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Algebraic structures

xOrthoalgebras

xOrthomodular Posets

xDifference Posets (Effect Algebras)

xOrthomodular Lattices

xDifference Lattices

xBoolean Algebras

xDistributive D-Lattices

xMV-Algebras
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A method of a construction of quantum logics (orthomodular
posets and orthomodular lattices) making use of the pasting of
Boolean algebras was originally suggested by Greechie in 1971.

GREECHIE, R. J.: Orthomodular lattices admitting no states. J.
Combinat. Theory, 10(1971), 119-132.

Such quantum logics are called Greechie logics.

In Greechie logics Boolean algebras generate blocks with the
intersection of each pair of blocks containing at most one atom.
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Greechie diagrams

A very useful tool to a graphic representation of some
orthomodular structures (pastings of Boolean algebras) are
Greechie diagrams.

A Greechie diagram of a Greechie logic L is a hypergraph where
vertices are atoms of L and edges correspond to blocks (maximal
Boolean sub-algebras) in L .

Vertices are drawn as points or small black circles and edges as
smooth lines connecting atoms belonging to a block.
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Greechie diagrams

A Greechie diagram of a finite Boolean algebra enables to
reconstruct this algebra.

If a Boolean algebra A contains n atoms (the Greechie diagram of
A consists of n vertices lying on one line), then A is isomorfic to
the power set of a set with n elements, thus the cardinality of A is
2n.
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Greechie and Hasse diagrams of a Boolean algebra
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Hasse diagram of the Boolean algebra A

At(A ) = {a,b,c}

|A |= 23 = 8
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One of useful tools in order to construct interesting orthomodular
posets and orthomodular lattices is Greechie’s Loop Lemma which
gives the necessary and sufficient conditions under which
a Greechie logic is an orthomodular poset, resp. an orthomodular
lattice.

Loop Lemma (Greechie)
A Greechie logic G is

an orthomodular poset iff G has no 3-loops,

an orthomodular lattice iff G has no 3-loops and 4-loops.
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Loops in Greechie logics

What are 3-loops and 4-loops?

A 3-loop (or a loop of order 3) in a Greechie logic is a pasting of
three Boolean algebras such that its Greechie diagram has a form
of a triangle.

A 4-loop (or a loop of order 4) in a Greechie logic is a pasting of
four Boolean algebras such that its Greechie diagram creates
a square.
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Pasting of Boolean algebras

The method of the pasting of Boolean algebras has been later
generalized by many authors, above all by Dichtl, Navara and
Rogalewicz:

DICHTL, M.: Astroids and pastings, Algebra Universalis 18
(1984), 380-385,

NAVARA, M., ROGALEWICZ, V.: The pasting constructions for
orthomodular posets, Math. Nachrichten, 154 (1991), 157-168.

NAVARA, M.: State spaces of orthomodular structures, Rend. Istit.
Mat. Univ. Trieste, 31 (2000), Suppl. 1, 143-201

NAVARA, M.: Constructions of quantum structures, In: Handbook
of Quantum Logic and Quantum Structures: Quantum Structures.
(Eds. - K. Engesser, D. M. Gabbay, D. Lehmanm) Elsevier 2007,
pp. 335-366
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MV-algebra pasting

Short time after D-posets (effect algebras ) were discovered (1994),
the attempts have arisen to generalize the method of the “pasting”
in order to construct miscellaneous examples of difference posets.

These efforts were successful only after Riečanová proved that
every lattice-ordered effect algebra (D-lattice) is a set-theoretical
union of maximal sub-D-lattices of pairwise compatible elements,
i.e. maximal sub-MV-algebras.

RIEČANOVÁ, Z.: Generalization of blocks for D-lattices and
lattice-ordered effect algebras, Inter. J. Theor. Phys. 39 (2000),
231-237
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MV-algebra pasting

A method of a construction of difference lattices by means of an
MV-algebra pasting was originally suggested in

CHOVANEC, F., JUREČKOVÁ, M.: MV-algebra pastings, Inter. J.
Theor. Phys. 42 (2003), 1913-1926,

but it was later revealed that some notions were not formulated
correctly and they have been reformulated in the following
manuscript

CHOVANEC, F.: Graphic Representation of MV-algebra Pastings ,
submitted to Mathematica Slovaca.
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MV-algebra pasting

In this contribution we do not dealing with the conditions of the
pasting of MV-algebras, but we assume that this pasting is already
given.

isotropic index τ(a)− the greatest integer such that the
orthogonal sum a⊕a⊕·· ·⊕a︸ ︷︷ ︸

τ(a)−times

= τ(a)a exists in a D-poset

Let At(M ) = {a1,a2, . . . ,an} be a set of all atoms of a finite
MV-algebra M . Then M is uniquely determined, up to
isomorphism, by isotropic indices of its atoms.

We write
M = M (τ(a1),τ(a2), . . . ,τ(an))

and
|M |= (τ(a1)+1)(τ(a2)+1) . . .(τ(an)+1) .
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For a graphical representing of MV-algebra pastings we use also
Greechie diagrams.

In this case we denote a vertex a of a Greechie diagram in the form
a(τ(a)), where a is an atom and τ(a) is its isotropic index.

Then a finite MV-algebra is uniquely determined by its Greechie
diagram.
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Greechie and Hasse diagrams of an MV-algebra
M = M (2,3)
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Hasse diagram of the MV- algebra M

At(M ) = {a,b}, τ(a) = 2, τ(b) = 3

|M |= 3.4 = 12
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Cluster Greechie diagrams

Greechie diagrams are useful only in the case if the intersection of
blocks contains a small number of atoms. Otherwise we suggest to
use so-called cluster Greechie diagrams.

Definition
Let P be an MV-algebra pasting. A cluster Greechie diagram
(a CG-diagram for short) is a hypergraph (V ,E ), where V (the set
of vertices) is a system of pairwise disjoint subsets of At(P) such
that

⋃
V = At(P) and E (the set of edges) is a system of sets of

atoms of individual blocks in P.

Vertices of a CG-diagram are drawn as small circles and edges as
smooth lines connecting all sets of atoms belonging to a block.
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a) - Greechie diagrams of MV-algebras A and B

b) - Greechie diagram of the MV-algebra pasting P = A ?∪B?, where

(A,B) ∈ U , A = {a1,a3},B = {b1,b3}

c) - CG- diagram of the MV-algebra pasting P

1
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3-loops in MV-algebra pastings

We define loops in MV-algebra pastings in a similar way as in
Greechie logics.

A pasting of three MV-algebras is called a 3-loop (or a loop of
order 3) if its cluster Greechie diagram is triangle shaped.

V0

V2

A2

V1A0

A1

V0 A0 V1

A2 A1

V2

W
A0

A1

A2

B0

B1

B2

At(A0) = V0∪A0∪V1, At(A1) = V1∪A1∪V2,
At(A2) = V0∪A2∪V2

At(B0) = V0∪A0∪V1∪W , At(B1) = V1∪A1∪V2∪W ,
At(B2) = V0∪A2∪V2∪W
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3-loops in MV-algebra pastings

V0
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B0

B1

B2

Atoms belonging to the sets Vi , i = 0,1,2, are called nodal
vertices, and atoms belonging to the set W are called central
nodal vertices of the 3-loop.

A 3-loop is difference poset that is not lattice-ordered.
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3-loops in MV-algebra pastings

The following CG-diagram shows a pasting of four MV-algebras,
where the blocks A0, A1, A2 create a 3-loop and the block B
contains all nodal vertices of this 3-loop.
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V1A0

A1

A0

A1

A2

B

B

This pasting is a difference lattice (a D-lattice).
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3-loops in MV-algebra pastings

Definition
We say that a 3-loop is unbound in an MV-algebra pasting P, if
there is no block in P containing all its nodal vertices.

Theorem
Every MV-algebra pasting containing an unbound 3-loop is
a D-poset that is not lattice-ordered.
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4-loops in MV-algebra pastings

A pasting of four MV-algebras is called a 4-loop (or a loop of
order 4) if its cluster Greechie diagram is square shaped.

V0 V1A0

V3 V2A2

A3 A1

V0 V1A0 W

A1
V2

A2

V3

A3

A0

A1

A2

A3

B0

B1

B2B3

At(A0) = V0∪A0∪V1, At(A1) = V1∪A1∪V2,
At(A2) = V2∪A2∪V3, At(A3) = V0∪A3∪V3

At(B0) = V0∪A0∪V1∪W , At(B1) = V1∪A1∪V2∪W ,
At(B2) = V2∪A2∪V3∪W , At(B3) = V0∪A3∪V3∪W

V0,V1,V2,V3 − sets of nodal vertices

W − a set of central nodal vertices
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Astroids

A 4-loop generated only by nodal vertices is called an astroid.

At(Ai ) = Vi ∪Vi+1∪W for every i = 0,1,2,3 (mod 4)

V0 V1

V3 V2

V0 V1 W

V2

V3

A0

A1

A2

A3

B0

B1

B2B3

Theorem
Every astroid is a D-lattice.

Theorem
Let P be a 4-loop that is not an astroid. Then P is a D-poset
that is not lattice-ordered.
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4-loops in MV-algebra pastings

Now we give some sufficient conditions for MV-algebra pasting
containing a 4-loop, to be a D-lattice.

Let P be a pasting of MV-algebras containing a 4-loop
A0,A1,A2,A3 and no unbound 3-loop. Let Vi (i = 0,1,2,3) be
the sets of nodal vertices and W be the set of central nodal
vertices of the 4-loop. Then P is a D-lattice if one of the following
conditions is fulfilled:

(1) The 4-loop A0,A1,A2,A3 is an astroid.
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4-loops in MV-algebra pastings

(2) There is an astroid B0,B1,B2,B3 in P such that Vi ⊂ Ui
and W ⊂W0, where Ui (i = 0,1,2,3) are the sets of nodal vertices
and W0 is the set of central nodal vertices of the astroid
B0,B1,B2,B3.

V0 V1A0

V3 V2A2

A3 A1

A0

A1

A2

A3

B0

B1

B2

B3

U0 U1

U2U3

W = /0
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4-loops in MV-algebra pastings

(3) There is a block B in P containing all nodal vertices of the
4-loop, i. e. V0∪V1∪V2∪V3∪W ⊂ At(B).

V0 V1A0

V3 V2A2

A3 A1

A0

A1

A2

A3 B

B

W = /0
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4-loops in MV-algebra pastings

(3) There is a block B in P containing all nodal vertices of the
4-loop, i. e. V0∪V1∪V2∪V3∪W ⊂ At(B).

V0 V1A0

V3 V2A2

A3 A1

A0

A1

A2

A3 B

B

W = /0
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4-loops in MV-algebra pastings

(4) There are two blocks C0 and C1 in P such that

Vi ∪Vi+1∪Vi+2∪W ⊂At(C0) and Vi+2∪Vi+3∪Vi+4∪W ⊂At(C1),

for some i ∈ {0,1,2,3} (mod 4).

V0 V1A0

V3 V2A2

A3 A1

A0

A1

A2

A3

C2

C0

C1

C1

W = /0
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4-loops in MV-algebra pastings
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4-loops in MV-algebra pastings

Definition
Let P be an MV-algebra pasting containing a 4-loop
A0,A1,A2,A3. We say that the 4-loop is unbound in P if none
of the previous conditions (1)− (4) is satisfied.

Theorem
An MV-algebra pasting P is a D-lattice if and only if P contains
neither unbound 3-loops nor unbound 4-loops.
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Distributive MV-algebra pastings

We know when an MV-algebra pasting is a D-lattice.

When is it a distributive D-lattice?

We give two cases of distributive MV-algebra pastings.

1. A pasting of two MV-algebras.

A pasting P of two MV-algebras A and B with a non-trivial
center (= V is nonempty set) is a distributive D-lattice if and only
if the Greechie diagram of P is in the folowing form:

a(2)

b(2)

V

P

0

a= a⊥

1

b = b⊥

DN(a,b)
B

A
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Distributive MV-algebra pastings

a(2)

b(2)

V

P

0

a= a⊥

1

b = b⊥

DN(a,b)
B

A

V = At(A )∩At(B) = {c1,c2, . . . ,cn}
DN(a,b) − the smallest non-compatble distributive difference
lattice
M (τ(c1),τ(c2), . . . ,τ(cn)) − MV-algebra generated by atoms of
the set V

P ∼= DN(a,b)⊗M (τ(c1),τ(c2), . . . ,τ(cn))
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Distributive MV-algebra pastings

a(2)

b(2)

P
B

A c(1) 0

a c b

a⊥ c⊥ b⊥

1= 2a⊕ c = 2b⊕ c

The Hasse diagram of this pasting is lattice-isomorphic to the
power set of a set with three elements.
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Distributive MV-algebra pastings

a(2)

b(2)

P
B

A c(2) 0

a
b

c

2a= 2b

2c

1= 2a⊕2c = 2b⊕2c

c⊥
a⊥

b⊥
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Distributive MV-algebra pastings

0

a
b

c

a(2)

b(2)

V

P
B

A

d

d⊥ b⊥
a⊥

c⊥

1= 2a⊕ c⊕d = 2b⊕ c⊕d

V = At(A )∩At(B) = {c ,d}, τ(c) = 1, τ(d) = 1

The Hasse diagram of this pasting is lattice-isomorphic to the
power set of a set with four elements.
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2. A pasting of four MV-algebras.

A pasting P of four MV-algebras is a distributive D-lattice if and
only if the Greechie diagram of P is in the folowing form:

a(2) b(2)
W

d(2)

c(2)

A0

A1

A2
A3
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Distributive MV-algebra pastings

a(2) b(2)

A2

A1

A0

c(2)b(2)

A3

0

a
c

b d

b⊥ c⊥
a⊥

d⊥

1

The Hasse diagram of this astroid is lattice-isomorphic to the
power set of a set with four elements.
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a(2) b(2)

c(2)

d(2)

e(2)

A0 A1

A2A3

This astroid is a non-distributive D-lattice.
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There are many other examples of distributive MV-algebra
pastings, but I do not know yet, how their Greechie diagrams look.

36 / 37



THANK YOU FOR YOUR ATTENTION

37 / 37


