A note to stochastic Processes

Mária Bohdalová ${ }^{1}$, Martin Kalina ${ }^{2}$, Olga Nánásiová ${ }^{2}$

1
Faculty of Management, Comenius University, Bratislava, Slovakia ${ }^{2}$ Faculty of Civil Engineering, Slovak University of Technology, Bratislava, Slovakia

FSTA 2012, Liptovský Ján , January 30 - February 3, 2012

Contents

1 Introduction
2 Quantum logic
3 Observables
4 Bivariable states

5 Conditional expectation

6 Summability operator
7 Classical versus quantum model

Introduction

Motivation

Let

$$
X_{t_{1}}, X_{t_{2}}, \ldots
$$

be a sequence of random variables. This sequence is a stochastic process.

Let us suppose that t_{i} is time.
Our question is: How can we model this stochastic process?
There exist various approaches for modeling of such process

Introduction

We will compare two approaches:
■ The domain of this process is a Boolean σ-algebra (the standard probability space) and then we use standard techniques for forecasting. It means that we use Kolmogorov's probability theory.

- The domain of this process is a quantum logic and then we use a calculus based on two dimensional states. It means, that we use quantum logics (quantum probability model) - compatible and non-compatible random events.

Introduction

- comparing the quality of predictions: quntum model versus classical model
- basic notions in a quantum logic - state, observable, expectation
- conditional states and s-maps (two-variable states), causality
- covariance, conditional expectation, sum of non-compatible observables

Quantum logic

Definition

Let $\left(L, 0_{L}, 1_{L}, \vee, \wedge, \perp\right)$ a σ-lattice with the greatest element 1_{L} and the smallest element 0_{L}. Let $\perp: L \rightarrow L$ be a unary operation on L with the following properties:
(a) for all $a \in L$ there is a unique $a^{\perp} \in L$ such that $\left(a^{\perp}\right)^{\perp}=a$ and $a \vee a^{\perp}=1_{L} ;$
(b) if $a, b \in L$ and $a \leq b$ then $b^{\perp} \leq a^{\perp}$;
(c) if $a, b \in L$ and $a \leq b$ then $b=a \vee\left(a^{\perp} \wedge b\right)$ (orthomodular law).

Then $\left(L, 0_{L}, 1_{L}, \vee, \wedge, \perp\right)$ is said to be an orthomodular σ-lattice.

Quantum logic

1 orthogonal $(a \perp b)$ if $a \leq b^{\perp}$,
2 compatible $(a \leftrightarrow b)$ if $a=(a \wedge b) \vee\left(a \wedge b^{\perp}\right)$ and $b=(a \wedge b) \vee\left(a^{\perp} \wedge b\right)$.

Definition

A map $m: L \rightarrow[0,1]$ is called a σ-additive state on L, if $m\left(1_{L}\right)=1$ and

$$
m\left(\vee_{i \in I} a_{i}\right)=\sum_{i \in I} m\left(a_{i}\right)
$$

for $a_{i} \in L, a_{i} \perp a_{j} i \neq j, i \in I \subset N$
An orthomodular σ-lattice L is called a quantum σ-logic (briefly QL), if there exists a σ-additive state.

There exists orthomodular lattices with no state (R.Greechie).

Observables

Definition

Let L be a QL. A σ-homomorphism x from Borel sets to $L(\mathcal{B}(R))$, such that $x(R)=1_{L}$ is called an observable on L.

Let us denote \mathcal{O} the set of all observables on L.

Definition

Let L be a QL and x be an observable on L. Then
■ $R(x)=\{x(E) ; E \in \mathcal{B}(R)\}$
is called the range of the observable x on L;
■ $\sigma(x)=\cap\left\{E \in \mathcal{B}(R) ; \quad x(E)=1_{L}\right\}$
is called the spectrum of the observable .
Discrete: if $\sigma(x)$ is an at most countable set (all discrete \mathcal{O}_{D}). Finite: if $\sigma(x)$ is a finite set (all finite \mathcal{O}_{F}).

Let L be a QL. Let $x \in \mathcal{O}$ and m be a σ-additive state on L.

- A state respons to a probability measure.
- An observable respons to a random variable.
- $R(x)$ is a Boolean sub- σ-algebra of L
- $m_{x}(t)=m(x(-\infty, t)), t \in R$ respons to a probability distribution of x.
- $E_{m}(x)$ respons to the expectation of the observable x in the state m.

$$
E_{m}(x)=\int_{R} t m(x(d t))
$$

if the integral exists. If $x \in \mathcal{O}_{D}$, then

$$
E_{m}(x)=\sum_{t \in R} \operatorname{tm}(x(\{t\}))
$$

Definition

Let L be a QL, $L_{0} \subset L-\left\{0_{L}\right\}$. Let $f: L \times L_{c} \rightarrow[0,1]$ be a function fulfilling the following
1 for each $a \in L_{0} f(. \mid a)$ is a σ-additive state on L;
2 for each $a \in L_{0} f(a \mid a)=1$;
3 for mutually orthogonal (at most countably many) elements $a_{1}, a_{2}, \ldots, \vee_{i} a_{i} \in L_{0}$ the following is satisfied

$$
f\left(b \mid \vee_{i} a_{i}\right)=\sum_{i} f\left(b \mid a_{i}\right) f\left(a_{i} \mid \vee_{i} a_{i}\right)
$$

Then f is called a conditional state on L.

Independence

Definition

Let L be a QL and let f be a conditional state on L. Let $a, c \in L_{0} \subset L-\left\{0_{L}\right\}$ and let $b \in L$. We say that

b is independent of a with respect to the state $f(. \mid c)$

$(b \asymp f(\cdot \mid c) a) \quad$ if $\quad f(c \mid a)=1$ and $f(b \mid c)=f(b \mid a)$.
Let $a, b, 1_{L} \in L_{0}$. Unlike the Kolmogorovian theory

$$
f\left(b \mid 1_{L}\right)=f(b \mid a) \text { does not imply } f\left(a \mid 1_{L}\right) \neq f(a \mid b) \text {, in general. }
$$

Well-known Baye's Theorem may be violated in a quantum logic.

Two dimensional state - s-map

Definition

Let L be a QL. A map $p: L \times L \rightarrow[0,1]$ will be called an s-map on L if the following conditions are fulfilled:
(s1) $p\left(1_{L}, 1_{L}\right)=1$;
(s2) for all $a, b \in L$ if $a \perp b$ then $p(a, b)=0$;
(s3) for all $a, b, c \in L$ if $a \perp b$ then

$$
p(a \vee b, c)=p(a, c)+p(b, c) \quad p(c, a \vee b)=p(c, a)+p(c, b) .
$$

Let us denote: \mathcal{P} the system of all s-maps on L, which are σ-additive in both variables.

$$
\mathcal{P}_{S}=\{p \in \mathcal{P} ; p(a, b)=p(b, a) \quad \forall a, b \in L\}, \text { and } \mathcal{P}_{N}=\mathcal{P}-\mathcal{P}_{S} .
$$

Proposition. Let L be a QL and $p \in \mathcal{P}$. The following statements are true:
$1 \mu_{p}: L \rightarrow[0,1]$, such that $\mu_{p}(a)=p(a, a)$ is a σ-additive state on L.

2 For all $a, b \in L$ we have that $p(a, b) \leq p(a, a)=p\left(a, 1_{L}\right)$.
3 If $a \leftrightarrow b$, then $p(a, b)=p\left(a \wedge b, 1_{L}\right)$.
4 For arbitrary $a, b \in L$ the following equivalence holds

$$
f_{p}\left(b \mid 1_{L}\right)=f_{p}(b \mid a) \quad \Leftrightarrow \quad p(b, a)=p\left(a, 1_{L}\right) p\left(b, 1_{L}\right) .
$$

5 Let $p \in \mathcal{P}$ and $L_{0}=\{b \in L: \quad p(b, b) \neq 0\}$. Then

$$
f_{p}(a, b)=\frac{p(a, b)}{p(b, b)}
$$

is a conditional state $f_{p}: L \times L_{0} \rightarrow[0,1]$.

Probability measure

Let (Ω, \mathcal{F}, P) be a probability space.

$$
P(A)=P(B)=1 \text { iff } P(A \cap B)=1
$$

State and s-map on a QL

Let L be a QL and m be a state and p be an s-map. Then

$$
m(a)=m(b)=1 \text { does not imply } m(a \wedge b)=1
$$

Jauch-Piron state: $m(a)=m(b)=1$ iff $m(a \wedge b)=1$.

$$
p(a, a)=p(b, b)=1 \text { iff } p(a, b)=p(b, a)=1 .
$$

and moreover $p(a, c)=p(c, a)$ for all $c \in L$.

Joint distribution

Definition

Let L be a QL and let $x, y \in \mathcal{O}$. Then a map $p_{x, y}: \mathcal{B}(R)^{2} \rightarrow[0,1]$, such that $p_{x, y}(t, s)=p(x((-\infty, t)), y((-\infty, s)))$ is called a joint p-distribution for the observables x, y.

Definition

Let $x, y \in \mathcal{O}$. Let us denote

$$
E_{p}(x, y)=\iint_{R^{2}} t \cdot s \cdot p(x(d t), y(d s))
$$

if the right-hand-side integral exists.
If $x, y \in \mathcal{O}_{D}$, then $E_{p}(x, y)=\sum_{t \in \sigma(x)} \sum_{s \in \sigma(y)} t \cdot s \cdot p(x(\{t\}), y(\{s\})$
whenever the right-hand-side sum exists.

Let us denote $c_{p}(x, y)=E_{p}(x, y)-E_{p}(x) E_{p}(y)$.
Proposition. Let L be a QL, $p \in \mathcal{P}$. For each $x, y \in \mathcal{O}_{F}$ there exist probability spaces $\left(\Omega_{i}, \mathcal{S}_{i}, P_{i}\right)$ (for $i=1,2$) and random variables ξ_{i}, η_{i} \mathcal{S}_{i}-measurable respectively, such that:
(r1) $E_{i}\left(\xi_{i}\right)=E_{p}(x)$ and $E_{i}\left(\eta_{i}\right)=E_{p}(y), i=1,2$;
(r2) $c_{p}(x, y)=\operatorname{cov}\left(\xi_{1}, \eta_{1}\right), c_{p}(y, x)=\operatorname{cov}\left(\eta_{2}, \xi_{2}\right)$;
(r3) $\left(c_{p}(x, y)\right)^{2} \leq c_{p}(x, x) c_{p}(y, y)$.

Proposition. Let L be a QL, $p_{1}, p_{2} \in \mathcal{P}$ and $p=\alpha p_{1}+(1-\alpha) p_{2}$, $\alpha \in[0,1]$. If $p_{1}(a, a)=p_{2}(a, a) \forall a \in L$, then $\forall x, y \in \mathcal{O}_{F}$

$$
c_{p}(x, y)=\alpha c_{p_{1}}(x, y)+(1-\alpha) c_{p_{2}}(x, y) ;
$$

Stochastic causality

Definition

Let L be a QL and $x, y \in \mathcal{O}$. Let $p \in \mathcal{P}$. We say that:
$1 x$ is causal to y with respect to p if there exist some
$A, B \in \mathcal{B}(R)$ such that

$$
p(x(A), y(B)) \neq p(y(B), x(A))
$$

$2 x$ is strong causal to y with respect to p if for any $A, B \in \mathcal{B}(R)$

$$
p(x(A), y(B))=p\left(x(A), 1_{L}\right) p\left(y(B), 1_{L}\right)
$$

and moreover there exist $A_{0}, B_{0} \in \mathcal{B}(R)$ such that

$$
p\left(y\left(B_{0}\right), x\left(A_{0}\right)\right) \neq p\left(y\left(B_{0}, 1_{L}\right)\right) p\left(x\left(A_{0}, 1_{L}\right)\right) .
$$

Proposition. Let L be a QL and let $p_{1}, p_{2} \in \mathcal{P}$, such that for $\forall u, v \in L$ $p_{1}(u, v)=p_{2}(v, u)$. If $x, y \in \mathcal{O}_{D}$ are strong causal, then there exists a probability space $\left(\Omega_{\alpha}, \mathcal{F}_{\alpha}, P_{\alpha}\right), \alpha \in[0,1]$ and random variables $\xi_{\alpha, t}$ such that

$$
E_{p}(z(t))=E\left(\xi_{\alpha, t}\right), \quad E_{p}(z(t), z(t))-E_{p}(z(t))^{2}=D\left(\xi_{\alpha, t}\right),
$$

where $t \in\{x, y\}$ and $z(x)=x, z(y)=y$. Moreover

$$
\operatorname{cov}\left(\xi_{\alpha, x}, \xi_{\alpha, y}\right)=\alpha c_{p}(x, y)+(1-\alpha) c_{p}(y, x)=c_{p, \alpha}(x, y)
$$

The covariance matrix $\Sigma_{x, y}(\alpha)$ is positive semidefinite

$$
\Sigma_{x, y}(\alpha)=\left(\begin{array}{rr}
c_{p}(x, x) & c_{p, \alpha}(x, y) \\
c_{p, \alpha}(y, x) & c_{p}(y, y)
\end{array}\right) .
$$

We may transform the non-compatible observables x, y into one probability space. Their images are compatible. Thus we get the symmetric covariance matrix

$$
\begin{aligned}
& \Sigma_{x, y}(0.5)=\frac{1}{2} \cdot\left(\Sigma_{x y}+\Sigma_{x y}^{T}\right) \\
& \Sigma_{x, y}(0.5)=\mathcal{A}(0.5) \circ\left(\Sigma_{x y}+\Sigma_{x y}^{T}\right)=\frac{1}{2} \cdot\left(\Sigma_{x y}+\Sigma_{x y}^{T}\right)
\end{aligned}
$$

Let x, y be strongly causal $\left(c_{p}(x, y) \neq 0\right.$ and $\left.c_{p}(y, x)=0\right)$. Then

$$
\Sigma_{x, y}(0.5)=\left(\begin{array}{rr}
c_{p}(x, x) & \frac{1}{2} c_{p}(x, y) \\
\frac{1}{2} c_{p}(x, y) & c_{p}(y, y)
\end{array}\right)
$$

Conditional expectation

Definition

Let L be a QL, $p \in \mathcal{P}, x \in \mathcal{O}$ and \mathcal{B} be a Boolean sub- σ-algebra of L. A version of conditional expectation of the observable x with respect to $\mathcal{B}\left(E_{p}(x \mid \mathcal{B})=z\right)$ is such an observable z that $R(z) \subset \mathcal{B}$ and $\quad E_{f_{p}}(z \mid a)=E_{f_{p}}(x \mid a)$ for arbitrary

$$
a \in\left\{u \in \mathcal{B} ; \mu_{p}(u) \neq 0\right\}
$$

Since $R(x)$ is Boolean sub- σ-algebra of L we will write simply $E_{p}(y \mid x)=E_{p}(y \mid R(x))$.

Proposition. Let L be a $Q L, p \in \mathcal{P}$ and $x, y \in \mathcal{O}_{D}$. Then the following statements are true:
$1 E_{p}\left(x, E_{p}(y \mid x)\right)=E_{p}(x, y)$.
$2 E_{p}\left(E_{p}(x \mid y)\right)=E_{p}(x)$;
$3 E_{p}(x \mid x)=x$;
$4 E_{p}\left(E_{p}(x \mid y) \mid y\right)=E_{p}(x \mid y)$;
$\left.5 c_{p}(x, y)=c_{p}\left(E_{p}(x \mid y)\right), y\right)$.

"Sum" of observables in a quantum logic

Let L be a QL, $p \in \mathcal{P}$ and $x, y \in \mathcal{O}$.
Compatibility
If $x \leftrightarrow y$ then $x=f \circ h$ and $y=g \circ h$.
Loomis-Sikorski Theorem: $x+y=(f+g) \circ h$.

Non compatibility

If x, y are non-compatible then we cannot apply this procedure and $x+y$ does not exist in this sense.

Definition

Let L be a QL and $p \in \mathcal{P}$. A map $\oplus_{p}: \mathcal{O} \times \mathcal{O} \rightarrow \mathcal{O}$ is called a summability operator if the following conditions are fulfilled
(d1) $R\left(\oplus_{p}(x, y)\right) \subset R(y)$;
(d2) $\oplus_{p}(x, y)=E_{p}(x \mid y)+y$.

Definition

Let L be a QL, \mathcal{B} be a Boolean sub- σ-algebra of L, and $p \in \mathcal{P}$. A map $\oplus_{p}^{\mathcal{B}}: \mathcal{O} \times \mathcal{O} \rightarrow \mathcal{O}$ is called a summability operator with respect to a condition \mathcal{B} if the following conditions are fulfilled
(a1) $R\left(\oplus_{p}^{\mathcal{B}}(x, y)\right) \subset \mathcal{B}$;
(a2) $\oplus_{p}^{\mathcal{B}}(x, y)=E_{p}(x \mid \mathcal{B})+E_{p}(y \mid \mathcal{B})$.

Proposition. Let L be a QL, \mathcal{B} be a Boolean sub- σ-algebra of L, and $p \in \mathcal{P}$. Assume $x, y \in \mathcal{O}$. Then the following statements are satisfied (e1) if $x \leftrightarrow y$ then $\oplus_{p}(x, y) \leftrightarrow \oplus_{p}(y, x)$;
(e2) $\oplus_{p}^{\mathcal{B}}(x, y)=\oplus_{p}^{\mathcal{B}}(y, x)$;
(e3) $E_{p}\left(\oplus_{p}^{\mathcal{B}}(x, y)\right)=E_{p}\left(\oplus_{p}(x, y)\right)=E_{p}(x)+E_{p}(y)$;
(e4) if $x, y \in \mathcal{O}_{D}$ then

$$
E_{p}(x)+E_{p}(y)=\sum_{t \in \sigma(x)} \sum_{r \in \sigma(y)}(t+r) p(x(\{t\}), y(\{r\})
$$

Linear regression

Let (Ω, \mathcal{F}, P) a probability space and let ε be a random vector. Let

$$
\mathbf{Y}=\boldsymbol{A} \beta+\varepsilon
$$

where β be the vector of unknown parameters and

$$
A=\left(\begin{array}{llll}
1 & 1 & \ldots & 1 \\
1 & 2 & \ldots & n
\end{array}\right)^{T}
$$

If residuals ε_{i} are autocorrelated or heteroscedastic, then we use generalized least squares (GLS) method. The GLS estimator of the coefficients in a linear model is

$$
\hat{\beta}=\left(A^{T} \Sigma^{-1} A\right)^{-1} A^{T} \Sigma^{-1} Y
$$

The precise form of covariance matrix Σ depends on the nature of the errors process.
(Kubáček, L., Kubáčková, L., Volaufová J: Statistical models with linear structure. page 11, model (1.4))

Classical and quantum model

Two types of stochastic processes: a Markov chain and an AR-process. Comparison of predictions

1 the classical model - the covariance matrix Σ_{1},
2 the quantum model - the covariance matrix $\Sigma_{\frac{1}{2}}$ from Σ_{1} :

$$
\begin{aligned}
& \operatorname{cov}\left(Z_{i}, Z_{j}\right)=0, \operatorname{cov}\left(Z_{j}, Z_{i}\right)=j, i>j . \\
& \Sigma_{1}=\left(\begin{array}{cccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & 2 & 2 & \ldots & 2 \\
1 & 2 & 3 & \ldots & 3 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 2 & 3 & \ldots & n
\end{array}\right), \quad \Sigma_{\frac{1}{2}}=\left(\begin{array}{ccccc}
1 & \frac{1}{2} & \frac{1}{2} & \ldots & \frac{1}{2} \\
\frac{1}{2} & 2 & 1 & \ldots & 1 \\
\frac{1}{2} & 1 & 3 & \ldots & \frac{3}{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{1}{2} & 1 & \frac{3}{2} & \ldots & n
\end{array}\right) .
\end{aligned}
$$

Classical and quantum model

Our statistical analysis was the following:
(SA1) We generated random variables $\varepsilon_{i}, \sim N(0,1)$ (i.i.d.),
($i=1, \ldots, 15$) which gave a Markov chain with the covariance matrix Σ_{1} such that $Z_{i}=\sum_{j=1}^{i} \varepsilon_{j}$.
(SA2) From 10 values $\left(Z_{1}, \ldots, Z_{10}\right)$ we computed prediction intervals for $\alpha \%$-confidence levels for 0.1 up to 0.99 with step 0.01 , for each of the time instants $11,12, \ldots, 15$. The prediction intervals were computed for for the classical model $\left(\Sigma_{1}\right)$ and for the quantum model ($\Sigma_{\frac{1}{2}}$).

Classical and quantum model

(SA3) For each of the random variables Z_{11}, \ldots, Z_{15} we found the least α such that the corresponding Z_{j} was element of the $\alpha \%$-confidence interval.
(SA4) We repeated this procedure 1000 times and got the relative frequency for each of Z_{11}, \ldots, Z_{15} in prediction intervals for both models and each $0.01 \leq \alpha \leq 0.99$.

The results for Z_{11}, Z_{13}, Z_{15} are in the following figures.

Figure: Relative frequency (probability) of Z_{11} in prediction intervals for both models

- Classical prediction
- Quantum prediction
- - - Confidence level

We can see that for Z_{11}, the real confidence levels of prediction intervals for both models over-estimated, but confidence levels for the quantum model are less over-estimated (nearer to α 's).

Figure: Relative frequency (probability) of Z_{13} in prediction intervals for both models

_- Classical prediction

Quantum prediction

- - - Confidence level

For Z_{13}, the real confidence levels of prediction intervals computed for the classical model are over-estimated, while the confidence levels for the quantum model are almost equal to α 's.

AR process

an $A R$ process with its correlation matrix $\Sigma_{A R}$

$$
\Sigma_{A R}=\left(\begin{array}{ccccc}
1 & \rho & \rho^{2} & \vdots & \rho^{n-1} \\
\rho & 1 & \rho & \vdots & \rho^{n-2} \\
\rho^{2} & \rho & 1 & \vdots & \rho^{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho^{n-1} & \rho^{n-2} & \rho^{n-3} & \vdots & 1
\end{array}\right)
$$

Classical and quantum model

The correlation matrix for the quantum model of this AR process
$\Sigma_{A R_{\frac{1}{2}}}$:
$\Sigma_{A R}$ by by assumptions that for $i>j$ we have $\operatorname{cor}\left(Y_{i}, Y_{j}\right)=0$, and $\operatorname{cor}\left(Y_{j}, Y_{i}\right)=\rho^{i-j}$.

$$
\Sigma_{A R_{1}}=\left(\begin{array}{ccccc}
1 & \frac{\rho}{2} & \frac{\rho^{2}}{2} & \ldots & \frac{\rho^{n}}{2} \\
\frac{\rho}{2} & 1 & \frac{\rho}{2} & \ldots & \frac{\rho^{n-1}}{2} \\
\frac{\rho^{2}}{2} & \frac{\rho}{2} & 1 & \ldots & \frac{\rho^{n-2}}{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{\rho^{n}}{2} & \frac{\rho^{n-1}}{2} & \frac{\rho^{n-2}}{2} & \ldots & 1
\end{array}\right)
$$

Classical and quantum model

Also in this case we will call the model based on the correlation matrix $\Sigma_{A R}$ classical, the model based on the correlation matrix $\Sigma_{A R_{\frac{1}{2}}}$ quantum. We have generated the following process

$$
Y_{i}=\rho Y_{i-1}+\epsilon_{i}, \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right), \text { I.I.D. }
$$

We made the statistical analysis for Y_{t} based on steps (SA1)-(SA4) as by the Markov chain. The results for Y_{11}, Y_{12}, Y_{13} are in the following figures. For details on prediction intervals for AR processes one can consult, e.g.

Figure: Relative frequency (probability) of Y_{11} in prediction intervals for both models

- Classical prediction
- Quantum prediction
- - - Confidence level

For Y_{11}, the real confidence levels of prediction intervals computed for the classical model are over-estimated, while the confidence levels for the quantum model are almost equal to α 's.

Figure: Relative frequency (probability) of Y_{12} in prediction intervals for both models

- Classical prediction

Quantum prediction

- - - Confidence level

For Y_{12}, the real confidence levels of prediction intervals computed both, for the classical as well as for the quantum models, are almost equal to α 's, but the confidence levels for the classical model are 'a little' over-estimated, while the confidence levels for the quantum

Figure: Relative frequency (probability) of Y_{13} in prediction intervals for both models

- Classical prediction
- Quantum prediction
- - - Confidence level

For Y_{13}, the real confidence levels of prediction intervals computed for the classical model are almost equal to α 's, while the confidence levels for the quantum model are under-estimated.

Thank you for your kind attention

