Duality of aggregation operators and the explicit expression of k-negations

E. de Amo ${ }^{1}$ M. Díaz Carrillo ${ }^{2}$ J. Fernández Sánchez ${ }^{1}$
Universidad de Almería ${ }^{1}$ Universidad de Granada ${ }^{2}$
Supported by Project No. MTM2011-22394, by the Ministerio de Ciencia e Innovación (Spain)

FSTA 2012

Aggregation operators

Definition

Aggregation operators are mathematical objects that have the goal of reducing a set of numbers into a unique representative (or meaningful) number. Let \mathbb{I}^{2} be the unit square. An aggregation operator is defined as a function $F: \mathbb{I}^{2} \rightarrow \mathbb{I}$ that satisfies:

- (i) $F(0,0)=0$ and $F(1,1)=1$ (boundary conditions)
- (ii) $F\left(x_{1}, y_{1}\right) \leq F\left(x_{2}, y_{2}\right)$ if $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$ (non-decreasing monotonicity).

Aggregation operators

Definition

Aggregation operators are mathematical objects that have the goal of reducing a set of numbers into a unique representative (or meaningful) number. Let \mathbb{I}^{2} be the unit square. An aggregation operator is defined as a function $F: \mathbb{I}^{2} \rightarrow \mathbb{I}$ that satisfies:

- (i) $F(0,0)=0$ and $F(1,1)=1$ (boundary conditions)
- (ii) $F\left(x_{1}, y_{1}\right) \leq F\left(x_{2}, y_{2}\right)$ if $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$
(non-decreasing monotonicity).
Aggregation operators appear in:
- Multidecision
- Fuzzy logic (t-norms)
- Image processing

The target

Aggregation operators

Definition

We will denote by Φ the subclass of commutative aggregation operators F that satisfy the relations:

$$
F(x, 0)=F(1,0) x \text { and } F(x, 1)=(1-F(1,0)) x+F(1,0),
$$

for all $x \in \mathbb{I}$, with $F(1,0) \in] 0,1[$.
Let us observe that t-norms and t-conorms are in Φ.

Negations and Duality

Definition

A negation N is defined as a non-increasing function $N: \mathbb{I} \rightarrow \mathbb{I}$ with boundary conditions $N(0)=1, N(1)=0$. If N is involutive, i.e. if $N(N(x))=x$ holds for all $x \in \mathbb{I}$, we say that N is a strong negation.

Negations and Duality

Definition

A negation N is defined as a non-increasing function $N: \mathbb{I} \rightarrow \mathbb{I}$ with boundary conditions $N(0)=1, N(1)=0$. If N is involutive, i.e. if $N(N(x))=x$ holds for all $x \in \mathbb{I}$, we say that N is a strong negation.

Definition

Let T, S be in Φ and let N be a negation function. N is said to be a duality function for the pair (T, S) (or that the pair (T, S) is N-dual), if $N(T(x, y)=S(N(x), N(y))$ for all x, y in \mathbb{I}.

The target

Target

Mayor and Torrens studied the set Φ and a duality relation for pairs of members in Φ.

Theorem ([5, Th.2])

Let F be in Φ. Given $k, k^{\prime}, 0<k, k^{\prime}<1$, there exists a unique $G_{F, k^{\prime}}$ in Φ, with $G_{F, k^{\prime}}(1,0)=k^{\prime}$, and a unique negation function $N_{k, k^{\prime}}: \mathbb{I} \rightarrow \mathbb{I}$ such that the pair $\left(F, G_{F, k^{\prime}}\right)$ is $N_{k, k^{\prime}}$-dual.

We want to give an explicit expression for $N_{k, k^{\prime}}$ and study its properties.

The target

Target

- Properties:

Target

- Properties:
- Derivation properties

Target

- Properties:
- Derivation properties
- Functional equation characterization

Target

- Properties:
- Derivation properties
- Functional equation characterization
- Hausdorff dimensions

Target

- Properties:
- Derivation properties
- Functional equation characterization
- Hausdorff dimensions
- k-negations

Representation system

Theorem

Let $k \in] 0,1[$. If $x \in] 0,1]$, then there is an increasing sequence of naturals $1 \leq m_{0} \leq m_{1} \leq \cdots \leq m_{d} \leq \cdots$, such that $x=\sum_{d=0}^{+\infty} \overline{(1-k)^{d}} k^{m_{d}}$. Besides, the above expansion is unique but it would be finite or stationary (i.e., $m_{d}=m_{j}$ if $d \geq j$).

Definition

Definition

For each pair $\left.k, k^{\prime} \in\right] 0,1\left[\backslash\left\{\frac{1}{2}\right\}\right.$, let us define the function $f_{k, k^{\prime}}: \mathbb{I} \rightarrow \mathbb{I}$, given in the following way: each x with non-stationary infinite expansion (that is, there exist $1 \leq t_{0}<t_{1}<\cdots<t_{d}<\cdots$) such that

$$
\begin{aligned}
x= & k^{t_{0}}+\cdots+k^{t_{0}}(1-k)^{s_{0}} \\
& +k^{t_{1}}(1-k)^{s_{0}+1}+\cdots+k^{t_{1}}(1-k)^{s_{1}}+\cdots \\
& +k^{t_{d}}(1-k)^{s_{d-1}+1}+\cdots+k^{t_{d}}(1-k)^{s_{d}}+\cdots
\end{aligned}
$$

Definition

is mapped to

$$
\begin{aligned}
f_{k, k^{\prime}}(x)= & k^{\prime}+k^{\prime}\left(1-k^{\prime}\right)+\cdots+k^{\prime}\left(1-k^{\prime}\right)^{t_{0}-2}+ \\
& k^{\prime s_{0}+2}\left(1-k^{\prime}\right)^{t_{0}-1}+\cdots+k^{\prime s_{0}+2}\left(1-k^{\prime}\right)^{t_{1}-2}+ \\
& k^{\prime s_{1}+2}\left(1-k^{\prime}\right)^{t_{1}-1}+\cdots+k^{\prime s_{1}+2}\left(1-k^{\prime}\right)^{t_{2}-2}+\cdots \\
& k^{\prime s_{d-1}+2}\left(1-k^{\prime}\right)^{t_{d-1}-1}+\cdots+ \\
& k^{\prime s_{d-1}+2}\left(1-k^{\prime}\right)^{t_{d}-2}+\cdots
\end{aligned}
$$

Definition

If $t_{0}:=1$, then $k+k(1-k)+\cdots+k(1-k)^{t_{0}-2}$ does not exist. In the stationary case, that is, if x has finite expansion:

$$
\begin{aligned}
x= & k^{t_{0}}+\cdots+k^{t_{0}}(1-k)^{s_{0}}+\cdots+ \\
& k^{t_{d}}(1-k)^{s_{d-1}+1}+\cdots+k^{t_{d}}(1-k)^{s_{d}}
\end{aligned}
$$

then

$$
\begin{aligned}
f_{k, k^{\prime}}(x): & =k^{\prime}+k^{\prime}\left(1-k^{\prime}\right)+\cdots+k^{\prime}\left(1-k^{\prime}\right)^{t_{0}-2}+\cdots+ \\
& k^{\prime s_{d-1}+2}\left(1-k^{\prime}\right)^{t_{d-1}-1}+\cdots+ \\
& k^{\prime s_{d-1}+2}\left(1-k^{\prime}\right)^{t_{d}-2}+k^{\prime s_{d}+1}\left(1-k^{\prime}\right)^{t_{d}-1}
\end{aligned}
$$

Example

$$
\begin{aligned}
x= & k^{2}+k^{2}(1-k)+\cdots+k^{2}(1-k)^{5}+ \\
& k^{4}(1-k)^{6}+\cdots+k^{4}(1-k)^{11}+ \\
& k^{7}(1-k)^{12}+\cdots+k^{7}(1-k)^{16}+ \\
& k^{11}(1-k)^{17}+\cdots+k^{11}(1-k)^{22}+ \\
& k^{25}(1-k)^{23}+\cdots+k^{25}(1-k)^{30}+\cdots
\end{aligned}
$$

Then the values for t_{i} and s_{i} are given by:

$$
\begin{array}{ll}
t_{0}=2 & s_{0}=5 \\
t_{1}=4 & s_{1}=11 \\
t_{2}=7 & s_{2}=16 \\
t_{3}=11 & s_{3}=22 \\
t_{4}=25 & s_{4}=30
\end{array}
$$

Example

the first terms for the series expansion of $f_{k, k^{\prime}}(x)$ are:

$$
\begin{aligned}
f_{k, k^{\prime}}(x)= & k^{\prime}+k^{\prime 7}\left(1-k^{\prime}\right)+k^{\prime 7}\left(1-k^{\prime}\right)^{2}+ \\
& k^{\prime 13}\left(1-k^{\prime}\right)^{3}+k^{\prime 13}\left(1-k^{\prime}\right)^{4}+k^{\prime 13}\left(1-k^{\prime}\right)^{5}+ \\
& k^{\prime 18}\left(1-k^{\prime}\right)^{6}+\cdots+k^{\prime 18}\left(1-k^{\prime}\right)^{9}+ \\
& k^{\prime 24}\left(1-k^{\prime}\right)^{10}+\cdots+k^{\prime 24}\left(1-k^{\prime}\right)^{23}+\cdots
\end{aligned}
$$

Graphs

Figure: The Graphs of $N_{.3, .4}$ and $N_{.4,9}$

Properties

Theorem

The functions $N_{k, k^{\prime}}$ and $f_{k, k^{\prime}}$ coincide.

Theorem

If $k \neq 1-k^{\prime}$, then there exists a set of measure 1 in which the derivative of $N_{k, k^{\prime}}$ vanishes.

Properties

Theorem

If $k \neq 1-k^{\prime}$, then $N_{k, k^{\prime}}$ does not admit a non-zero derivative at any $x \in \mathbb{I}$.

Theorem

$N_{k, k^{\prime}}$ is the unique bounded solution of the system of functional equations

$$
\left\{\begin{array}{l}
f(k x)=k^{\prime}+\left(1-k^{\prime}\right) f(x) \\
f(k+(1-k) x)=k^{\prime} f(x)
\end{array}\right.
$$

Properties

Properties

Theorem

If $k^{\prime} \neq 1-k$, then the function $N_{k, k^{\prime}}$ applies a set of λ-measure 0 onto a set of λ-measure 1. The Hausdorff dimension of the first set is $\frac{\ln \left[k^{\prime k^{\prime}}\left(1-k^{\prime}\right)^{1-k^{\prime}}\right]}{\ln \left[k^{1-k^{\prime}}(1-k)^{k^{\prime}}\right]}$.

Theorem

If $k^{\prime} \neq 1-k$, then $N_{k, k^{\prime}}$ applies a set of λ-measure 1 onto a set of λ-measure 0 whose Hausdorff dimension is $\frac{\ln \left[k^{k}(1-k)^{1-k}\right]}{\ln \left[k^{11-k}\left(1-k^{\prime}\right)^{k}\right]}$.

Negations

Theorem

For each $k \in] 0,1[$, let us consider the k-negation function $N_{k}: \mathbb{I} \rightarrow \mathbb{I I}$ (under the above expression). Then,
i) N_{k} is continuous.
ii) For each $k \in] 0,1[\backslash 1 / 2$, there is a set of λ-measure 1 in which N_{k} vanishes.
iii) For each $k \in] 0,1\left[\backslash 1 / 2, N_{k}\right.$ does not admit non-zero derivatives.
iv) N_{k} is the unique solution for the system of functional equations given by

$$
\left\{\begin{array}{l}
f(k x)=k+(1-k) f(x) \\
f(k+(1-k) x)=k f(x)
\end{array}\right.
$$

Theorem

v) If $k \neq 0.5, N_{k}$ maps a set of λ-measure 0 with Hausdorff dimension $\frac{\ln \left[k^{k}(1-k)^{1-k}\right]}{\ln \left[k^{1-k}(1-k)^{k}\right]}$, onto a set of λ-measure 1 . vi) If $k \neq 0.5, N_{k}$ maps a set of λ-measure 1 onto a set of λ-measure 0 with Hausdorff dimension $\frac{\ln \left[k^{k}(1-k)^{1-k}\right]}{\ln \left[k^{1-k}(1-k)^{k}\right]}$

References

R－Alsina，C．，Frank，M．J．and Schweizer，B．：Associative Functions：Triangular Norms and Copulas，World Scientific， Singapur， 2006

囯 de Amo，E．and Fernández Sánchez，J．：A Generalised Dyadic Representation System，Int．J．Pure Appl．Math． 52 （1）（2009） 49－66
围 de Amo，E．，Díaz Carrillo，M．and Fernández Sánchez，J．：On duality of aggregation operators and k－negations，Fuzzy Sets and Systems 181 （2011）14－27

圊 Mayor，G．and Calvo，T．：Fractal Negations，Mathware Soft Comput． 3 （1994）277－283

嗇 Mayor，G．and Torrens，J．：Duality for a class of binary operations on $[0,1]$ ，Fuzzy Sets and Systems 47 （1992）77－80

Thank you for your attention!

