On aggregation of graded properties of fuzzy relations

Urszula Dudziak

University of Rzeszów Poland

FSTA 2012, 1 st February

Contents

- Historical remarks
- Introduction
- Motivation
- Properties of fuzzy relations
- References

Historical remarks

- fuzzy relations, Zadeh 1965
- properties of fuzzy relations, Drewniak 1989
- aggregation functions, Calvo, Mayor and Mesiar 2002
 Beliakov, Pradera, Calvo 2007
 Grabisch, Pap, Mesiar, Marichal 2009
- aggregation of fuzzy relations, Saminger, Mesiar, Bodenhofer 2002 Peneva, Popchev 2003 Garcia-Lapresta, Meneses 2005 Drewniak, Dudziak 2007

Introduction

Definition 1 (Zadeh 1965). A fuzzy relation in $X \neq \emptyset$ is an arbitrary function $R: X \times X \rightarrow [0, 1]$. The family of all fuzzy relations in X is denoted by FR(X).

Definition 2 (Fodor, Roubens 1994). Let $F : [0, 1]^n \to [0, 1], R_1, ..., R_n \in FR(X)$. By aggregation fuzzy relation we call $R \in FR(X)$,

$$R(x,y) = F(R_1(x,y), ..., R_n(x,y)), \quad x, y \in X.$$

An aggregation function F preserves a property of fuzzy relations if for every $R_1, ..., R_n \in FR(X)$ having this property, R also has this property.

Definition 3 (Calvo et al. 2002). Let $n \ge 2$. $F : [0,1]^n \to [0,1]$ is called an aggregation function, if it is increasing with respect to any variable and fulfils

$$F(0, ..., 0) = 0, \quad F(1, ..., 1) = 1.$$

Definition 4 (Klement et al. 2000). Triangular norm $T : [0, 1]^2 \rightarrow [0, 1]$ (triangular conorm $S : [0, 1]^2 \rightarrow [0, 1]$) is an arbitrary associative, commutative, increasing in both variables operation having a neutral element e = 1 (e = 0).

Example 1. Let $\varphi : [0,1] \to \mathbb{R}$ be continuous, strictly monotonic function. A quasi-arithmetic mean is the function

$$F(t_1, ..., t_n) = \varphi^{-1}(\frac{1}{n} \sum_{k=1}^n \varphi(t_k)), \ t_1, ..., t_n \in [0, 1],$$

Median is the function

$$\operatorname{med}(t_1, \dots, t_n) = \begin{cases} \frac{s_k + s_{k+1}}{2}, & \text{if } n = 2k\\ s_{k+1}, & \text{if } n = 2k+1 \end{cases}, \ t_1, \dots, t_n \in [0, 1],$$

where (s_1, \ldots, s_n) is the increasing permutation of the sequence (t_1, \ldots, t_n) , so $s_1 \leq \ldots \leq s_n$.

Example 2. Projections $P_k(t_1, \ldots, t_n) = t_k, k \in \{1, \ldots, n\}$ preserve each property of fuzzy relations because for $F = P_k$ we get $R_F = R_k$.

Remark 1. If card X = n, $X = \{x_1, ..., x_n\}$, then $R \in FR(X)$ may be presented by a matrix $R = [r_{ik}]$, where $r_{ik} = R(x_i, x_k)$, i, k = 1, ..., n.

Motivation

Multicriteria decision making

Let card $X = m, m \in \mathbb{N}, X = \{x_1, ..., x_m\}$ – a set of alternatives A decision maker has to

- choose among alternatives ("choice problem")
- rank ("ranking problem")

 $K = \{k_1, ..., k_n\}$ – a set of criteria on the base of which the alternatives are evaluated.

 $R_1, ..., R_n$ – fuzzy relations corresponding to each criterion represented by matrices, where $R_k : X \times X \to [0, 1], k = 1, ..., n, n \in \mathbb{N}, R_k(x_i, x_j) = r_{ij}^k, 1 \leq i, j \leq m$. For example

 r_{ij}^k – an intensity with which x_i is better than x_j under $k \in K$, $r_{ij}^k = 1 - , x_i$ is absolutely better than x_j under criterion $k^{"}$, $r_{ij}^k = 0 - , x_j$ is absolutely better than x_i under criterion $k^{"}$, $r_{ij}^k = 0.5 - , x_i$ is equally good as x_j under criterion $k^{"}$.

Relation $R = F(R_1, ..., R_n)$ is supposed to help a decision maker to make up their mind.

Reflexivity

Definition 5 (Drewniak 1989). Let $\alpha \in [0, 1]$. $R \in FR(X)$ is α -reflexive, if

$$\forall_{x \in X} \ R(x, x) \ge \alpha.$$

Theorem 1. Let $\alpha \in [0,1]$. $F : [0,1]^n \to [0,1]$ preserves α -reflexivity of fuzzy relations, iff

$$F|_{[\alpha,1]^n} \ge \alpha.$$

Theorem 2. $F : [0,1]^n \to [0,1]$ preserves α -reflexivity of fuzzy relations for arbitrary $\alpha \in [0,1]$ iff $F \ge \min$.

Corollary 1. Every quasi-arithmetic mean preserves α -reflexivity of fuzzy relations for arbitrary $\alpha \in [0, 1]$.

Theorem 3. Let $\alpha_1, ..., \alpha_n \in [0, 1]$, $F : [0, 1]^n \to [0, 1]$ be increasing in each variable. If relations $R_i \in FR(X)$ are α_i -reflexive for i = 1, ..., n, then relation $R = F(R_1, ..., R_n)$ is α -reflexive, for $\alpha = F(\alpha_1, ..., \alpha_n)$.

Theorem 4. Let $\alpha \in [0, 1]$, $F \leq \min$. If $R = F(R_1, \ldots, R_n)$ is α -reflexive, then all relations R_1, \ldots, R_n are α -reflexive.

Example 3. Let card X = 2. We consider fuzzy relations with matrices:

$$R = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad S = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix},$$
$$T_1 = \max(R, S) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, T_2 = \frac{R+S}{2} = \begin{bmatrix} 0.5 & 1 \\ 1 & 0.5 \end{bmatrix}.$$

Relation T_1 is α -reflexive for $\alpha \in [0, 1]$, T_2 for $\alpha \in [0, 0.5]$, but relations R, S do not have this property for any $\alpha \in [0, 1]$.

Irreflexivity

Definition 6 (Drewniak 1989). Let $\alpha \in [0, 1]$. $R \in FR(X)$ is α -irreflexive, if

$$\underset{x \in X}{\forall} R(x, x) \leqslant 1 - \alpha.$$

Theorem 5. Let $\alpha \in [0,1]$. $F : [0,1]^n \to [0,1]$ preserves α -irreflexivity of fuzzy relations iff

$$F|_{[0,1-\alpha]^n} \leqslant 1-\alpha.$$

Theorem 6. $F : [0,1]^n \to [0,1]$ preserves α -irreflexivity of fuzzy relations for arbitrary $\alpha \in [0,1]$ iff $F \leq \max$.

Corollary 2. Every quasi-arithmetic mean preserves α -irreflexivity of fuzzy relations for arbitrary $\alpha \in [0, 1]$.

Definition 7 (Calvo et al. 2002). A function $F: [0,1]^n \to [0,1]$ is additive, if

$$\forall \quad \forall \quad \forall \quad F(x_1 + y_1, ..., x_n + y_n) = F(x_1, ..., x_n) + F(y_1, ..., y_n).$$

Example 4. Weighted arithmetic means are additive functions.

Theorem 7. Let $\alpha_1, ..., \alpha_n \in [0, 1], F : [0, 1]^n \to [0, 1]$ be a super additive aggregation function. If relations $R_i \in FR(X)$ are α_i -irreflexive for i = 1, ..., n, then relation $R = F(R_1, ..., R_n)$ is α -irreflexive, for $\alpha = F(\alpha_1, ..., \alpha_n)$.

Theorem 8. Let $\alpha \in [0,1]$, $F \ge \max$. If $R = F(R_1, \ldots, R_n)$ is α -irreflexive, then all relations R_1, \ldots, R_n are α -irreflexive.

Example 5. Let card X = 2. We consider fuzzy relations with matrices:

$$R = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad S = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix},$$
$$T_1 = \min(R, S) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, T_2 = \frac{R+S}{2} = \begin{bmatrix} 0.5 & 1 \\ 1 & 0.5 \end{bmatrix}.$$

Relation T_1 is α -irreflexive for $\alpha \in [0, 1]$, T_2 for $\alpha \in [0, 0.5]$, but relations R, S do not have this property for any $\alpha \in [0, 1]$.

Asymmetry

Definition 8 (Drewniak 1989). Let $\alpha \in [0, 1]$. $R \in FR(X)$ is:

• α -asymmetric, if

$$\forall_{x,y \in X} \min(R(x,y), R(y,x)) \leq 1 - \alpha,$$

• α -antisymmetric, if

$$\forall_{x,y,x\neq y\in X} \min(R(x,y), R(y,x)) \leqslant 1 - \alpha.$$

Theorem 9. Let $\alpha \in [0,1]$, card $X \ge 2$. $F : [0,1]^n \to [0,1]$ preserves α -asymmetry (α -antisymmetry) of fuzzy relations, iff

$$\bigvee_{s,t \in [0,1]^n} \left(\bigvee_{1 \le k \le n} \min(s_k, t_k) \le 1 - \alpha \right) \Rightarrow \min(F(s), F(t)) \le 1 - \alpha.$$

Theorem 10. Let card $X \ge 2$. $F : [0,1]^n \to [0,1]$ preserves α -asymmetry (α -antisymmetry) of fuzzy relations for arbitrary $\alpha \in [0,1]$, iff

$$\forall _{s,t \in [0,1]^n} \min(F(s), F(t)) \leq \max_{1 \leq k \leq n} \min(s_k, t_k).$$

Corollary 3. The median function and minimum preserve α -asymmetry (α -antisymmetry) of fuzzy relations for arbitrary $\alpha \in [0, 1]$.

Example 6. Let card X = 2. $R, S, T \in FR(X), F(s, t) = \max(s, t),$

$$R = \left[\begin{array}{cc} 0 & 0.8 \\ 1 & 0 \end{array} \right], \quad S = \left[\begin{array}{cc} 0 & 1 \\ 0.8 & 0 \end{array} \right], \quad T = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right],$$

where T = F(R, S). R, S are α -asymmetric (α -antisymmetric) for $\alpha \in [0, 0.2]$ and T does not have this property for any $\alpha \in [0, 1]$.

Theorem 11. Let $\alpha \in [0,1]$, $F \ge \max$. If $R = F(R_1, \ldots, R_n)$ is α -asymmetric (antisymmetric), then all relations R_1, \ldots, R_n are α -asymmetric (antisymmetric).

Example 7. Let $\alpha_1, ..., \alpha_n \in [0, 1]$. If relations $R_i \in FR(X)$ are α_i -asymmetric (α_i -antisymmetric) for i = 1, ..., n, then relation $R \in FR(X)$ is α -asymmetric (α -antisymmetric), where

$$R = \frac{1}{n} \sum_{i=1}^{n} R_i, \qquad \alpha = \frac{1}{n} \min_{1 \le i \le n} \alpha_i.$$

Example 8. Let $\alpha_1, ..., \alpha_n \in [0, 1]$. If relations $R_i \in FR(X)$ are α_i -asymmetric (α_i -antisymmetric) for i = 1, ..., n, then relation $R \in FR(X)$ is α -asymmetric (α -antisymmetric), where

$$R = \min(R_1, ..., R_n), \qquad \alpha = \min_{1 \le i \le n} \alpha_i.$$

Connectedness

Definition 9 (Drewniak 1989). Let $\alpha \in [0, 1]$. $R \in FR(X)$ is: • totally α -connected, if

 $\label{eq:relation} \begin{array}{l} \forall \\ _{x,y \in X} \end{array} \max \bigl(R(x,y), R(y,x) \bigr) \geqslant \alpha, \end{array}$

• α -connected, if

$$\forall_{x,y,x \neq y \in X} \max(R(x,y), R(y,x)) \ge \alpha.$$

Theorem 12. Let $\alpha \in [0,1]$, card $X \ge 2$. $F : [0,1]^n \to [0,1]$ preserves total α -connectedness (α -connectedness) of fuzzy relations, iff

$$\forall_{s,t \in [0,1]^n} (\forall_{1 \le k \le n} \max(s_k, t_k) \ge \alpha) \Rightarrow \max(F(s), F(t)) \ge \alpha$$

Theorem 13. Let card $X \ge 2$. $F : [0,1]^n \to [0,1]$ preserves total α -connectedness (α -connectedness) of fuzzy relations for arbitrary $\alpha \in [0,1]$, iff

$$\forall _{s,t \in [0,1]^n} \max(F(s), F(t)) \ge \min_{1 \le k \le n} \max(s_k, t_k).$$

Corollary 4. Maximum and the median preserve total α -connectedness (α -connectedness) of fuzzy relations for arbitrary $\alpha \in [0, 1]$.

Example 9. Let card X = 2. $R, S, T \in FR(X), F(s,t) = \min(s,t),$

$$R = \left[\begin{array}{cc} 1 & 0.8 \\ 0 & 1 \end{array} \right], \quad S = \left[\begin{array}{cc} 1 & 0 \\ 0.8 & 1 \end{array} \right], \quad T = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right],$$

where T = F(R, S). R, S are totally α -connected (α -connected) for $\alpha \in [0, 0.8]$ and T does not have this property for any $\alpha \in [0, 1]$.

Theorem 14. Let $\alpha \in [0, 1]$, $F \leq \min$. If $R = F(R_1, \ldots, R_n)$ is totally α -connected (α -connected), then all relations R_1, \ldots, R_n are totally α -connected (α -connected).

Example 10. Let $\alpha_1, ..., \alpha_n \in [0, 1]$. If relations $R_i \in FR(X)$ are α_i -connected (totally α_i -connected) for i = 1, ..., n, then relation $R \in FR(X)$ is α -connected (totally α -connected), where

$$R = \frac{1}{n} \sum_{i=1}^{n} R_i, \qquad \alpha = \frac{1}{n} \max_{1 \le i \le n} \alpha_i.$$

Example 11. Let $\alpha_1, ..., \alpha_n \in [0, 1]$. If relations $R_i \in FR(X)$ are α_i -connected (totally α_i -connected) for i = 1, ..., n, then relation $R \in FR(X)$ is α -connected (totally α -connected), where

$$R = \max(R_1, ..., R_n), \qquad \alpha = \max_{1 \le i \le n} \alpha_i.$$

Symmetry

Definition 10 (Drewniak 1989). Let $\alpha \in [0,1]$. Relation $R \in FR(X)$ is α -symmetric, if

$$\stackrel{\forall}{\underset{x,y\in X}{\forall}} R(x,y) \geqslant 1-\alpha \Rightarrow R(y,x) \geqslant R(x,y).$$

Theorem 15. Let $\alpha \in [0, 1]$. If $F : [0, 1]^n \to [0, 1]$ fulfils

 $F|_{[0,1]^n \setminus [1-\alpha,1]^n} < 1-\alpha,$

then it preserves α -symmetry of relations $R_1, ..., R_n \in FR(X)$.

Theorem 16. If a function $F : [0,1]^n \to [0,1]$ fulfils condition $F \leq \min$ then it preserves α -symmetry of fuzzy relations for arbitrary $\alpha \in [0,1]$.

Corollary 5. Any t-norm preserves α -symmetry of fuzzy relations for arbitrary $\alpha \in [0, 1]$.

Example 12. Since any projection P_k , $k \in \mathbb{N}$, preserves the α -symmetry for each $\alpha \in [0, 1]$ but it is not true that $P_k \leq \min$, then Theorem 16 gives only a sufficient condition for preservation of the α -symmetry for any $\alpha \in [0, 1]$.

Example 13. Let card X = 2. We consider fuzzy relations with matrices:

$$R = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad S = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix},$$
$$T_1 = \min(R, S) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, T_2 = \max(R, S) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$
$$T_3 = \frac{R+S}{2} = \begin{bmatrix} 0 & 0.5 \\ 0.5 & 0 \end{bmatrix}.$$

Relations T_1, T_2, T_3 are α -symmetric for $\alpha \in [0, 1]$, but relations R, S do not have this property for any $\alpha \in [0, 1]$.

Transitivity

Definition 11. Let $\alpha \in [0, 1]$. Relation $R \in FR(X)$ is α -transitive, if

 $\forall _{x,y,z \in X} \ \min(R(x,y),R(y,z)) \geqslant 1-\alpha \Rightarrow R(x,z) \geqslant \min(R(x,y),R(y,z)).$

Definition 12 (Saminger et al. 2002). Let $m, n \in \mathbb{N}$. Operation $F : [0, 1]^m \to [0, 1]$ dominates operation $G : [0, 1]^n \to [0, 1]$ ($F \gg G$), if for arbitrary matrix $[a_{ik}] = A \in [0, 1]^{m \times n}$ we have

$$F(G(a_{11},...,a_{1n}),...,G(a_{m1},...,a_{mn})) \ge G(F(a_{11},...,a_{m1}),...,F(a_{1n},...,a_{mn})).$$

Theorem 17. Let $\alpha \in [0,1]$. If increasing $F : [0,1]^n \to [0,1]$ fulfils

$$F|_{[0,1]^n \setminus [1-\alpha,1]^n} < 1-\alpha,$$

and $F \gg \min$, then it preserves α -transitivity of fuzzy relations.

Example 14. Let $a \in (0, 1]$ and $F : [0, 1]^2 \rightarrow [0, 1]$ be of the form

$$F(s,t) = \begin{cases} 0, & (s,t) \in [0,a) \times [0,a) \\ \min(s,t), & \text{otherwise} \end{cases}$$

F is a *t*-norm and $F|_{[0,1]^n \setminus [1-\alpha,1]^n} < 1-\alpha$ but it does not dominate minimum. However, F preserves the α -transitivity for each $\alpha \in [0,1)$ and $\alpha \leq 1-a$. As a result conditions for preservation of the α -transitivity stated in Theorem 17 are only sufficient.

Theorem 18. If a function $F : [0,1]^n \to [0,1]$ is increasing in each variable, fulfils $F \gg \min$ and $F \leq \min$ then it preserves α -transitivity of fuzzy relations for any $\alpha \in [0,1]$.

Corollary 6. Minimum and the aggregation function

$$A_w(t_1,\ldots,t_n) = \begin{cases} 1, & (t_1,\ldots,t_n) = (1,\ldots,1) \\ 0, & otherwise \end{cases}$$

preserve the α -transitivity of fuzzy relations for any $\alpha \in [0, 1]$ because both functions fulfil assumptions of Theorem 18.

References

- [1] G. Beliakov, A. Pradera, T. Calvo, Aggregation Functions: A Guide for Practitioners, Springer, Berlin 2007.
- T.Calvo, A. Kolesarova, M. Komornikowa, R. Mesiar, Aggregation operators: Properties, classes and construction methods, in: Aggregation Operators, T. Calvo et al. (Eds.), Physica-Verlag, Heildelberg, 2002, 3–104.
- [3] J. Drewniak, Fuzzy relation calculus, Silesian University, Katowice, 1989.
- [4] J. Drewniak, U. Dudziak, Preservation of properties of fuzzy relations during aggregation processes, Kybernetika **43** (2) (2007), 115-132.
- [5] U. Dudziak, Graded properties of fuzzy relations in aggregation process, Journal of Electrical Engineering 56 (2005) (12/s), 56–58.
- [6] J.L. Garcia-Lapresta, L.C. Meneses, Individual-valued preferences and their aggregation: consistency analysis in a real case, Fuzzy Sets Syst. 151 (2005), 269–284.
- [7] M. Grabisch, E. Pap, R. Mesiar, J.-L. Marichal, Aggregation Functions, Cambridge University Press, Cambridge 2009.

- [8] G.H. Hardy, J. Littlewood, G. Polya, Inequalities, Cambridge University Press, Cambridge, 1955.
- [9] J. Fodor, M. Roubens, Fuzzy preference modelling and multicriteria decision support, Kluwer Acad. Publ., Dordrecht, 1994.
- [10] E.P. Klement, R. Mesiar, E.Pap, Triangular norms, Kluwer Acad. Publ., Dordrecht, 2000.
- [11] V. Peneva, I.Popchev, Aggregation of fuzzy relations, C. R. Acad. Bulgare Sci. 51(9-10) (1998), 41–44.
- [12] V. Peneva, I. Popchev, Properties of the aggregation operators related with fuzzy relations, Fuzzy Sets Syst. 139 (3) (2003), 615–633.
- [13] S. Saminger, R. Mesiar, U. Bodenhofer, Domination of aggregation operators and preservation of transitivity, Int. J. Uncertain., Fuzziness, Knowl.-Based Syst. 10, Suppl. (2002), 11–35.
- [14] L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338–353.
- [15] L.A. Zadeh, Similarity relations and fuzzy orderings, Inform. Sci. 3 (1971), 177-200.