¢p), ,(¢) congruence generated by
¢ on Aand (A, 1)

Lemma: For any ¢ € Con7(A), we have

0y € Con (A, 7),and 05N 7(A)* = ¢. In
addition, 6. € Con (A, 7), ¢ C 6,4, and

©:(¢) C 0.
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Lemma: Let 8 € Con A be such thatd C 6..
Then 6 € Con (A, 7) holds.
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Lemma: Let 8 € Con A be such thatd C 6..
Then 6 € Con (A, 7) holds.

Lemma: If x,y € 7(A), then
O(x,y) = O.(x,y). Consequently,
O(¢) = O,(¢) whenever ¢ C 7(A)>.
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Lemma: Let 8 € Con A be such thatd C 6..
Then 6 € Con (A, 7) holds.

Lemma: If x,y € 7(A), then

O(x,y) = O.(x,y). Consequently,

O(¢) = O,(¢) whenever ¢ C 7(A)>.

if (C,7) — (B x B,7p), (C,7) is said to be a
subdiagonal state-morphism algebra
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Theorem 0.16 Let (A, 7) be a subdirectly
Irreducible state-morphism algebra such that
A Is subdirectly reducible. Then there is a
subdirectly irreducible algebra B such that
(A, 7) is B-subdiagonal.
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Theorem 0.18 Let (A, 7) be a subdirectly
Irreducible state-morphism algebra such that
A Is subdirectly reducible. Then there is a
subdirectly irreducible algebra B such that
(A, 7) is B-subdiagonal.

Theorem 0.19 For every subdirectly
irreducible state-morphism algebra (A, 7),
there Is a subdirectly irreducible algebra B
such that (A, 7) is B-subdiagonal.
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Theorem 0.20 Let (A, 7) be a subdirectly
Irreducible state-morphism algebra such that
A Is subdirectly reducible. Then there is a
subdirectly irreducible algebra B such that
(A, 7) is B-subdiagonal.

Theorem 0.21 For every subdirectly
irreducible state-morphism algebra (A, 7),
there Is a subdirectly irreducible algebra B
such that (A, 7) is B-subdiagonal.

C of algebras of the same type, I(K), H(K),
S(K) and P(K) D(K)
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Theorem 0.22 (1) For every class K of
algebras of the same type F,

V(D(K)) = V(K)..

(2) Let IC; and Ky be two classes of same type
algebras. Then V(D(K;)) = V(D(K,)) if and
Only If V(/Cl) — V(ICQ)
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Theorem 0.24 (1) For every class K of
algebras of the same type F,

V(D(K)) = V(K)..

(2) Let IC; and Ky be two classes of same type
algebras. Then V(D(K;)) = V(D(K,)) if and
Only If V(/Cl) — V(ICQ)

Theorem 0.25 If a system KC of algebras of
the same type F' generates the whole variety
V(F) of all algebras of type F| then the variety
V(F), of all state-morphism algebras (A, 7),
where A € V(F)), is generated by the class
{D(A): A e} s s s e
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Theorem 0.26 If A is a subdirectly irreducible
algebra, then any state-morphism algebra
(A, 7) is subdirectly irreducible.
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Theorem 0.28 If A Is a subdirectly irreducible
algebra, then any state-morphism algebra
(A, 7) is subdirectly irreducible.

Theorem 0.29 A variety V, satisfy the CEP if
and only If V satisfies the CEP.

State-morohism MV-alaebras and Their Generalizations — p. 30



Applications

The variety of all state-morphism
MV-algebras is generated by the diagonal
state-morphism MV-algebra D([0, 1]y ).
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Applications

The variety of all state-morphism
MV-algebras is generated by the diagonal
state-morphism MV-algebra D([0, 1]y ).

The variety of all state-morphism BL-algebras
Is generated by the class {D(I;) : I, € T }.
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Applications

The variety of all state-morphism
MV-algebras is generated by the diagonal
state-morphism MV-algebra D([0, 1]y ).

The variety of all state-morphism BL-algebras
Is generated by the class {D(I;) : I, € T }.

The variety of all state-morphism
MTL-algebras is generated by the class
{D(;) : 1; € T.}.

State-morohism MV-alaebras and Their Generalizations — p. 31



Applications

The variety of all state-morphism
MV-algebras is generated by the diagonal
state-morphism MV-algebra D([0, 1]y ).

The variety of all state-morphism BL-algebras
Is generated by the class {D(I;) : I, € T }.

The variety of all state-morphism
MTL-algebras is generated by the class
{D(;) : 1; € T.}.

The variety of all state-morphism
naBL-algebras Is generated by the class
{D*) : 1, € naT}.
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If a unital /-group (G, u) is double transitive,
then D(I'(G, u)) generates the variety of
state-morphism pseudo MV-algebras.
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Thank you for your attention
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