Distributive MV-algebra Pastings

Ferdinand Chovanec

Department of Informatics
Armed Forces Academy
Liptovský Mikuláš, Slovak Republic
ferdinand.chovanec@aos.sk

Algebraic structures

A method of a construction of quantum logics (orthomodular posets and orthomodular lattices) making use of the pasting of Boolean algebras was originally suggested by Greechie in 1971.

GREECHIE, R. J.: Orthomodular lattices admitting no states. J. Combinat. Theory, 10(1971), 119-132.

A method of a construction of quantum logics (orthomodular posets and orthomodular lattices) making use of the pasting of Boolean algebras was originally suggested by Greechie in 1971.

GREECHIE, R. J.: Orthomodular lattices admitting no states. J. Combinat. Theory, 10(1971), 119-132.

Such quantum logics are called Greechie logics.

A method of a construction of quantum logics (orthomodular posets and orthomodular lattices) making use of the pasting of Boolean algebras was originally suggested by Greechie in 1971.

GREECHIE, R. J.: Orthomodular lattices admitting no states. J. Combinat. Theory, 10(1971), 119-132.

Such quantum logics are called Greechie logics.
In Greechie logics Boolean algebras generate blocks with the intersection of each pair of blocks containing at most one atom.

Greechie diagrams

A very useful tool to a graphic representation of some orthomodular structures (pastings of Boolean algebras) are Greechie diagrams.

Greechie diagrams

A very useful tool to a graphic representation of some orthomodular structures (pastings of Boolean algebras) are Greechie diagrams.

A Greechie diagram of a Greechie logic \mathscr{L} is a hypergraph where vertices are atoms of \mathscr{L} and edges correspond to blocks (maximal Boolean sub-algebras) in \mathscr{L}.

Greechie diagrams

A very useful tool to a graphic representation of some orthomodular structures (pastings of Boolean algebras) are Greechie diagrams.

A Greechie diagram of a Greechie logic \mathscr{L} is a hypergraph where vertices are atoms of \mathscr{L} and edges correspond to blocks (maximal Boolean sub-algebras) in \mathscr{L}.

Vertices are drawn as points or small black circles and edges as smooth lines connecting atoms belonging to a block.

Greechie diagrams

A Greechie diagram of a finite Boolean algebra enables to reconstruct this algebra.

Greechie diagrams

A Greechie diagram of a finite Boolean algebra enables to reconstruct this algebra.

If a Boolean algebra \mathscr{A} contains n atoms (the Greechie diagram of \mathscr{A} consists of n vertices lying on one line), then \mathscr{A} is isomorfic to the power set of a set with n elements, thus the cardinality of \mathscr{A} is 2^{n}.

Greechie and Hasse diagrams of a Boolean algebra

Greechie diagram of the Boolean algebra \mathscr{A}

Greechie and Hasse diagrams of a Boolean algebra

Hasse diagram of the Boolean algebra \mathscr{A}
Greechie diagram of the Boolean algebra \mathscr{A}

Greechie and Hasse diagrams of a Boolean algebra

Hasse diagram of the Boolean algebra \mathscr{A}
Greechie diagram of the Boolean algebra \mathscr{A}

$$
\begin{aligned}
& A t(\mathscr{A})=\{a, b, c\} \\
& |\mathscr{A}|=2^{3}=8
\end{aligned}
$$

One of useful tools in order to construct interesting orthomodular posets and orthomodular lattices is Greechie's Loop Lemma which gives the necessary and sufficient conditions under which
a Greechie logic is an orthomodular poset, resp. an orthomodular lattice.

One of useful tools in order to construct interesting orthomodular posets and orthomodular lattices is Greechie's Loop Lemma which gives the necessary and sufficient conditions under which
a Greechie logic is an orthomodular poset, resp. an orthomodular lattice.

Loop Lemma (Greechie)
A Greechie logic \mathscr{G} is

- an orthomodular poset iff \mathscr{G} has no 3-loops,
- an orthomodular lattice iff \mathscr{G} has no 3-loops and 4-loops.

Loops in Greechie logics

What are 3-loops and 4-loops?

Loops in Greechie logics

What are 3-loops and 4-loops?
A 3-loop (or a loop of order 3) in a Greechie logic is a pasting of three Boolean algebras such that its Greechie diagram has a form of a triangle.

Loops in Greechie logics

What are 3-loops and 4-loops?
A 3-loop (or a loop of order 3) in a Greechie logic is a pasting of three Boolean algebras such that its Greechie diagram has a form of a triangle.

A 4-loop (or a loop of order 4) in a Greechie logic is a pasting of four Boolean algebras such that its Greechie diagram creates a square.

Loops in Greechie logics

What are 3-loops and 4-loops?
A 3-loop (or a loop of order 3) in a Greechie logic is a pasting of three Boolean algebras such that its Greechie diagram has a form of a triangle.

A 4-loop (or a loop of order 4) in a Greechie logic is a pasting of four Boolean algebras such that its Greechie diagram creates a square.

Loops in Greechie logics

What are 3-loops and 4-loops?
A 3-loop (or a loop of order 3) in a Greechie logic is a pasting of three Boolean algebras such that its Greechie diagram has a form of a triangle.

A 4-loop (or a loop of order 4) in a Greechie logic is a pasting of four Boolean algebras such that its Greechie diagram creates

The method of the pasting of Boolean algebras has been later generalized by many authors, above all by Dichtl, Navara and Rogalewicz:

DICHTL, M.: Astroids and pastings, Algebra Universalis 18 (1984), 380-385,

Pasting of Boolean algebras

The method of the pasting of Boolean algebras has been later generalized by many authors, above all by Dichtl, Navara and Rogalewicz:

DICHTL, M.: Astroids and pastings, Algebra Universalis 18 (1984), 380-385,

NAVARA, M., ROGALEWICZ, V.: The pasting constructions for orthomodular posets, Math. Nachrichten, 154 (1991), 157-168.

Pasting of Boolean algebras

The method of the pasting of Boolean algebras has been later generalized by many authors, above all by Dichtl, Navara and Rogalewicz:

DICHTL, M.: Astroids and pastings, Algebra Universalis 18 (1984), 380-385,

NAVARA, M., ROGALEWICZ, V.: The pasting constructions for orthomodular posets, Math. Nachrichten, 154 (1991), 157-168.

NAVARA, M.: State spaces of orthomodular structures, Rend. Istit. Mat. Univ. Trieste, 31 (2000), Suppl. 1, 143-201

Pasting of Boolean algebras

The method of the pasting of Boolean algebras has been later generalized by many authors, above all by Dichtl, Navara and Rogalewicz:

DICHTL, M.: Astroids and pastings, Algebra Universalis 18 (1984), 380-385,

NAVARA, M., ROGALEWICZ, V.: The pasting constructions for orthomodular posets, Math. Nachrichten, 154 (1991), 157-168.

NAVARA, M.: State spaces of orthomodular structures, Rend. Istit. Mat. Univ. Trieste, 31 (2000), Suppl. 1, 143-201

NAVARA, M.: Constructions of quantum structures, In: Handbook of Quantum Logic and Quantum Structures: Quantum Structures. (Eds. - K. Engesser, D. M. Gabbay, D. Lehmanm) Elsevier 2007, pp. 335-366

MV-algebra pasting

Short time after D-posets (effect algebras) were discovered (1994), the attempts have arisen to generalize the method of the "pasting" in order to construct miscellaneous examples of difference posets.

MV-algebra pasting

Short time after D-posets (effect algebras) were discovered (1994), the attempts have arisen to generalize the method of the "pasting" in order to construct miscellaneous examples of difference posets.

These efforts were successful only after Riečanová proved that every lattice-ordered effect algebra (D-lattice) is a set-theoretical union of maximal sub-D-lattices of pairwise compatible elements, i.e. maximal sub-MV-algebras.

RIEČANOVÁ, Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras, Inter. J. Theor. Phys. 39 (2000), 231-237

MV-algebra pasting

A method of a construction of difference lattices by means of an MV-algebra pasting was originally suggested in

CHOVANEC, F., JUREČKOVÁ, M.: MV-algebra pastings, Inter. J. Theor. Phys. 42 (2003), 1913-1926,
but it was later revealed that some notions were not formulated correctly and they have been reformulated in the following manuscript

CHOVANEC, F.: Graphic Representation of MV-algebra Pastings, submitted to Mathematica Slovaca.

MV-algebra pasting

In this contribution we do not dealing with the conditions of the pasting of MV-algebras, but we assume that this pasting is already given.

MV-algebra pasting

In this contribution we do not dealing with the conditions of the pasting of MV-algebras, but we assume that this pasting is already given.
isotropic index $\tau(a)$ - the greatest integer such that the orthogonal sum $\underbrace{a \oplus a \oplus \cdots \oplus a}_{\tau(a)-\text { times }}=\tau(a) a$ exists in a D-poset

MV-algebra pasting

In this contribution we do not dealing with the conditions of the pasting of MV-algebras, but we assume that this pasting is already given.
isotropic index $\tau(a)$ - the greatest integer such that the orthogonal sum $\underbrace{a \oplus a \oplus \cdots \oplus a}_{\tau(a)-\text { times }}=\tau(a) a$ exists in a D-poset
Let $\operatorname{At}(\mathscr{M})=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set of all atoms of a finite MV-algebra \mathscr{M}. Then \mathscr{M} is uniquely determined, up to isomorphism, by isotropic indices of its atoms.

MV-algebra pasting

In this contribution we do not dealing with the conditions of the pasting of MV-algebras, but we assume that this pasting is already given.
isotropic index $\tau(a)$ - the greatest integer such that the orthogonal sum $\underbrace{a \oplus a \oplus \cdots \oplus a}_{\tau(a)-\text { times }}=\tau(a) a$ exists in a D-poset
Let $\operatorname{At}(\mathscr{M})=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set of all atoms of a finite MV-algebra \mathscr{M}. Then \mathscr{M} is uniquely determined, up to isomorphism, by isotropic indices of its atoms.

We write

$$
\mathscr{M}=\mathscr{M}\left(\tau\left(a_{1}\right), \tau\left(a_{2}\right), \ldots, \tau\left(a_{n}\right)\right)
$$

and

$$
|\mathscr{M}|=\left(\tau\left(a_{1}\right)+1\right)\left(\tau\left(a_{2}\right)+1\right) \ldots\left(\tau\left(a_{n}\right)+1\right) .
$$

For a graphical representing of MV-algebra pastings we use also Greechie diagrams.

For a graphical representing of MV-algebra pastings we use also Greechie diagrams.

In this case we denote a vertex a of a Greechie diagram in the form $\mathbf{a}(\tau(\mathbf{a}))$, where \mathbf{a} is an atom and $\tau(\mathbf{a})$ is its isotropic index.

For a graphical representing of MV-algebra pastings we use also Greechie diagrams.

In this case we denote a vertex a of a Greechie diagram in the form $\mathbf{a}(\tau(\mathbf{a}))$, where \mathbf{a} is an atom and $\tau(\mathbf{a})$ is its isotropic index.

Then a finite MV-algebra is uniquely determined by its Greechie diagram.

Greechie and Hasse diagrams of an MV-algebra

 $\mathscr{M}=\mathscr{M}(2,3)$

Greechie diagram of the MV-algebra \mathscr{M}

Greechie and Hasse diagrams of an MV-algebra $\mathscr{M}=\mathscr{M}(2,3)$

Greechie diagram of the MV-algebra \mathscr{M}
Hasse diagram of the MV- algebra \mathscr{M}

Greechie and Hasse diagrams of an MV-algebra $\mathscr{M}=\mathscr{M}(2,3)$

Greechie diagram of the MV-algebra \mathscr{M}
Hasse diagram of the MV- algebra \mathscr{M}
$A t(\mathscr{M})=\{a, b\}, \quad \tau(a)=2, \tau(b)=3$
$|\mathscr{M}|=3.4=12$

Cluster Greechie diagrams

Greechie diagrams are useful only in the case if the intersection of blocks contains a small number of atoms. Otherwise we suggest to use so-called cluster Greechie diagrams.

Cluster Greechie diagrams

Greechie diagrams are useful only in the case if the intersection of blocks contains a small number of atoms. Otherwise we suggest to use so-called cluster Greechie diagrams.

Definition

Let \mathscr{P} be an MV-algebra pasting. A cluster Greechie diagram (a CG-diagram for short) is a hypergraph $(\mathscr{V}, \mathscr{E})$, where \mathscr{V} (the set of vertices) is a system of pairwise disjoint subsets of $\operatorname{At}(\mathscr{P})$ such that $\bigcup \mathscr{V}=A t(\mathscr{P})$ and \mathscr{E} (the set of edges) is a system of sets of atoms of individual blocks in \mathscr{P}.

Cluster Greechie diagrams

Greechie diagrams are useful only in the case if the intersection of blocks contains a small number of atoms. Otherwise we suggest to use so-called cluster Greechie diagrams.

Definition

Let \mathscr{P} be an MV-algebra pasting. A cluster Greechie diagram (a CG-diagram for short) is a hypergraph $(\mathscr{V}, \mathscr{E})$, where \mathscr{V} (the set of vertices) is a system of pairwise disjoint subsets of $\operatorname{At}(\mathscr{P})$ such that $\bigcup \mathscr{V}=A t(\mathscr{P})$ and \mathscr{E} (the set of edges) is a system of sets of atoms of individual blocks in \mathscr{P}.

Vertices of a CG-diagram are drawn as small circles and edges as smooth lines connecting all sets of atoms belonging to a block.

a)

b)

c)

$$
\begin{aligned}
V_{1} & =\{a, c\} \\
V_{2} & =\{b\} \\
V_{3} & =\{d\}
\end{aligned}
$$

a) - Greechie diagrams of MV-algebras \mathscr{A} and \mathscr{B}
b) - Greechie diagram of the MV-algebra pasting $\mathscr{P}=\mathscr{A}^{\star} \cup \mathscr{B}^{\star}$, where

$$
(A, B) \in \mathscr{U}, A=\left\{a_{1}, a_{3}\right\}, B=\left\{b_{1}, b_{3}\right\}
$$

c) - CG- diagram of the MV-algebra pasting \mathscr{P}

3-loops in MV-algebra pastings

We define loops in MV-algebra pastings in a similar way as in Greechie logics.

3-loops in MV-algebra pastings

We define loops in MV-algebra pastings in a similar way as in Greechie logics.

A pasting of three MV-algebras is called a 3-loop (or a loop of order 3) if its cluster Greechie diagram is triangle shaped.

$\operatorname{At}\left(\mathscr{A}_{0}\right)=V_{0} \cup A_{0} \cup V_{1}, \quad \operatorname{At}\left(\mathscr{A}_{1}\right)=V_{1} \cup A_{1} \cup V_{2}$,
$A t\left(\mathscr{A}_{2}\right)=V_{0} \cup A_{2} \cup V_{2}$
$\operatorname{At}\left(\mathscr{B}_{0}\right)=V_{0} \cup A_{0} \cup V_{1} \cup W, A t\left(\mathscr{B}_{1}\right)=V_{1} \cup A_{1} \cup V_{2} \cup W$, $\operatorname{At}\left(\mathscr{B}_{2}\right)=V_{0} \cup A_{2} \cup V_{2} \cup W$

3-loops in MV-algebra pastings

Atoms belonging to the sets $V_{i}, i=0,1,2$, are called nodal vertices, and atoms belonging to the set W are called central nodal vertices of the 3-loop.

3-loops in MV-algebra pastings

Atoms belonging to the sets $V_{i}, i=0,1,2$, are called nodal vertices, and atoms belonging to the set W are called central nodal vertices of the 3-loop.

A 3-loop is difference poset that is not lattice-ordered.

3-loops in MV-algebra pastings

The following CG-diagram shows a pasting of four MV-algebras, where the blocks $\mathscr{A}_{0}, \mathscr{A}_{1}, \mathscr{A}_{2}$ create a 3 -loop and the block \mathscr{B} contains all nodal vertices of this 3-loop.

3-loops in MV-algebra pastings

The following CG-diagram shows a pasting of four MV-algebras, where the blocks $\mathscr{A}_{0}, \mathscr{A}_{1}, \mathscr{A}_{2}$ create a 3 -loop and the block \mathscr{B} contains all nodal vertices of this 3-loop.

This pasting is a difference lattice (a D-lattice).

3-loops in MV-algebra pastings

Definition

We say that a 3 -loop is unbound in an MV-algebra pasting \mathscr{P}, if there is no block in \mathscr{P} containing all its nodal vertices.

3-loops in MV-algebra pastings

Definition

We say that a 3-loop is unbound in an MV-algebra pasting \mathscr{P}, if there is no block in \mathscr{P} containing all its nodal vertices.

Theorem

Every MV-algebra pasting containing an unbound 3-loop is a D-poset that is not lattice-ordered.

4-loops in MV-algebra pastings

A pasting of four MV-algebras is called a 4-loop (or a loop of order 4) if its cluster Greechie diagram is square shaped.

$\operatorname{At}\left(\mathscr{A}_{0}\right)=V_{0} \cup A_{0} \cup V_{1}, \quad \operatorname{At}\left(\mathscr{A}_{1}\right)=V_{1} \cup A_{1} \cup V_{2}$, $A t\left(\mathscr{A}_{2}\right)=V_{2} \cup A_{2} \cup V_{3}, A t\left(\mathscr{A}_{3}\right)=V_{0} \cup A_{3} \cup V_{3}$
$\operatorname{At}\left(\mathscr{B}_{0}\right)=V_{0} \cup A_{0} \cup V_{1} \cup W, \operatorname{At}\left(\mathscr{B}_{1}\right)=V_{1} \cup A_{1} \cup V_{2} \cup W$, $A t\left(\mathscr{B}_{2}\right)=V_{2} \cup A_{2} \cup V_{3} \cup W, A t\left(\mathscr{B}_{3}\right)=V_{0} \cup A_{3} \cup V_{3} \cup W$
$V_{0}, V_{1}, V_{2}, V_{3}-$ sets of nodal vertices
W - a set of central nodal vertices

Astroids

A 4-loop generated only by nodal vertices is called an astroid.
$A t\left(\mathscr{A}_{i}\right)=V_{i} \cup V_{i+1} \cup W$ for every $i=0,1,2,3(\bmod 4)$

Astroids

A 4-loop generated only by nodal vertices is called an astroid.
$A t\left(\mathscr{A}_{i}\right)=V_{i} \cup V_{i+1} \cup W$ for every $i=0,1,2,3(\bmod 4)$

Theorem

Every astroid is a D-lattice.

Astroids

A 4-loop generated only by nodal vertices is called an astroid.
$A t\left(\mathscr{A}_{i}\right)=V_{i} \cup V_{i+1} \cup W$ for every $i=0,1,2,3(\bmod 4)$

Theorem

Every astroid is a D-lattice.

Theorem

Let \mathscr{P} be a 4-loop that is not an astroid. Then \mathscr{P} is a D-poset that is not lattice-ordered.

4-loops in MV-algebra pastings

Now we give some sufficient conditions for MV-algebra pasting containing a 4-loop, to be a D-lattice.

4-loops in MV-algebra pastings

Now we give some sufficient conditions for MV-algebra pasting containing a 4-loop, to be a D-lattice.

Let \mathscr{P} be a pasting of MV-algebras containing a 4-loop $\mathscr{A}_{0}, \mathscr{A}_{1}, \mathscr{A}_{2}, \mathscr{A}_{3}$ and no unbound 3 -loop. Let $V_{i}(i=0,1,2,3)$ be the sets of nodal vertices and W be the set of central nodal vertices of the 4-loop. Then \mathscr{P} is a D-lattice if one of the following conditions is fulfilled:

4-loops in MV-algebra pastings

Now we give some sufficient conditions for MV-algebra pasting containing a 4-loop, to be a D-lattice.

Let \mathscr{P} be a pasting of MV-algebras containing a 4-loop $\mathscr{A}_{0}, \mathscr{A}_{1}, \mathscr{A}_{2}, \mathscr{A}_{3}$ and no unbound 3 -loop. Let $V_{i}(i=0,1,2,3)$ be the sets of nodal vertices and W be the set of central nodal vertices of the 4-loop. Then \mathscr{P} is a D-lattice if one of the following conditions is fulfilled:
(1) The 4-loop $\mathscr{A}_{0}, \mathscr{A}_{1}, \mathscr{A}_{2}, \mathscr{A}_{3}$ is an astroid.

4-loops in MV-algebra pastings

(2) There is an astroid $\mathscr{B}_{0}, \mathscr{B}_{1}, \mathscr{B}_{2}, \mathscr{B}_{3}$ in \mathscr{P} such that $V_{i} \subset U_{i}$ and $W \subset W_{0}$, where $U_{i}(i=0,1,2,3)$ are the sets of nodal vertices and W_{0} is the set of central nodal vertices of the astroid $\mathscr{B}_{0}, \mathscr{B}_{1}, \mathscr{B}_{2}, \mathscr{B}_{3}$.

4-loops in MV-algebra pastings

(2) There is an astroid $\mathscr{B}_{0}, \mathscr{B}_{1}, \mathscr{B}_{2}, \mathscr{B}_{3}$ in \mathscr{P} such that $V_{i} \subset U_{i}$ and $W \subset W_{0}$, where $U_{i}(i=0,1,2,3)$ are the sets of nodal vertices and W_{0} is the set of central nodal vertices of the astroid $\mathscr{B}_{0}, \mathscr{B}_{1}, \mathscr{B}_{2}, \mathscr{B}_{3}$.

$W=\emptyset$

4-loops in MV-algebra pastings

(3) There is a block \mathscr{B} in \mathscr{P} containing all nodal vertices of the 4-loop, i. e. $V_{0} \cup V_{1} \cup V_{2} \cup V_{3} \cup W \subset A t(\mathscr{B})$.

4-loops in MV-algebra pastings

(3) There is a block \mathscr{B} in \mathscr{P} containing all nodal vertices of the 4-loop, i. e. $V_{0} \cup V_{1} \cup V_{2} \cup V_{3} \cup W \subset \operatorname{At}(\mathscr{B})$.

$W=\emptyset$

4-loops in MV-algebra pastings

(4) There are two blocks \mathscr{C}_{0} and \mathscr{C}_{1} in \mathscr{P} such that
$V_{i} \cup V_{i+1} \cup V_{i+2} \cup W \subset A t\left(\mathscr{C}_{0}\right)$ and $V_{i+2} \cup V_{i+3} \cup V_{i+4} \cup W \subset \operatorname{At}\left(\mathscr{C}_{1}\right)$, for some $i \in\{0,1,2,3\}(\bmod 4)$.

4-loops in MV-algebra pastings

(4) There are two blocks \mathscr{C}_{0} and \mathscr{C}_{1} in \mathscr{P} such that $V_{i} \cup V_{i+1} \cup V_{i+2} \cup W \subset A t\left(\mathscr{C}_{0}\right)$ and $V_{i+2} \cup V_{i+3} \cup V_{i+4} \cup W \subset A t\left(\mathscr{C}_{1}\right)$, for some $i \in\{0,1,2,3\}(\bmod 4)$.

$W=\emptyset$

4-loops in MV-algebra pastings

Definition

Let \mathscr{P} be an MV-algebra pasting containing a 4-loop $\mathscr{A}_{0}, \mathscr{A}_{1}, \mathscr{A}_{2}, \mathscr{A}_{3}$. We say that the 4-loop is unbound in \mathscr{P} if none of the previous conditions $(1)-(4)$ is satisfied.

4-loops in MV-algebra pastings

Definition

Let \mathscr{P} be an MV-algebra pasting containing a 4-loop $\mathscr{A}_{0}, \mathscr{A}_{1}, \mathscr{A}_{2}, \mathscr{A}_{3}$. We say that the 4-loop is unbound in \mathscr{P} if none of the previous conditions $(1)-(4)$ is satisfied.

Theorem

An MV-algebra pasting \mathscr{P} is a D-lattice if and only if \mathscr{P} contains neither unbound 3-loops nor unbound 4-loops.

Distributive MV-algebra pastings

We know when an MV-algebra pasting is a D-lattice.

Distributive MV-algebra pastings

We know when an MV-algebra pasting is a D-lattice.
When is it a distributive D-lattice?

Distributive MV-algebra pastings

We know when an MV-algebra pasting is a D-lattice.
When is it a distributive D-lattice?
We give two cases of distributive MV-algebra pastings.

Distributive MV-algebra pastings

We know when an MV-algebra pasting is a D-lattice.
When is it a distributive D-lattice?
We give two cases of distributive MV-algebra pastings.

1. A pasting of two MV-algebras.

A pasting \mathscr{P} of two MV-algebras \mathscr{A} and \mathscr{B} with a non-trivial center ($=V$ is nonempty set) is a distributive D-lattice if and only if the Greechie diagram of \mathscr{P} is in the folowing form:

Distributive MV-algebra pastings

$V=A t(\mathscr{A}) \cap A t(\mathscr{B})=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$
$\mathscr{D}_{N}(a, b)$ - the smallest non-compatble distributive difference lattice
$\mathscr{M}\left(\tau\left(c_{1}\right), \tau\left(c_{2}\right), \ldots, \tau\left(c_{n}\right)\right)-M V$-algebra generated by atoms of the set V
$\mathscr{P} \cong \mathscr{D}_{N}(a, b) \otimes \mathscr{M}\left(\tau\left(c_{1}\right), \tau\left(c_{2}\right), \ldots, \tau\left(c_{n}\right)\right)$

Distributive MV-algebra pastings

The Hasse diagram of this pasting is lattice-isomorphic to the power set of a set with three elements.

Distributive MV-algebra pastings

Distributive MV-algebra pastings

The Hasse diagram of this pasting is lattice-isomorphic to the power set of a set with four elements.
2. A pasting of four MV-algebras.

A pasting \mathscr{P} of four MV-algebras is a distributive D-lattice if and only if the Greechie diagram of \mathscr{P} is in the folowing form:

Distributive MV-algebra pastings

The Hasse diagram of this astroid is lattice-isomorphic to the power set of a set with four elements.

This astroid is a non-distributive D-lattice.

There are many other examples of distributive MV-algebra pastings, but I do not know yet, how their Greechie diagrams look.

THANK YOU FOR YOUR ATTENTION

