Duality of aggregation operators and the explicit expression of k-negations

E. de Amo¹ M. Díaz Carrillo² J. Fernández Sánchez¹

Universidad de Almería¹ Universidad de Granada² Supported by Project No. MTM2011-22394, by the Ministerio de Ciencia e Innovación (Spain)

FSTA 2012

Aggregation operators

Definition

Aggregation operators are mathematical objects that have the goal of reducing a set of numbers into a unique representative (or meaningful) number. Let \mathbb{I}^2 be the unit square. An *aggregation operator* is defined as a function $F : \mathbb{I}^2 \to \mathbb{I}$ that satisfies:

- (i) F(0,0) = 0 and F(1,1) = 1 (boundary conditions)
- (ii) $F(x_1, y_1) \leq F(x_2, y_2)$ if $x_1 \leq x_2$ and $y_1 \leq y_2$ (non-decreasing monotonicity).

Aggregation operators

Definition

Aggregation operators are mathematical objects that have the goal of reducing a set of numbers into a unique representative (or meaningful) number. Let \mathbb{I}^2 be the unit square. An *aggregation operator* is defined as a function $F : \mathbb{I}^2 \to \mathbb{I}$ that satisfies:

- (i) F(0,0) = 0 and F(1,1) = 1 (boundary conditions)
- (ii) $F(x_1, y_1) \leq F(x_2, y_2)$ if $x_1 \leq x_2$ and $y_1 \leq y_2$ (non-decreasing monotonicity).

Aggregation operators appear in:

- Multidecision
- Fuzzy logic (t-norms)
- Image processing

Aggregation operators

Definition

We will denote by Φ the subclass of commutative aggregation operators F that satisfy the relations:

$$F(x,0) = F(1,0)x$$
 and $F(x,1) = (1 - F(1,0))x + F(1,0)$,

for all $x \in \mathbb{I}$, with $F(1,0) \in]0,1[$.

Let us observe that t-norms and t-conorms are in Φ .

The target

Negations and Duality

Definition

A negation N is defined as a non-increasing function $N : \mathbb{I} \to \mathbb{I}$ with boundary conditions N(0) = 1, N(1) = 0. If N is involutive, i.e. if N(N(x)) = x holds for all $x \in \mathbb{I}$, we say that N is a strong negation.

The target

Negations and Duality

Definition

A negation N is defined as a non-increasing function $N : \mathbb{I} \to \mathbb{I}$ with boundary conditions N(0) = 1, N(1) = 0. If N is involutive, i.e. if N(N(x)) = x holds for all $x \in \mathbb{I}$, we say that N is a strong negation.

Definition

Let T, S be in Φ and let N be a negation function. N is said to be a *duality function for the pair* (T, S) (or that *the pair* (T, S) *is* N-*dual*), if N(T(x, y) = S(N(x), N(y)) for all x, y in \mathbb{I} .

Target

Mayor and Torrens studied the set Φ and a duality relation for pairs of members in Φ .

Theorem ([5, Th.2])

Let F be in Φ . Given k, k', 0 < k, k' < 1, there exists a unique $G_{F,k'}$ in Φ , with $G_{F,k'}(1,0) = k'$, and a unique negation function $N_{k,k'} : \mathbb{I} \to \mathbb{I}$ such that the pair $(F, G_{F,k'})$ is $N_{k,k'}$ -dual.

We want to give an explicit expression for $N_{k,k'}$ and study its properties.

The target

Target

• Properties:

Target

- Properties:
 - Derivation properties

Target

- Properties:
 - Derivation properties
 - Functional equation characterization

Target

- Properties:
 - Derivation properties
 - Functional equation characterization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Hausdorff dimensions

Target

- Properties:
 - Derivation properties
 - Functional equation characterization

- Hausdorff dimensions
- *k*-negations

Presentation

Representation system

Representation system

Theorem

Let $k \in [0, 1[$. If $x \in [0, 1]$, then there is an increasing sequence of naturals $1 \le m_0 \le m_1 \le \cdots \le m_d \le \cdots$, such that $x = \sum_{d=0}^{+\infty} (1-k)^d k^{m_d}$. Besides, the above expansion is unique but it would be finite or stationary (i.e., $m_d = m_j$ if $d \ge j$).

Definition

Definition

For each pair $k, k' \in]0, 1[\setminus \{\frac{1}{2}\},$ let us define the function $f_{k,k'} : \mathbb{I} \to \mathbb{I}$, given in the following way: each x with non-stationary infinite expansion (that is, there exist $1 \leq t_0 < t_1 < \cdots < t_d < \cdots$) such that

$$\begin{array}{lll} x & = & k^{t_0} + \dots + k^{t_0} \, (1-k)^{s_0} \\ & & + k^{t_1} \, (1-k)^{s_0+1} + \dots + k^{t_1} \, (1-k)^{s_1} + \dots \\ & & + k^{t_d} \, (1-k)^{s_{d-1}+1} + \dots + k^{t_d} \, (1-k)^{s_d} + \dots \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Definition

is mapped to

$$f_{k,k'}(x) = k' + k' (1 - k') + \dots + k' (1 - k')^{t_0 - 2} + k'^{s_0 + 2} (1 - k')^{t_0 - 1} + \dots + k'^{s_0 + 2} (1 - k')^{t_1 - 2} + k'^{s_1 + 2} (1 - k')^{t_1 - 1} + \dots + k'^{s_1 + 2} (1 - k')^{t_2 - 2} + \dots + k'^{s_{d-1} + 2} (1 - k')^{t_{d-1} - 1} + \dots + k'^{s_{d-1} + 2} (1 - k')^{t_d - 2} + \dots$$

Definition

If $t_0 := 1$, then $k + k (1 - k) + \cdots + k (1 - k)^{t_0 - 2}$ does not exist. In the stationary case, that is, if x has finite expansion:

$$egin{array}{rcl} x & = & k^{t_0} + \cdots + k^{t_0} \left(1 - k
ight)^{s_0} + \cdots + \ & k^{t_d} \left(1 - k
ight)^{s_{d-1} + 1} + \cdots + k^{t_d} \left(1 - k
ight)^{s_d} \end{array}$$

then

$$f_{k,k'}(x) := k' + k' (1 - k') + \dots + k' (1 - k')^{t_0 - 2} + \dots + k'^{s_{d-1} + 2} (1 - k')^{t_{d-1} - 1} + \dots + k'^{s_{d-1} + 2} (1 - k')^{t_d - 2} + k'^{s_d + 1} (1 - k')^{t_d - 1}.$$

Presentation

The function $N_{kk'}$

Example

$$x = k^{2} + k^{2} (1 - k) + \dots + k^{2} (1 - k)^{5} + k^{4} (1 - k)^{6} + \dots + k^{4} (1 - k)^{11} + k^{7} (1 - k)^{12} + \dots + k^{7} (1 - k)^{16} + k^{11} (1 - k)^{17} + \dots + k^{11} (1 - k)^{22} + k^{25} (1 - k)^{23} + \dots + k^{25} (1 - k)^{30} + \dots$$

Then the values for t_i and s_i are given by:

$$t_0 = 2 s_0 = 5 t_1 = 4 s_1 = 11 t_2 = 7 s_2 = 16 t_3 = 11 s_3 = 22 t_4 = 25 s_4 = 30$$

Example

the first terms for the series expansion of $f_{k,k'}(x)$ are:

$$\begin{split} f_{k,k'}(x) &= k' + k'^7 \left(1 - k'\right) + k'^7 \left(1 - k'\right)^2 + \\ & k'^{13} \left(1 - k'\right)^3 + k'^{13} \left(1 - k'\right)^4 + k'^{13} \left(1 - k'\right)^5 + \\ & k'^{18} \left(1 - k'\right)^6 + \dots + k'^{18} \left(1 - k'\right)^9 + \\ & k'^{24} \left(1 - k'\right)^{10} + \dots + k'^{24} \left(1 - k'\right)^{23} + \dotsb \end{split}$$

Presentation

The function $N_{kk'}$

Graphs

Figure: The Graphs of $N_{.3,.4}$ and $N_{.4,.9}$

(日)、(四)、(E)、(E)、(E)

Properties of $N_{kk'}$

Properties

Theorem

The functions $N_{k,k'}$ and $f_{k,k'}$ coincide.

Theorem

If $k \neq 1 - k'$, then there exists a set of measure 1 in which the derivative of $N_{k,k'}$ vanishes.

Properties of $N_{kk'}$

Properties

Theorem

If $k \neq 1 - k'$, then $N_{k,k'}$ does not admit a non-zero derivative at any $x \in \mathbb{I}$.

Theorem

 $N_{k,k'}$ is the unique bounded solution of the system of functional equations

$$\begin{cases} f(kx) = k' + (1 - k') f(x) \\ f(k + (1 - k) x) = k' f(x). \end{cases}$$

Presentation

Properties of $N_{kk'}$

Properties

Properties of $N_{kk'}$

Properties

Theorem

If $k' \neq 1 - k$, then the function $N_{k,k'}$ applies a set of λ -measure 0 onto a set of λ -measure 1. The Hausdorff dimension of the first set is $\frac{\ln \left[k'^{k'}(1-k')^{1-k'}\right]}{\ln \left[k^{1-k'}(1-k)^{k'}\right]}.$

Properties of $N_{kk'}$

Theorem

If $k' \neq 1 - k$, then $N_{k,k'}$ applies a set of λ -measure 1 onto a set of λ -measure 0 whose Hausdorff dimension is $\frac{\ln[k^k(1-k)^{1-k}]}{\ln[k'^{1-k}(1-k')^k]}$.

k-negations

Negations

Theorem

For each $k \in]0, 1[$, let us consider the k-negation function $N_k : \mathbb{I} \to \mathbb{I}$ (under the above expression). Then, i) N_k is continuous. ii) For each $k \in]0, 1[\setminus 1/2, \text{ there is a set of } \lambda\text{-measure 1 in which}$ N_k vanishes.

iii) For each $k \in]0, 1[\backslash 1/2, N_k$ does not admit non-zero derivatives.

iv) N_k is the unique solution for the system of functional equations given by

$$\begin{cases} f(kx) = k + (1-k) f(x) \\ f(k+(1-k) x) = kf(x). \end{cases}$$

k-negations

Theorem

v) If
$$k \neq 0.5$$
, N_k maps a set of λ -measure 0 with Hausdorff
dimension $\frac{\ln[k^k(1-k)^{1-k}]}{\ln[k^{1-k}(1-k)^k]}$, onto a set of λ -measure 1.
vi) If $k \neq 0.5$, N_k maps a set of λ -measure 1 onto a set of
 λ -measure 0 with Hausdorff dimension $\frac{\ln[k^k(1-k)^{1-k}]}{\ln[k^{1-k}(1-k)^k]}$

References

References

- Alsina, C., Frank, M.J. and Schweizer, B.: Associative Functions: Triangular Norms and Copulas, World Scientific, Singapur, 2006
- 🧃 de Amo, E. and Fernández Sánchez, J.: A Generalised Dyadic Representation System, Int. J. Pure Appl. Math. 52 (1) (2009) 49-66
- de Amo, E., Díaz Carrillo, M. and Fernández Sánchez, J.: On duality of aggregation operators and k-negations, Fuzzy Sets and Systems 181 (2011) 14-27
- Mayor, G. and Calvo, T.: Fractal Negations, Mathware Soft Comput. 3 (1994) 277-283
- Mayor, G. and Torrens, J.: *Duality for a class of binary* operations on [0, 1], Fuzzy Sets and Systems 47 (1992) 77-80 ▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

References

Thank you for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ