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Topologies, Uniformitis and proximities

Three important structures of topological nature:
Topology: T ⊆ 2X such that

1 ∅,X ∈ T ;
2 U,V ∈ T ⇒ U ∩ V ∈ T ;
3 Ui ∈ T∀i ∈ I ⇒

⋃
i Ui ∈ T

Proximity: δ ⊆ 2X × 2X such that
1 (∅,X ) 6∈ δ
2 (A,B) ∈ δ ⇐⇒ (B,A) ∈ δ;
3 (A,B ∪ C) ∈ δ ⇐⇒ (A,B) ∈ δ or (A,C) ∈ δ
4 (A,B) 6∈ δ then ∃C,D s.t. (A,C) 6∈ δ, (B,D) 6∈ δ and

C ∪ D = X .

Uniformity
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Syntopogeneous structures in Topology

Why we need syntopogeneous structures

Syntopogeneous structure is a concept which allows to develop
a unified approach to all three topological categories:

Topological spaces and continuous mappings;
Uniform spaces and uniformly continuous mappings;
Proximity spaces and proximally continuous mappings.

Introduced by A. Csaszar in 1963.
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Topogeneous orders (in crisp case)

Semi-topogeneous order

Semi-topogeneous order on a set X is a relation σ on it
powerset 2X such that

(∅, ∅), (X ,X ) ∈ σ
If M ′ ≤ M and N ≤ N ′ and (M,N) ∈ σ then (M ′,N ′) ∈ σ.
If (M,N) ∈ σ then M ⊆ N

Topogeneous order

Semi-topogeneous order on a set X is called a topogeneous
order if

(M1 ∪M2,N) ∈ σ ⇐⇒ (M1,N), (M2,N) ∈ σ.
(M,N1 ∩ N2) ∈ σ ⇐⇒ (M,N1), (M,N2) ∈ σ.
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Syntopogeneous structures

Syntopogeneous structures
A family S of topogeneous orders on a set X is called a
syntopogeneous structure if

1 S is directed, that is
σ1, σ2 ∈ S =⇒ ∃σ ∈ S such that σ1 ∪ σ2 ≤ σ;

2 ∀σ ∈ S∃σ′ ∈ S such that σ′ ◦ σ′ ⊇ σ.
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Situation in fuzzy Topology

In fuzzy topology we have developed theories of
1 Fuzzy topologies;
2 Fuzzy proximities;
3 Fuzzy uniformities

Problem
Find the appropriate concepts for fuzzy syntopogeneous
structures.
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Approach to the fuzzy version

How to define fuzzy semi-topogeneous order
L-fuzzy semi-topogeneous order on a set X is a L-fuzzy relation
σ on it L powerset LX , that is σ : LX × LX → L such that

σ(0L,0L)) = σ(1L,1L) = 1L

If M ′ ≤ M and N ≤ N ′ then σ(M,N) ≤ σ(M ′,N ′).
If σ(M,N)??? then M⊆̃N???

What is the substitute of the last property:

σ(M,N) ≤ M⊆̃N
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Next problem

How to define fuzzy inclusion ?

M⊆̃N

Inclusion of ordinary sets

In crisp case
For all x ∈ X if x ∈ M then x ∈ N

Realization of this idea in fuzzy case

Realization in fuzzy case

A⊆̃B = inf
x∈X

(A(x) 7→ B(x))

where 7→ is an implicator on L
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Implicator generally is a mapping

7→ L× L→ L

satisfying certain conditions which are extracted from the basic
properties of an Implication in classical logic. However different
authors axiomatize different properties. There is done much
work comparing different properties taken in the definition of an
implicator. In particular:
S. Gotwald: Many-valued logic, Chapter I in Mathematics of
fuzzy sets: Logic, Topology and Measure Theory, Kluwer Acad.
Publ. 1999; S. Gotwald, Mehrwertige Logic: Eine Einfürung
in Theorie und Anwendungen, Akademie Verlag, Berlin,
1989.
An survey of different approaches for implicator where
discussed 4 years ago at FSTA2008 in M. Baczynski talk.
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Implicator

For our merits we take the following axioms for 7→ L× L→ L:
a 7→ b is non-increasing on the first argument;
a 7→ b is non-decreasing on the second argument;
0 7→ a = 1L for every a ∈ L (left boundary condition);
1 7→ a = a for every a ∈ L (left neutrality)
(a 7→ 0) 7→ (b 7→ 0) = b 7→ a.

Remark: Note that properties (1) - (4) are assumed (as far
as we know) by most researches in this subject, while (5) is
specific for our merits.

Remark: From (5) and (4) we have the following important
double negation property:
(a 7→ 0) 7→ 0 = a for every a ∈ L. Thus a 7→ 0 is an order
reversing involution and we write ac = a 7→ 0.
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Implicator

Examples of appropriate implicators
Implication 7→ 2× 2→ 2 in the classical logic;
If (L,∧,∨, ∗) is an MV-algebra and 7→ is the corresponding
residuation.
In particular if L = [0,1] with Łukasiewcz conjunction ∗ the
the corrersponding residium is implication:

a 7→ b = max{1− a + b,0}.

If L = [0,1] and a 7→ b is Kleene-Dienes implication:

a 7→ b = max{1− a,b}.

Aleksandrs Šostak and Dace Čimoka On L-fuzzy syntopogeneous structures



Introduction and motivation
Context and tools

Fuzzy syntopogeneous structures
Conclusion

Implicator

Examples of appropriate implicators
Implication 7→ 2× 2→ 2 in the classical logic;
If (L,∧,∨, ∗) is an MV-algebra and 7→ is the corresponding
residuation.
In particular if L = [0,1] with Łukasiewcz conjunction ∗ the
the corrersponding residium is implication:

a 7→ b = max{1− a + b,0}.

If L = [0,1] and a 7→ b is Kleene-Dienes implication:

a 7→ b = max{1− a,b}.
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Aleksandrs Šostak and Dace Čimoka On L-fuzzy syntopogeneous structures



Introduction and motivation
Context and tools

Fuzzy syntopogeneous structures
Conclusion

Fuzzy semi-topogeneous orders

Thus let X be a set, L a complete lattice and 7→: L× L→ L
Semi-topogeneous order on a set X is a L-fuzzy relation σ on
its L-powerset LX , that is σ : LX × LX → L such that

(1to) σ(0L,0L)) = σ(1L,1L) = 1L

(2to) If M ′ ≤ M and N ≤ N ′ then σ(M,N) ≤ σ(M ′,N ′).
(3to) σ(M,N) ≤ M⊆̃N where M⊆̃N = infx∈X (M(x) 7→ N(x)).
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Special properties of fuzzy semi-topogeneous orders

Fuzzy semitopogeneous order is called topogeneous if
(4to) σ(M1 ∨M2,N) = σ(M1N) ∧ σ(M2,N).
(5to) σ(M,N1 ∧ N2) = σ(M,N1) ∧ σ(M,N2)

Fuzzy topogeneous order is called perfect if
(6to) σ(

∨
i Mi ,N) =

∧
i σ(Mi ,N).

Fuzzy topogeneous order is called biperfect if it is perfect
and

(7to) σ(M,
∧

i Ni) =
∧

i σ(M,Ni)

Fuzzy semitopogeneous order is called symmetric if
(8to) σ(M,N) = σ(Nc ,Mc)
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L-fuzzy syntopogeneous structures

Definition
An L-fuzzy syntopogeneous structure on a set X is a family S of
L-fuzzy topogeneous orders on X such that

S is directed, that is given two L-fuzzy topogeneous orders
σ1, σ2 ∈ S there exists σ ∈ S such that σ1 ∨ σ2 ≤ σ;
For every σ ∈ S there exists σ′ ∈ S such that σ ≤ σ′ ◦ σ′.
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Comments regarding the position of our research

If L = 2 and 7→ is the classical implication, then we obtain
A. Csaszar’s syntopogeneous structures (crisp-Crisp)
A. Csaszar, Foundations of General Topology, Pergamon Press,
1963.
If 7→ [0,1]× [0,1]→ 2 we obtain Katsaras-Petalas
syntopogeneous structure (fuzzy-crisp)
A.K. Katsaras, C.G Petalas, On fuzzy syntopogeneous
structures, J. Math. Anal. Appl., 99 (1984), 219-236.
If 7→ [0,1]× [0,1]→ [0,1] Łukasiewicz implication
(fuzzy-fuzzy)
A.Š. Fuzzy Syntopogeneoius structures, Quaestiones Math., 20
(1997), 431-461
New: fuzzy syntopogeneous structures based on different
implicators (L1-fuzzy - L2-fuzzy).
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Fuzzy topologies and fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and biperfect L-fuzzy syntopogeneous structures

Topologies and topogeneous orders

Classical topology (crisp-crisp) T ⊆ 2X

∅,X ∈ T ;U,V ∈ T =⇒ U ∩ V ∈ T ;Ui ∈ T∀i =⇒
⋃

Ui ∈ T ;

Chang-Goguen L-(fuzzy) topology (fuzzy-crisp) 1968-1973
T ⊆ LX

0X ,1X ∈ T ;U,V ∈ T =⇒ U ∧ V ∈ T ;Ui ∈ T∀i =⇒
∨

Ui ∈ T ;
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Fuzzy topologies and fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and biperfect L-fuzzy syntopogeneous structures

Topologies and topogeneous orders

Höhle-Mingsheng Ying fuzzyfying topology (crisp-fuzzy)
1982-1990 T : 2X → L
T (∅) = T (X ) = 1L;T (U ∩ V ) ≥ T (U) ∧ T (V );T (

⋃
i Ui) ≥∧

T (Ui).

L-fuzzy topology T. Kubiak-A.Š (fuzzy-fuzzy) 1985 T : LX → L

T (∅) = T (X ) = 1L;T (U ∧ V ) ≥ T (U) ∧ T (V );T (
∨

i Ui) ≥∧
T (Ui).
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Fuzzy topologies and fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and biperfect L-fuzzy syntopogeneous structures

L-fuzzy topologies and perfect L-fuzzy topogeneous
orders

Theorem

Let σ : LX × LX → L be a perfect topogeneous fuzzy order.
Then the mapping : T : lX → L defined by
Tσ(M) = σ(M,M),M ∈ LX is an L-fuzzy topology.
Conversely, given an L-fuzzy topology T : LX → L on X , the
mapping σT : LX × LX → L defined by the equality

σT (M,N) =
∨
{T (P) : M ≤ P ≤ N,P ∈ LX}

is a perfect topogeneous fuzzy order. Besides
TσT = T and σTσ = σ for every L-fuzzy topology T and every
perfect L-fuzzy topogeneous order σ.
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Fuzzy topologies and fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and biperfect L-fuzzy syntopogeneous structures

L-fuzzy proximities and L-fuzzy symmetric
topogeneous orders

Theorem
Let σ : LX × LX → L be a symmetric L-fuzzy topogeneous structure
on X . Then the mapping δσ : LX × LX → L defined by

δ(A,B)− σ(A,Bc) 7→ 0

is an L-fuzzy proximity on X . Conversely, given an L-fuzzy proximity
δ : LX × LX → L defined by the equality

σ(A,B) = δ(A,Bc) 7→ 0

is a symmetric L-fuzzy topogeneous order on X . Besides δσδ
= δ and

σδσ = σ for every symmetric L-fuzzy topogeneous order σ and for any
L-fuzzy proximity δ.
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Correspondence
There exists a natural bijection between the family of all L-fuzzy
uniformities on a set X and the set of all biperfect L-fuzzy
syntopogeneous structures.
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Work in progress

Actual problems
Develop categorical framing of the theory of L-fuzzy
syntopogeneous structures
Analyse relations between categories of syntopogeneous
structures for different implicators
Develop the theory of L-fuzzy syntopogeneous structures
for varied lattices L in order to be coherent with
varaible-bases fuzzy topologies.
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Thank you for your attention !
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