Eigen Fuzzy Sets Equations and Related Inequalities

Miroslav Ćirić

Department of Mathematics and Computer Science Faculty of Sciences and Mathematics University of Niš, Serbia, miroslav.ciric@pmf.edu.rs

joint work with Jelena Ignjatović, Branimir Šešelja, Andreja Tepavčević

Eleventh International Conference on Fuzzy Set Theory and Applications January 30 - February 3, 2012, Liptovský Ján, Slovak Republic

Introduction

Eigen fuzzy set equations

first studied by Sanchez (FSS, 1978; JMAA, 1981) – used in medical research

later they were studied in many papers and found a much wider field of application

Wagenknecht, Hartmann (FSS, 1986)

construction of fuzzy eigen solutions in a given region (interval)

Jimenez, Montes, Šešelja, Tepavčević (CAMWA, 2011)

Our approach

we study both equations and inequalities

we study systems of equations (inequalities), not only single equations (inequalities) we use more general structure of truth values (complete residuated lattice)

- >> differences between systems of inequalities and systems of equations
- >> differences between systems of equations and single equations
- >> connections with closures and openings w.r.t. fuzzy relations (fuzzy quasi-orders)
- >> algorithms for computing the greatest and the least solutions

Fuzzy sets

Structure of truth values

complete residuated lattice: $\mathcal{L} = (L, \lor, \land, \otimes, \rightarrow, 0, 1)$

negation – unary operation ¬ defined by $\neg x = x \rightarrow 0$

double negation property: $x = \neg \neg x$, for all $x \in L$

complete residuated lattices do not have this property in general

MV-algebras satisfy the double negation property

Fuzzy sets

 $L^{A} = \{f \mid f : A \to L\} - \text{the set of all fuzzy subsets of a set A over } \mathcal{L}$ $\mathcal{F}(A) = (L^{A}, \vee, \wedge, \emptyset, A) - \text{the complete lattice of fuzzy subsets of A}$ *complement* f^{\neg} of a fuzzy subset $f: f^{\neg}(x) = \neg f(x)$, for each $x \in L$ *scalar multiplication* $\lambda f (= f\lambda)$ of $f \in L^{A}$ and $\lambda \in L: \lambda f(a) = \lambda \otimes f(a)$, for each $a \in A$. $f \in L^{A}$ is a *linear combination* of $f_{i} \in L^{A}$ ($i \in I$) if there are $\lambda_{i} \in L$ ($i \in I$) such that

$$f = \bigvee_{i \in I} \lambda_i f_i.$$

イロト イポト イヨト イヨト

э

Fuzzy sets (cont.)

Closure and opening systems

closure system in $\mathcal{F}(A)$ – a subset of L^A containing A, closed under arbitrary meets *opening system* in $\mathcal{F}(A)$ – a subset of L^A containing \emptyset , closed under arbitrary joins

- (P,\leqslant) partially ordered set. A function $\phi:P\rightarrow P$ is
 - *isotone* if x ≤ y implies φ(x) ≤ φ(y), for all x, y ∈ P;
 - *extensive* if $x \leq \phi(x)$, for each $x \in P$;
 - *intensive* if $\phi(x) \leq x$, for each $x \in P$;
 - *idempotent* if $\phi(\phi(x)) = \phi(x)$, for each $x \in P$.

closure operator on (*P*, ≤) – *isotone, extensive* and *idempotent* function

if $\phi(x) = x$, then x is a ϕ -closed element

opening operator on (*P*, ≤) – *isotone, intensive* and *idempotent* function

if $\phi(x) = x$, then *x* is a ϕ -open element

closure system in $\mathcal{F}(A) \equiv$ set of all closed elements of some **closure operator** on $\mathcal{F}(A)$ **opening system** in $\mathcal{F}(A) \equiv$ set of all open elements of some **opening operator** on $\mathcal{F}(A)$

Fuzzy sets (cont.)

Closure and opening systems (cont.)

$$C \subseteq L^{A} - \text{closure system in } \mathcal{F}(A), X = \{f_{i}\}_{i \in I} \subseteq L^{A}$$

C-closure of X:
$$C_{X} = \bigwedge \{g \in C \mid f_{i} \leq g, \text{ for every } i \in I\} \in C$$

- the least element of *C* containing all members of *X*. *principal element* of *C* generated by an element $a \in A$:

$$C_a = \bigwedge \{ f \in C \mid f(a) = 1 \} \in C$$

- the *C*-closure of the crisp subset {*a*} of *A principal part* of *C*: $\mathcal{P}(C) = \{C_a \mid a \in A\}$ $C \subseteq L^A$ - opening system in $\mathcal{F}(A), X = \{f_i\}_{i \in I} \subseteq L^A$ *C*-opening of *X*: $C_X = \bigvee \{g \in C \mid g \leq f_i, \text{ for every } i \in I\} \in C$

– the greatest element of C contained in all members of X

Introduction and preliminaries	Introduction
Systems of inequalities	Fuzzy sets
Systems of equations	Fuzzy relations

Fuzzy relations

Fuzzy relations

$$\begin{split} L^{A\times A} &= \{f \mid f : A \times A \to L\} - \text{the set of all fuzzy relations on a set } A \text{ over } \mathcal{L} \\ \mathcal{R}(A) &= (L^{A\times A}, \vee, \wedge, \emptyset, A \times A) - \text{the complete lattice of fuzzy relations on } A \\ R^{-1} &\in \mathcal{R}(B, A) - converse \ (inverse, transpose) \text{of a fuzzy relation } R \in \mathcal{R}(A, B) \\ R^{-1}(b, a) \stackrel{def}{=} R(a, b) \qquad (a \in A, b \in B) \end{split}$$

Compositions

 $R \circ S$ – composition of fuzzy relations $R, S \in L^{A \times A}$:

$$(R \circ S)(a, c) = \bigvee_{b \in A} R(a, b) \otimes S(b, c) \qquad (a, c \in A)$$

 $f \circ R, R \circ f$ – compositions of a fuzzy relation $R \in L^{A \times A}$ and a fuzzy set $f \in L^A$:

$$(f \circ R)(a) = \bigvee_{b \in A} f(b) \otimes R(b, a), \qquad (R \circ f)(a) = \bigvee_{b \in A} R(a, b) \otimes f(b), \qquad (a \in A)$$

n-th power \mathbb{R}^n of a fuzzy relation \mathbb{R} : $\mathbb{R}^0 = \Delta_A$, $\mathbb{R}^1 = \mathbb{R}$, $\mathbb{R}^{n+1} = \mathbb{R}^n \circ \mathbb{R}$ $(n \in \mathbb{N}^0)$.

 Introduction and preliminaries
 Introduction

 Systems of inequalities
 Fuzzy sets

 Systems of equations
 Fuzzy relations

Fuzzy quasi-orders, fuzzy equivalences

Fuzzy quasi-orders, fuzzy equivalences

 $R \in L^{A \times A}$ – fuzzy relation *reflexive* - R(a, a) = 1, for all $a \in A$, ⇔ $\Delta_A \leq R$ $R^{-1} \leq R$ symmetric – R(a, b) = R(b, a), for all $a, b \in A$, 8 transitive $- R(a, b) \otimes R(b, c) \leq R(a, c)$, for all $a, b, c \in A$, ප $R \circ R \leq R$ *fuzzy quasi-order* – *reflexive* and *transitive* (*fuzzy preorder*, in some sources) *fuzzy equivalence* – *reflexive*, *symmetric* and *transitive* Q – fuzzy quasi-order, $Q \wedge Q^{-1}$ – natural fuzzy equivalence of Q Q(A) – complete *lattice of fuzzy quasi-orders* on A E(A) – complete lattice of fuzzy equivalences on A

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Introduction and preliminaries Systems of inequalities Systems of equations Fuzzy relations

Fuzzy quasi-orders, fuzzy equivalences (cont.)

Closures of fuzzy relations

$$\begin{split} R \in L^{A \times A} &- \text{fuzzy relation} \\ R^t = \bigvee_{n \in \mathbb{N}} R^n - transitive \ closure \ of \ R \ (\text{the least transitive fuzzy relation containing } R)} \\ & |A| = n - R^t = \bigvee_{k=1}^n R^k, \qquad R \ \text{is reflexive} - R^t = R^{n-1} \\ R^r = R \lor \Delta_A - reflexive \ closure \ of \ R \\ R^s = R \lor R^{-1} - symmetric \ closure \ of \ R \\ R^q = (R^r)^t = (R^t)^r - fuzzy \ quasi-order \ closure \ of \ R \\ & (reflexive-transitive \ closure, \ Q(A)-closure) \\ R^e = ((R^r)^s)^t = ((R^s)^r)^r - fuzzy \ quasi-cransitive \ closure, \ Q(A)-closure) \\ \end{split}$$

Transitive closure – efficient algorithms

- Naessens, De Meyer, De Baets, IEEE Trans. Fuzzy Systems 10 (2002) 541–551. t-norm based structures – O(n³)
- De Meyer, Naessens, De Baets, EJOR 155 (2004) 226–238. Gödel structure – O(n²)

Introduction and preliminaries Systems of inequalities Systems of equations Fuzzy relations

Fuzzy quasi-orders, fuzzy equivalences (cont.)

Aftersets, foresets, equivalence classes

 $R \in L^{A \times A}$ – fuzzy relation

R-afterset of $a \in A$ is $aR \in L^A$ defined by: (aR)(b) = R(a, b), for any $b \in A$,

R-foreset of *a* is $Ra \in L^A$ defined by: (Ra)(b) = R(b, a), for any $b \in A$.

R is symmetric iff aR = Ra, for each $a \in A$;

if *E* is a fuzzy equivalence, we write E_a instead of aE = Ea;

 E_a – *equivalence class* of *a* w.r.t. *E*

if |A| is finite – aftersets \equiv row vectors, foresets \equiv column vectors

Introduction and preliminaries	Introduction
Systems of inequalities	Fuzzy sets
Systems of equations	Fuzzy relations

Fuzzy relations (cont.)

Residuals of fuzzy sets by fuzzy relations

$$R \in L^{A \times A}$$
 – fuzzy relation, $f \in L^A$ – fuzzy subset

left residual $f/R \in L^A$ of f by R:

$$(f/R)(a) = \bigwedge_{b \in A} R(a, b) \to f(b) = \bigwedge_{b \in A} (aR)(b) \to f(b), \qquad (a \in A)$$

right residual $R \setminus f \in L^A$ of f by R:

$$(R \setminus f)(a) = \bigwedge_{b \in A} R(b, a) \to f(b) = \bigwedge_{b \in A} (Ra)(b) \to f(b), \qquad (a \in A)$$

concepts conjugated with compositions:

$$f \circ R \leq g \Leftrightarrow f \leq g/R, \qquad R \circ f \leq g \Leftrightarrow f \leq R \setminus g$$

if **R** is symmetric, then $f/R = R \setminus f$, for each $f \in L^A$

Introduction and preliminaries Systems of inequalities Systems of equations Fuzzy relations

Fuzzy quasi-orders, fuzzy equivalences (cont.)

Theorem (Bodenhofer (2003), Bodenhofer, De Cock, Kerre (2003))

Let R be an arbitrary fuzzy relation on a set A. Then

(a) Functions

$$f \mapsto f \circ R, \quad f \mapsto f/R, \quad f \mapsto R \circ f, \quad f \mapsto R \setminus f$$
(1)

are *isotone* functions of the lattice $\mathcal{F}(A)$ into itself.

- (b) If R is reflexive, then functions f → f ∘ R and f → R ∘ f are extensive, and functions f → f/R and f → R\f are intensive.
- (c) If R is a fuzzy quasi-order, then all functions in (1) are idempotent. In other words, If R is a fuzzy quasi-order, then

 $f \mapsto f \circ R$ and $f \mapsto R \circ f$ are closure operators on $\mathcal{F}(A)$;

 $f \mapsto f/R$ and $f \mapsto R \setminus f$ are opening operators on $\mathcal{F}(A)$.

Systems with left compositions and residuals

Notation

 Σ_i (*i* \in *I*) – system of fuzzy relation inequalities or equations

 $\langle \Sigma_i | i \in I \rangle$ – the set of all solutions to this system

if $I = \{1, \ldots, n\}$, we write $\langle \Sigma_1, \ldots, \Sigma_n \rangle$

 $\langle \Sigma
angle$ – the set of all solutions to a single fuzzy relation inequality or equation Σ

Theorem

Let $\{R_i\}_{i \in I}$ be a family of fuzzy relations on a set A, let $R = \bigvee_{i \in I} R_i$ and $Q = R^q$, and let f denote an unknown fuzzy subset of A. Then

Moreover, these sets consist of all fuzzy subsets of **A** that can be represented as **linear combinations of** *Q***-aftersets**.

Systems with right compositions and residuals, double systems

Theorem

Let $\{R_i\}_{i \in I}$ be a family of fuzzy relations on a set A, let $R = \bigvee_{i \in I} R_i$ and $Q = R^q$, and let f denote an unknown fuzzy subset of A. Then

$$\langle R_i \circ f \leq f \mid i \in I \rangle = \langle R \circ f \leq f \rangle = \langle Q \circ f \leq f \rangle = \langle Q \circ f = f \rangle$$

= $\langle f \leq R_i \backslash f \mid i \in I \rangle = \langle f \leq R \backslash f \rangle = \langle f \leq Q \backslash f \rangle = \langle f = Q \backslash f \rangle$

Moreover, these sets consist of all fuzzy subsets of **A** *that can be represented as linear combinations of* **Q***-foresets.*

Theorem

Let $\{R_i\}_{i \in I}$ be a family of fuzzy relations on a set A, let $R = \bigvee_{i \in I} R_i$ and $E = R^e$, and let f denote an unknown fuzzy subset of A. Then

Moreover, these sets consist of all fuzzy subsets of **A** *that can be represented as linear combinations of* **E**-*classes.*

Closedness w.r.t. a fuzzy relation

R-closed fuzzy subsets

$$\begin{split} R \in L^{A \times A}, \ f \in L^A \\ f \text{ is } \textit{left R-closed: } f \circ R \leqslant f \ (\text{iff } f(a) \otimes R(a,b) \leqslant f(b), \text{ for all } a,b \in A) \\ \text{other names: } \textit{R-closed, R-congruent} \\ \textbf{Bodenhofer (2003), Bodenhofer, De Cock, Kerre (2003)} \\ f \text{ is } \textit{right R-closed: } R \circ f \leqslant f \ (\text{iff } R(a,b) \otimes f(b) \leqslant f(a), \text{ for all } a,b \in A) \\ \textit{double R-closed} = \text{left } R\text{-closed } \& \text{ right } R\text{-closed} \\ R \text{ is symmetric: } f \text{ is } \textit{left R-closed iff } f \text{ is } \textit{right R-closed} - \text{we say just } f \text{ is } \textit{R-closed} \\ E \text{ is a fuzzy equivalence: } E\text{-closed fuzzy subsets = fuzzy subsets } \textit{extensional w.r.t } E \\ \textbf{Klawonn (2000)} \end{split}$$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Conjugation of systems

Theorem

Let $\{R_i\}_{i \in I}$ be a family of fuzzy relations on a set A, and let f be an unknown fuzzy subset of A. Then:

- (i) if $g \in \langle f \circ R_i \leq f \mid i \in I \rangle$, then $g \neg \in \langle R_i \circ f \leq f \mid i \in I \rangle$;
- (ii) if $g \in \langle R_i \circ f \leq f \mid i \in I \rangle$, then $g^{\neg} \in \langle f \circ R_i \leq f \mid i \in I \rangle$;
- (iii) if $g \in \langle f \circ R_i \leq f, R_i \circ f \leq f \mid i \in I \rangle$, then $g \neg \in \langle f \circ R_i \leq f, R_i \circ f \leq f \mid i \in I \rangle$.

In addition, if the underlying complete residuated lattice \mathcal{L} has the **double negation property**, then the opposite implications also hold.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Closure-opening systems

Theorem

Let $\{R_i\}_{i \in I}$ be a family of fuzzy relations on a set A, let $R = \bigvee_{i \in I} R_i$, $Q = R^q$ and $E = R^e$, and let f denote an unknown fuzzy subset of A. Then:

- (i) $\langle f \circ R_i \leq f \mid i \in I \rangle$, $\langle R_i \circ f \leq f \mid i \in I \rangle$ and $\langle f \circ R_i \leq f, R_i \circ f \leq f \mid i \in I \rangle$ are both closure and opening systems in $\mathcal{F}(A)$.
- (ii) The principal part of $(f \circ R_i \leq f \mid i \in I)$ consists of all *Q*-aftersets.
- (iii) The principal part of $\langle R_i \circ f \leq f | i \in I \rangle$ consists of all Q-foresets.
- (iv) The principal part of $(f \circ R_i \leq f, R_i \circ f \leq f \mid i \in I)$ consists of all E-classes.

Closure and opening operators

Closure and opening operators

 $g \mapsto g^{lc}, g \mapsto g^{rc}, g \mapsto g^{dc}$ – *closure operators* on $\mathcal{F}(A)$ corresponding to closure systems

 $\langle f \circ R_i \leq f \mid i \in I \rangle$, $\langle R_i \circ f \leq f \mid i \in I \rangle$ and $\langle f \circ R_i \leq f, R_i \circ f \leq f \mid i \in I \rangle$, (2)

 $g \mapsto g^{lo}, g \mapsto g^{ro}, g \mapsto g^{do}$ – the corresponding *opening operators*

 g^{lc} , g^{rc} , g^{dc} – the *least solutions* to systems in (2) containing g

 g^{lo} , g^{ro} , g^{do} – the greatest solutions to systems in (2) contained in g

Theorem (Main Theorem)

Let $\{R_i\}_{i \in I}$ be a family of fuzzy relations on a set A, let $R = \bigvee_{i \in I} R_i$, $Q = R^q$ and $E = R^e$, and let g be an arbitrary fuzzy subset of A. Then:

$$g^{lc} = g \circ Q, \quad g^{rc} = Q \circ g, \quad g^{dc} = g \circ E, \quad g^{lo} = g/Q, \quad g^{ro} = Q \setminus g, \quad g^{do} = g/E.$$

イロト 不得 トイヨト イヨト

Efficient algorithms

Efficient algorithms (transitive closure)

- \gg compute $R = \bigvee_{i \in I} R_i$ and R^r (or $(R^r)^s$);
- \gg compute the transitive closure of R^r (or $(R^r)^s$);
- >> compute the composition of a given fuzzy set *g* and $(R^r)^t$ (or $((R^r)^s)^t$).

computationally the most demanding part – computation of the *transitive closure* work independently of the properties of the underlying structure of truth values

Another method (Ignjatović, Ćirić, De Baets)

general method for solving inequalities defined by *residuated* and *residual functions* $f \circ R_i \leq f$ ($i \in I$) – defined by residuated functions $f \mapsto f \circ R_i$ and $f \mapsto f$, and residual functions $f \mapsto f/R_i$

$$\langle f \circ R_i \leq f \mid i \in I \rangle = \left\langle \bigvee_{i \in I} (f \circ R_i) \leq f \right\rangle = \langle f \leq f/R_i \mid i \in I \rangle = \left\langle f \leq \bigwedge_{i \in I} (f/R_i) \right\rangle$$

computation of the *greatest post-fixed point* or the *least pre-fixed point* of an isotone function on the lattice of fuzzy sets

iterative procedure (the number of iterations may be infinite, for some structures)

Introduction and preliminaries Systems of inequalities Systems of equations

Comparison with the systems of inequalities Computation of the greatest solutions

Comparison with the systems of inequalities

Theorem

Let $\{R_i\}_{i \in I}$ be a family of fuzzy relations on a set A, let $R = \bigvee_{i \in I} R_i$, and let f denote an unknown fuzzy subset of A. Then:

 $\langle f \circ R_i = f \mid i \in I \rangle \subseteq \langle f \circ R = f \rangle,$

$$\langle R_i \circ f = f \mid i \in I \rangle \subseteq \langle R \circ f = f \rangle, \tag{3}$$

イロト イポト イヨト イヨト

and the inclusions may be proper.

Theorem

Let **R** be a fuzzy relation on a set **A**, and let **f** denote an unknown fuzzy subset of **A**. Then:

$$\langle f \circ R = f \rangle = \langle f \circ R^t = f \rangle, \qquad \langle R \circ f = f \rangle = \langle R^t \circ f = f \rangle. \tag{4}$$

Remark

 $\{f \circ R_i = f \mid i \in I\}$ and $\langle R_i \circ f = f \mid i \in I \rangle$ form *opening systems*, but *not necessarily closure systems*

Computation of the greatest solutions

Algorithm 1 (Ignjatović, Ćirić, De Baets)

general method for solving equations defined by *residuated* and *residual functions* $f \circ R_i = f \ (i \in I)$ – defined by residuated functions $f \mapsto f \circ R_i$ and $f \mapsto f$ $(f \circ R_i = f | i \in I) = \{f \le \Lambda (f \circ R_i \land f / R_i)\}$

$$\langle f \circ R_i = f | i \in I \rangle = \langle f \leq \bigwedge_{i \in I} (f \circ R_i \wedge f/R_i) \rangle$$

computation of the *greatest post-fixed point* of an isotone function on $\mathcal{F}(A)$ *iterative procedure* (the number of iterations may be infinite, for some structures)

Algorithm 2 (Jiménez, Montes, Šešelja, Tepavčević, 2011)

compute the greatest solution to $f \circ R = f, f \leq g$ (*R* and *g* are given)

- \gg compute the greatest solution *h* to $f \circ R \leq f, f \leq g$ ($h = g/R^q$)
- ≫ build a sequence $\{h_n\}_{n \in \mathbb{N}}$ of fuzzy sets by: $h_1 = h$, $h_{n+1} = h_n \circ R = h \circ R^n$
- \gg if $h_n = h_{n+1}$, for some $n \in \mathbb{N}$, then h_n is the solution we were looking for

under what conditions the sequence $\{h_n\}_{n \in \mathbb{N}}$ is finite?