The Stucture of Qualitative Fuzzy Measures on Finite Scales

Didier Dubois

IRIT - Université Paul Sabatier -31062 Toulouse Cedex (France) e-mail: dubois@irit.fr Joint work with Henri Prade and Agnès Rico

January 2012

- Numerical fuzzy measures (capacities) are monotonic set-functions that subsume many kinds of set functions used in uncertainty modelling, game theory and multicriteria analysis.
- For instance: coherent imprecise probabilities, 2-monotone functions, *n*-monotone functions, belief functions, probability, possibility and necessity measures.
- Qualitative fuzzy measures ranging on a finite totally ordered scale are less well-known.
- Replacing addition by maximum, possibility measures seem to be the counterpart of probability measures.
- This talk discusses to what extent the classification in terms of belief function and upper/lower probabilities carries over to qualitative fuzzy measures and possibility theory.

A missing notion?

Quantitative

Qualitative

- Preference aggregation
 - weighted sum
 - Choquet integral

weighted min and max

Sugeno integral

- Uncertainty modeling
 - probability theory
 - Shafer evidence theory
 - imprecise probability

possibility theory

?

OUTLINE

- 1. The numerical setting : known results
- 2. The qualitative setting : q-capacities generated by basic possibility assignments
- 3. Information comparison for q-capacities
- 4. q-capacities as families of possibility measures
- 5. Relations between q-capacities and modal logic

Monotonic set functions

A capacity (or fuzzy measure) on a finite space $S = \{s_1, \ldots, s_{|S|}\}$ is a mapping $\gamma : 2^S \to L$, and L is a chain with top 1 and bottom 0, such that

- $\gamma(\emptyset) = 0; \gamma(S) = 1;$
- If $A \subseteq B$ then $\gamma(A) \leq \gamma(B)$

Numerical capacities :

- L = [0, 1].
- The conjugate γ^c of γ is a -capacity $\gamma^c(A) = 1 \gamma(A^c), \forall A \subseteq S$, where A^c is the complement of set A.

Qualitative capacities :

- L = {λ₀ = 0 < λ₁ ··· < λ_n = 1}, a finite chain equipped with min, max, and an involutive order-reversing map ν.
- The conjugate γ^c of q-capacity γ is a q-capacity defined by $\gamma^c(A) = \nu(\gamma(A^c)), \forall A \subseteq S.$

- A special case of q-capacity is a possibility measure : $\Pi(A) = \max_{s \in A} \pi(s)$.
 - The possibility distribution $\pi:\pi(s)=\Pi(\{s\})$ is enough to recover the set-function
 - The value $\pi(s)$ is understood as the possibility that s be the actual state of the world: $\exists s \in S : \pi(s) = 1$.
- The characteristic property of possibility measures is *maxitivity*:
 Π(A ∪ B) = max(Π(A), Π(B))
- Another special case of q-capacity is the necessity measure such that $N(A \cap B) = \min(N(A), N(B)).$
 - They are such that $N(A) = \min_{s \notin A} N(S \setminus \{s\})$ where $\iota(s) = N(S \setminus \{s\})$ is a degree of impossibility of s.
 - The conjugate of a possibility measure Π is a necessity measure $N(A) = \nu(\Pi(A^c))$ such that $\iota(s) = \nu(\pi(s))$.

Belief functions formalism

Basic probability assignment (bpa)

- bpa: probability function on 2^S . $m: 2^{|S|} \to [0, 1]$ s.t. $m(\emptyset) = 0$ and $\sum_{E \subseteq S} m(E) = 1$
- a set E with positive mass m(E) > 0 is a focal set

Two set-functions: Belief, Plausibility

- Belief: $bel(A) = \sum_{E \subseteq A} m(E)$ (a capacity)
- Plausibility: $pl(A) = \sum_{E:A \cap E \neq \emptyset} m(E) = 1 bel(A^c)$ is the conjugate of *bel*.

These set-functions are in 1-to-1 correspondence with each other, and with the bpa m. The bpa is called the Moebius transform of Bel

Contour functions, probability and possibility measures

• Given bpa m, its contour function $\pi_m : S \to [0, 1]$ is

$$\pi_m(s) = pl(\{s\}) = \sum_{s \in A} m(A)$$

- If all focal sets are singletons, bel = pl = probability measure with probability distribution π_m
- Consonance: The support of m is a family of nested sets if and only if
 pl(A) = max_{s∈A} pl({s}) (pl is a possibility measure with possibility distribution
 π_m). Then the conjugate belief function is a necessity measure.
- *Refining possibility by probability*: Given a (qualitative or quantitative) possibility measure with distribution π, there exists a super-increasing mapping φ : L → [0, 1] where π(s) ↦ p(s) = φ(π(s)), where p is a big-stepped probability distribution (∀s ∈ S, p(s) > ∑u∈S:p(s)>p(u) p(u)) and

 $\Pi(A) > \Pi(B) \Rightarrow P(A) > P(B)$

- Belief function as a probability family: a bpa m induces a convex non-empty core $\mathcal{P}_m = \{P | \forall A \subset S, Bel(A) \leq P(A) \leq Pl(A)\}$
- More generally the core P_g = {P|∀A ⊂ S, P(A) ≥ g(A)} for a capacity g may be empty. If not, it is a convex probability set.
- A sufficient condition for non empty-core is super-modularity : g is a convex capacity: g(A ∪ B) + g(A ∩ B) ≥ g(A) + g(B).
- Order *n*-super-modularity does not imply n + 1-supermodularity.
- belief functions are exactly order ∞ -super-modular capacities.
- Not all convex sets of probabilities can be described by capacities (need lower expectations).
- Coherent capacities g characterize some convex sets P_g: they are such that g(A) = inf{P(A), P ∈ P_g}, for instance, convex capacities, belief functions, necessity measures.

Basic possibility assignment (Dubois Prade, 1983)

- $b\pi a$: possibility distribution $\mu: 2^S \to L$ s.t. $\mu(\emptyset) = 0$ and $\max_{E \subseteq S} \mu(E) = 1$
- a set E with positive mass $\mu(E) > 0$ is a focal set

Two set-functions generalizing possibility measures : $s \in A$ can become $E \subseteq A$ or $A \cap E \neq \emptyset$ like for belief functions.

- Lower Possibility measure: $\Pi_*(A) = \max_{E \subseteq A} \mu(E)$
- Upper Possibility measure: $\Pi^*(A) = \max_{E:A \cap E \neq \emptyset} \mu(E) \ge \Pi_*(A).$

Remarks

- 1. If focal sets are singletons, then $\Pi_* = \Pi^* = \Pi$ is a possibility measure
- 2. If focal sets are nested then Π_* is a necessity measure
- 3. Upper and lower possibility measures are NOT conjugate to each other : $\max(\Pi_*(A), \Pi^*(A^c)) = 1$, but $\Pi_*(A) \neq \nu(\Pi^*(A^c))$.

Capacities as lower possibility functions

• Given $b\pi a \mu$, the contour function $\pi_{\mu} : S \to L$ is

$$\pi_{\mu}(s) = \Pi^{*}(\{s\}) = \max_{A:s \in A} \mu(A)$$

- Properties
 - The upper possibility measure is always a possibility measure with distribution $\pi_{\mu}: \Pi^*(A) = \max_{s \in A} \pi_{\mu}(s)$
 - A lower qualitative possibility measure is a general q-capacity, and any q-capacity is a lower possibility measure:

if μ is increasing w.r.t inclusion, then $\Pi_*(A) = \mu(A)$.

- Contrary to the numerical setting, there is **not** a 1-to-1 correspondence between general capacities and $b\pi a$'s.

Basic possibility assignments generating a q-capacity

• Define an equivalence relation \equiv on the set \mathcal{M} of $b\pi a$'s as follows:

$$\mu_1 \equiv \mu_2 \iff \Pi^1_* = \Pi^2_*$$

where $\Pi^i_*(A) = \max_{E \subseteq A} \mu_i(E), \forall A \subseteq S$

- Let $C_{\gamma} = \{\mu_i | \Pi^i_* = \gamma\} \in \mathcal{M} / \equiv$
- **Proposition** :
 - 1. C_{γ} has a greatest element $\mu = \gamma$
 - 2. C_{γ} has a least element $\gamma_{\#}$ known as as qualitative Moebius transform :

$$\gamma_{\#}(E) = \gamma(E) \quad \text{if } \gamma(E) > \max_{B \subsetneq E} \gamma(B)$$

= 0 otherwise

3. $C_{\gamma} = \{\mu | \gamma_{\#} \leq \mu \leq \gamma\}$

• The choice of $\mu \in C_{\gamma}$ affects the contour function hence the upper possibility measure: $\Pi_i^* \ge \gamma = \Pi_*^i, \forall \mu_i \in C_{\gamma}.$

- We call γ_# inner (qualitative) Moebius transform because there is an outer one based on supersets. Due to Mesiar and Grabisch (1997)
- Can be written as $\gamma_{\#}(E) = \gamma(E) \ominus \max_{s \in E} \gamma(E \setminus s)$, where $a \ominus b = \min\{c | \max(b, c) \ge a\}$
- They are bπa such that if A ⊂ B and γ_#(A) > 0 then γ_#(B) > γ_#(A) strictly monotonic with inclusion on F^γ.
- The inner (qualitative) Moebius transform of the q-capacity γ contains the minimal information needed to reconstruct it since, by construction

$$\gamma(A) = \max_{E \subseteq A} \gamma_{\#}(E)$$

so there is a bijection between capacities γ and $b\pi$'s of the form $\gamma_{\#}$.

• $\mathcal{F}^{\gamma} = \{E, \gamma_{\#}(E) > 0\}$ is the family of focal sets associated to γ .

Inner Moebius transforms of possibility measures

Inner (qualitative) Moebius transforms $\gamma_{\#}$ are special $b\pi a$'s that are inclusion-monotonic on their support, and generalised possibility distributions (on 2^S)

- $\gamma_{\#}(\emptyset) = 0; \ \gamma_{\#}(A) = 1 \text{ for some } A \neq \emptyset.$
- From $\max_{s \in A} \pi(s)$ to $\max_{E \subseteq A} \gamma_{\#}(E)$.
- The inner qualitative Moebius transform of a possibility measure coincides with its possibility distribution: Π_#(A) = π(s) if A = {s} and 0 otherwise
- $\mathcal{F}^{\Pi} = \{\{s\}, \pi(s) > 0\}$ (similar to probability measures in numerical setting)

The inner qualitative Moebius transform of a necessity measure has nested focal sets.

- $N(A \cap B) = \min(N(A), N(B)) \iff \forall E, F \in \mathcal{F}^N, E \subset F \text{ or } E \subset F$
- The cut-set {B|N(B) ≥ λ} is a proper filter (deductively closed under inclusion and intersection) : it has a single least element E_λ ≠ Ø.
- $E \in \mathcal{F}^N$ if and only if $\lambda > 0 \in L, N(E) = \lambda$ and $E = \cap \{B | N(B) \ge \lambda\}$
- $\mathcal{F}^N = \{E_\lambda, \lambda > 0\}$ and $N_{\#}(E) = \min\{\lambda | E = E_\lambda\}$
- \mathcal{F}^N contains the $\nu(\lambda)$ -cuts of the possibility distribution of the conjugate $\Pi = N^c$ with possibility distribution

$$\pi(s) = \min_{s \notin E} \nu(N_{\#}(E)) = \nu(\lambda_s)$$

where $\lambda_s = \max\{N_{\#}(E) | s \notin E\} = N(S \setminus \{s\})$

Three points of view on qualitative capacities

- Like Dempster: upper and lower possibility functions induced a possibility distribution π on a set W and a multimapping Γ : W → 2^S (Dubois Prade 1985; De Baets Tsiporkova 1997) :
 - $\Pi_*(A) = \Pi(\{w : \Gamma(w) \subseteq A\})$ is a q-capacity; $\Pi^*(A) = \Pi(\{w : \Gamma(w) \cap A \neq \emptyset\})$ is a possibility measure
 - The interval $[\Pi_*(A), \Pi^*(A)]$ contains the real value of $\Pi(A)$ induced by the real selection $f \in \Gamma$.
 - The basic information is $(W, \pi), \Gamma: W \to 2^S$
- Like Shafer : $qbel(A) = \max_{E \subseteq A} \mu(E)$; $qpl(A) = \max_{E \cap A \neq \emptyset} \mu(E)$
 - the basic information is a $b\pi a \mu$ from which the pair (Bel, Pl) is induced.
 - The pair (qbel, qpl) is not enough to recover μ
- Like Walley : The basic information is the q-capacity. What is the bridge with families of possibility measures ?

One may characterise the relative position of two capacities γ_1 and γ_2 in terms of $b\pi a$'s

- $\gamma_1 \sqsubseteq \gamma_2 : \forall A' \in \mathcal{F}^{\gamma_2} \exists A \in \mathcal{F}^{\gamma_1} \text{ s. t. } A \subseteq A' \text{ and } \gamma_{2\#}(A') \leq \gamma_{1\#}(A).$
- **Proposition** : $\gamma_1 \sqsubseteq \gamma_2$ if and only if $\gamma_2 \le \gamma_1$.
- A similar result holds for belief functions : A bpa m₁ is a specialization of a bpa m₂ (m₁ ⊑ m₂) if and only if
 - Any focal set of m_2 contains at least one focal set of m_1 .
 - Any focal set of m_1 is included in at least one focal set of m_2
 - $m_2(F_j) = \sum_i w_{ij} \cdot m_1(E_i)$, with constraint $w_{ij} > 0$ only if $E_i \subseteq F_j$.
- $m_1 \sqsubseteq m_2$ implies $bel_2 \le bel_1$ and $pl_1 \le pl_2$ (not the converse).
- m_1 is then more informative than m_2

Is it still the case for q-capacities constructed from $b\pi a$'s (q-belief functions)??

- What does $\gamma_2 \leq \gamma_1$ mean? is γ_2 more or less informative than γ_1 ? Not clear since $\gamma_2 \leq \gamma_1 \iff \gamma_1^c \leq \gamma_2^c$, where $\gamma^c(A) = \nu(\gamma(A^c))$.
- A possibility measure Π₁ is said to be more informative (specific) than another one Π₂ if ∀A ⊂ S, Π₁(A) ≤ Π₂(A) (equivalently ∀s ∈ S, π₁(s) ≤ π₂(s)).
 - In the case of possibility measures, Π₂ ≤ Π₁ means that Π₂ is more informative than Π₁ (Π_?(A) = 1, ∀A ≠ Ø: total ignorance)
 - In the case of necessity measures, $N_2 \leq N_1$ means that N_2 is less informative than N_1 ($N_2(A) = 0, \forall A \neq S$: total ignorance)
- The only way to make sense of the eventwise comparison is to qualify a q-capacity measure γ in terms of its optimism or pessimism
 - For instance the vacuous $\Pi_{?}$ is an optimistic representation of ignorance, while the vacuous $N_{?}$ is a pessimistic view of the same information state.
 - in the numerical case, *bel* is always pessimistic when induced by a mass function; this is not so for q-capacities since $b\pi a$'s generate all of them.

The above discussion leads us to

- define optimistic and pessimistic q-capacities based on conjugate pairs
- restrict information comparison ⊑ to sets of focal sets inducing pessimistic q-capacities
- show that γ₂ ≤ γ₁ means that γ₂ is less informative than γ₁ if these q-capacities are pessimistic.

A q-capacity γ is said to be pessimistic (resp. optimistic) if $\gamma \leq \gamma^c$ (resp. if $\gamma \geq \gamma^c$).

- a q-capacity can be neither. There may exist A, B such that $\gamma(A) < \gamma^c(A)$, and $\gamma(B) > \gamma^c(B)$.
- a q-capacity can be both : $\gamma = \gamma^c$ is possible. For instance, on a space with 2n + 1 elements, $\gamma_n(A) = 1$ if |A| > n and 0 otherwise.

Q-capacities having the same information content

Given a capacity γ , one can derive its pessimistic and optimistic counterparts:

```
\gamma_*(A) = \min(\gamma(A), \gamma^c(A))
```

```
\gamma^*(A) = \max(\gamma(A), \gamma^c(A)).
```

By construction, γ_* is pessimistic and γ^* is optimistic.

- γ_* and γ^* are capacities.
- γ is more optimistic than γ_* and less optimistic than γ^* .
- They have the same information content :

Indeed, the actual information about a set A is given by $\{\gamma(A), \gamma(A^c)\}$ that in general is not redundant. And it is clear that $\{\gamma_*(A), \gamma_*(A^c)\}, \{\gamma^*(A), \gamma^*(A^c)\}$ and $\{\gamma(A), \gamma(A^c)\}$ contain the same information.

Degrees of pessimism and optimism of a q-capacity

 γ and δ contain the same amount of information (denoted by $\gamma \approx \delta$) if and only if $\gamma^* = \delta^*$ and $\gamma_* = \delta_*$.

- An equivalence class contains q-capacities that only differ by their amount of optimism.
- The equivalence class of γ is clearly upper bounded by γ^* and lower-bounded by γ_* .
- The degree of optimism of γ can be evaluated as

$$opt(\gamma) = \frac{|\{A \subset \Omega : A \neq \emptyset, \gamma(A) \ge \gamma^c(A)\}|}{2^{|\Omega|} - 2}.$$

• The degree of optimism of a possibility measure is 1, The degree of optimism of a necessity measure is 0. More generally, $opt(\gamma^*) = 1$.

A q-capacity γ is said to be to be more informative than a q-capacity δ if and only if $\gamma_* \geq \delta_*$.

- γ_{*}(A) can be interpreted in terms of degree of certainty rather than plausibility:
 ∀A ⊆ Ω min(γ_{*}(A), γ_{*}(A^c)) < 1;
- in fact, if L has n elements then, min(γ_{*}(A), γ_{*}(A^c)) ≤ λ_p or ≤ λ_{p+1}, according to whether n = 2p or 2p + 1. Moreover if γ_{*}(A) = 1 then γ_{*}(A^c) = 0. And we may have γ_{*}(A) = γ_{*}(A^c) = 0.
- A necessity measure expresses certainty and is pessimistic.
- The formal analogy of q-capacities (of the form $\gamma(A) = \max_{B \subseteq A} \gamma_{\#}(B)$) with belief functions makes better sense if the q-capacity is pessimistic.

Capacities as directed posets of possibility functions

- Possibilistic core of γ : $\mathcal{R}(\gamma) = \{\pi : \Pi(A) \ge \gamma(A), \forall A \subseteq S\}.$
- *R*(γ) ≠ Ø: There is always at least one possibility measure that dominates any q-capacity: the vacuous possibility measure Π(A) = 1, ∀A ≠ Ø.
- Clearly, if Π₁ and Π₂ are possibility measures, then max(Π₁, Π₂) is a possibility measure too (less specific than both Π₁ and Π₂)
- Π_1 and Π_2 are in $\mathcal{R}(\gamma)$ then so is $\max(\Pi_1, \Pi_2)$.
- So, $\mathcal{R}(\gamma)$ is a directed poset of possibility functions

So, we should try to find the minimal elements in set $\mathcal{R}(\gamma)$ (the most specific possibility measures)

So, any qualitative q-capacity is a lower possibility measure:

$$\gamma(A) = \min_{\pi \in \mathcal{R}(\gamma)} \Pi(A).$$

But we can restrict to least elements in $\mathcal{R}(\gamma)$.

• Let σ be a permutation of the n = |S| elements in S. $S_{\sigma}^{i} = \{s_{\sigma(i)}, \dots, s_{\sigma(n)}\}$. Define the possibility distribution π_{σ}^{γ} :

$$\forall i = 1 \dots, n, \pi^{\gamma}_{\sigma}(s_{\sigma(i)}) = \gamma(S^{i}_{\sigma})$$

- **Results**: We can find the least elements among the π_{σ}^{γ} 's
 - $\ \forall A \subseteq S, \Pi^{\gamma}_{\sigma}(A) \geq \gamma(A).$
 - $\forall A \subseteq S, \gamma(A) = \min_{\sigma} \Pi_{\sigma}^{\gamma}(A)$
 - $\forall \pi \in \mathcal{R}(\gamma), \pi(s) \geq \pi_{\sigma}^{\gamma}(s), \forall s \in S \text{ for some permutation } \sigma \text{ of } S.$

There are at most n! elements thus obtained: still too many.

Capacities as Lower Possibilities : selections

- A selection function $sel : \mathcal{F}^{\gamma} \to S$ assigns to each focal subset $A \in \mathcal{F}^{\gamma}$ one element $s = sel(A) \in A$.
- We can assign to each selection function a possibility distribution π_{sel}^{γ} by letting $\max \emptyset = 0$ and

$$\pi_{sel}^{\gamma}(s) = \max_{E:sel(E)=s} \gamma_{\#}(E), \forall s \in S.$$

- If $\gamma = \Pi$, then there is only one possible selection function and $\pi_{sel}^{\Pi} = \pi$.
- **Results**: We can find the least elements among the π_{sel}^{γ} 's
 - For any selection function *sel* with domain \mathcal{F}^{γ} it holds that $\forall A \subseteq S, \prod_{sel}^{\gamma} (A) \geq \gamma(A).$
 - $\forall A \subseteq S, \gamma(A) = \min_{sel \in \Sigma(\mathcal{F}^{\gamma})} \prod_{sel}^{\sigma}(A).$
 - Now we have $\prod_{E \in \mathcal{F}^{\gamma}} |E|$ possibility distributions. Still too many.

The set of minimal elements (maximally specific) of $\mathcal{R}(\gamma)$ is also included in $\{\pi_{sel}^{\gamma}, sel \in \Sigma(\mathcal{F}^{\gamma})\}.$

More generally the useful selection functions can be defined as follows:

Algorithm MSUP Maximal specific upper possibility generation

- 1. Rank the focal sets E_j in decreasing order of $\gamma_{\#}(E_j)$. Let j = 1 and $\mathcal{F} = \mathcal{F}^{\gamma}$.
- 2. Define $sel(E_j) = s_j$ for some $s_j \in E_j$ and let $\pi(s_j) = \gamma_{\#}(E_j)$. Delete E_j from \mathcal{F} .
- 3. $\forall k \text{ such that } s_j \in E_k \text{ for some other } E_k \in \mathcal{F} \text{ (it is such that } \gamma_{\#}(E_j) \geq \gamma_{\#}(E_k) \text{) let } sel(E_k) = s_j, \text{ then delete } E_k \text{ from } \mathcal{F}.$
- 4. Repeat from step 2 until $\mathcal{F} = \emptyset$

 $\Sigma_*(\gamma)$ = selection functions generated by algorithm MSUP, called *useful selection* functions, and $\mathcal{R}_*(\gamma)$ be the corresponding set of possibility distributions.

A selection function $sel \in \Sigma_*(\gamma)$ satisfies the following property : If sel(E) = s for some $E \in \mathcal{F}^{\gamma}$ and $\pi_{sel}(s) = \gamma_{\#}(E)$, then $\forall F \in \mathcal{F}^{\gamma}$, such that $s \in F$:

- if $\gamma_{\#}(E) \ge \gamma_{\#}(F)$ then sel(F) = s
- if $\gamma_{\#}(E) < \gamma_{\#}(F)$ then $sel(F) \neq s$.

Results:

- If $\pi \neq \rho \in \mathcal{R}_*(\gamma)$, then neither $\pi > \rho$ nor $\pi > \rho$ hold.
- For any permutation σ , there exists a selection function *sel* corresponding to another permutation τ such that $\pi_{\sigma} \ge \pi_{\tau} = \pi_{sel}$.
- $\mathcal{R}_*(\gamma)$ is the set of maximally specific possibility distributions such that $\Pi(A) \ge \gamma(A)$ (the extreme points of the qualitative core).

- $\pi_{\gamma}(s) = \max_{s \in E} \gamma_{\#}(E)$ is the qualitative contour function of γ (compare with $\pi_m(s) = \sum_{s \in E} m(E)$ for belief functions)
- Moreover, ∀A, Π_γ(A) = max_{A∩E≠Ø} γ_#(E) (this is the upper possibility function induced by γ_#).
- Note: here γ is the primitive information.

Proposition: $\pi_{\gamma}(s) = \max_{\pi \in \mathcal{R}_{*}(\gamma)} \pi(s)$. We also have $\Pi_{\gamma}(A) = \max_{\pi \in \mathcal{R}_{*}(\gamma)} \Pi(A)$, while $\gamma(A) = \min_{\pi \in \mathcal{R}_{*}(\gamma)} \Pi(A)$.

Remark: We cannot use the necessity measure induced by the contour function of γ as a lower bound for the latter. Indeed

$$N_{\gamma}(A) = \nu(\Pi_{\gamma}(A^c)) = \min_{s \notin A} \nu(\max_{s \in E} \gamma_{\#}(E)) = \min_{E \cap A^c \neq \emptyset} \nu(\gamma_{\#}(E))$$

which cannot be compared with $\gamma(A)$.

A totally dual construction can be developed using outer qualitative Moebius transforms:

$$\gamma^{\#}(A) = \gamma(A) \text{ if } \gamma(A) < \min\{\gamma(F), A \subset F\}$$

= 1 otherwise.

Denote by γ^c the conjugate of $\gamma: \gamma^c(A) = \nu(\gamma(A^c)), \forall A \subseteq S$, where A^c is the complement of set A, and ν the order-reversing map on L.

The inner qualitative Moebius transform $\gamma_{\#}^c$ of γ^c is related to the outer qualitative mass function $\gamma^{\#}$ (Dubois Fargier, 2009):

$$\gamma^{\#}(E) = \nu(\gamma^c_{\#}(E^c)).$$

Results :

- $\gamma(A) = \max\{N(A), \pi \in \mathcal{R}_*(\gamma^c)\}$ (any q-capacity is an upper necessity measure)
- $\gamma(A) \ge N_{\gamma_c}(A) = \min_{s \notin A} \iota_{\gamma}(s)$. where $\iota_{\gamma}(s) = \nu(\pi_{\gamma_c}(s))$ (anti-contour function)

Let $f: S \to L$ be a function that may serve as a utility function if S is a set of attributes. Sugeno integral is often defined as follows:

$$\mathcal{S}_{\gamma}(f) = \max_{\lambda \in L} \min(\lambda, \gamma(f \ge \lambda)) = \max_{A \subseteq S} \min(\gamma(A), \min_{s \in A} f(s))$$

Moreover : $S_{\Pi}(f) = \max_{s \in S} \min(\pi(s), f(s)); S_N(f) = \min_{s \in S} \max(\nu(\pi(s)), f(s)).$

Proposition: $S_{\gamma}(f) = \inf_{\pi \in \mathcal{R}_{*}(\gamma)} S_{\Pi}(f)$

Proof: $S_{\gamma}(f) \leq \inf_{\pi \in \mathcal{R}_*(\gamma)} S_{\Pi}(f)$ is obvious.

Conversely, Define the possibility measure $\Pi_f \ge \gamma$ such that $\Pi_f (f \ge \lambda) = \gamma (f \ge \lambda), \forall \lambda \in L \text{ and } \pi_f \text{ the corresponding possibility distribution. Then}$ as $\exists \pi \in \mathcal{R}_*(\gamma), \pi_f \ge \pi$, by definition,

$$\mathcal{S}_{\gamma}(f) = \mathcal{S}_{\Pi_f}(f) \ge \mathcal{S}_{\Pi}(f) \ge \inf_{\pi \in \mathcal{R}_*(\gamma)} \mathcal{S}_{\Pi}(f).$$

Remark Using conjugacy properties, $S_{\gamma}(f) = \sup_{\pi \in \mathcal{R}_*(\gamma^c)} S_N(f)$ as well.

The complexity of a qualitative q-capacity can be assessed by the number of possibility or necessity measures needed to define it, that is the number of possibility distributions in $\mathcal{R}_*(\gamma)$ or in $\mathcal{R}_*(\gamma^c)$.

- The choice is not immaterial : they do not contain the same number of elements.
- We can find a condition under which $\gamma(A) = \max_{i=1}^{n} N_i(A)$ where none of the N_i are redundant.

Proposition: $\gamma(A) = \max_{i=1}^{n} N_i(A)$ if and only if $\forall A_i, i = 1, \dots, n+1, \min_{i=1}^{n+1} \gamma(A_i) \leq \max_{i \neq j} \gamma(A_i \cap A_j)$

- for n = 1 (necessity measures) the property comes down to $\min(\gamma(A), \gamma(B)) = \gamma(A \cap B).$
- Likewise $\gamma(A) = \min_{i=1}^{n} \prod_{i}(A)$ if and only if $\forall A_i, i = 1, \dots, n+1, \max_{i=1}^{n+1} \gamma(A_i) \ge \min_{i \neq j} \gamma(A_i \cup A_j)$

Consider a propositional language \mathcal{L} with variables $\{a, b, c...\}$ with standard connectives $\land, \lor, \neg, \rightarrow$ generating the set $S : p \in \mathcal{L} \iff p = a |\neg p| p \land q$ and $p \lor q \equiv \neg(\neg p \land \neg q)$.

- Define □p as standing for N(A) ≥ λ > 0, where A = [p] the set of models of p. □p corresponds to a Boolean necessity measure based on a possibility distribution that is the characteristic function of E = {s|π(s) > ν(λ)}
- Consider a higher level propositional language $\phi \in \mathcal{L}_{\Box} \iff \phi = \Box p | \neg \phi | \phi \land \psi$.
- It is the language of Boolean possibilistic logic: $\models \Diamond p$ stands for $\Pi(A) \ge \nu(\lambda)$.
- The following KD axioms are valid

$$- (K) : \Box(p \to q) \to (\Box p \to \Box q).$$
$$- (N) : \Box \top.$$
$$- (D) : \Box p \to \Diamond p$$

and imply axiom (C) : $\Box(p \land q) \equiv (\Box p \land \Box q)$ (Boolean minitivity axiom).

A "model" of a formula in $\phi \in \mathcal{L}_{\Box}$ is a nonempty subset $E \subseteq S$ of propositional models. *E* is an epistemic state (a *meta-model*).

The satisfaction of *MEL*-formulae is defined recursively:

- $E \models \Box p$, if and only if $E \subseteq [p]$
- $E \models \neg \phi$, if and only if $E \not\models \phi$,
- $E \models \phi \land \psi$, if and only if $E \models \phi$ and $E \models \psi$, where ϕ, ψ are any \mathcal{L}_{\Box} -formulae.
- So, $E \models \Diamond p$ if and only if $E \cap [p] \neq \emptyset$

For any set $\Gamma \cup \{\phi\}$ of \mathcal{L}_{\Box} -formulae, ϕ is a semantic consequence of Γ , written $\Gamma \models \phi$, provided for every epistemic state $E, E \models \Gamma$ implies $E \models \phi$.

Boolean possibilistic logic (the \mathcal{L}_{\Box} -fragment of KD) is sound and complete w.r.t. this semantics

Using the same language, denote $\models \Box p$ as standing for $\gamma([p]) \ge \lambda > 0$.

• The following axioms are then verified :

 $(RE): \Box p \equiv \Box q \text{ whenever } \vdash p \equiv q.$ $(RM): \Box p \to \Box q, \text{ whenever } \vdash p \to q.$ $(N): \Box \top.$ $(P): \Diamond \top$

- This modal logic seems to be the natural logical account of qualitative capacities
- This logic is a non-regular modal logic. It is a special case of the *monotonic modal* logic EMN (Chellas), a fragment where modalities only apply to propositions, not to modal formulas. Its usual semantics is neighbourhood semantics.
- this logic does not satisfy axioms K, C nor D.

Capacity semantics of monotonic modal logics ; *n***-minitive case**

Let n be the smallest integer for which $\gamma(A) = \max_{i=1}^{n} N_i(A)$.

- Denoting by $\Box_i p$ the statement $N_i([p]) \ge \lambda > 0$, it is clear that $\gamma([p]) \ge \lambda > 0$, i.e. $\Box p$ stands for $\bigvee_{i=1}^n \Box_i p$, where \Box_i are KD modalities.
- Applying the characterisation of *n*-minitivity, the restriction of the modal logic EMN to the semantics in terms of *n*-minitive capacities is

$$n - C \coloneqq (\wedge_{i=1}^{n+1} \Box p_i) \to \vee_{i \neq j=1}^{n+1} \Box (p_i \wedge p_j)$$

which implies that if $p_i, i = 1..., n+1$ are mutually inconsistent, then $\vdash \neg \wedge_{i=1}^{n+1} \Box p_i$ (cannot have $\gamma([p_i]) \ge \lambda > 0$ for all i = 1..., n+1.

• For n = 1 this is axiom $C : \Box(p \land q) \equiv (\Box p \land \Box q)$

The semantics of EMNP + n-C logic can be expressed

- In terms of *n*-tuple of epistemic states (subsets of *S*): $(E_1, \ldots, E_n) \models \Box p \text{ if } \exists i \in [1, n], E_i \models \Box_i).$
- in terms of neigborhoods (non-empty subsets \mathcal{N} of 2^S) :

-
$$\mathcal{N} \models \Box p$$
 if and only if $[p] \in \mathcal{N}$

- $\mathcal{N} \models \Diamond p$ if and only if $[\neg p] \not\in \mathcal{N}$
- For a KD modality N = {A, N(A) ≥ λ} = {A|A ⊇ E} for some non-empty
 E ⊆ S (a proper filter)
- for an EMNP modality $\mathcal{N} = \{A, \gamma(A) \ge \lambda > 0\} \ (\neq 2^S,$ closed under inclusion and not empty)
- for an EMNP+n-C modality, N = {A, γ(A) ≥ λ > 0} is the union of n proper filters of the form {A, N_i(A) ≥ λ} = {A|A ⊇ E_i}.

There is a strong similarity between q-capacities and imprecise probabilities, where possibility measures replace probability measures.

- A q-capacity is both a lower possibility or an upper necessity
- A q-capacity can be viewed as a kind of belief function or a kind of plausibility function
- The equivalent (max-convex) possibility set is never empty.
- We can lay bare the minimal set of possibility measures that can reconstruct the q-capacity.
 - Note that if γ is strictly monotone : $\gamma(E) = \gamma_{\#}(E) > 0, \forall E \neq \emptyset \subseteq S$, then $\mathcal{R}_{*}(\gamma)$ contains n! possibility distributions.
 - One can choose between upper or lower representation: It is not worth approximating N from above by a family of possibility distributions.

Perspectives

- Compare *k*-minitive (maxitive) q-capacities with capacities having focal sets with less than *k* elements in terms of representational complexity (*k*-maxitive in the sense of Grabish-Mesiar.
- Study the class of q-capacities induced by a small number of possibility distributions as to their potential in practical multicriteria decision problems.
- Develop the analogy with belief functions (Prade, Rico, ECSQARU 2011) : specificity, combination rules : a qualitative theory of evidence and merging unreliable testimonies?
- Develop the bridge with modal logics : generalizing possibilistic logic to q-capacities, and using it in multi source epistemic reasoning systems.
- Do it again when L is a De Morgan lattice !