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Introduction

Motivation

Let
Xt1 , Xt2 , ...

be a sequence of random variables. This sequence is a stochastic
process.

Let us suppose that ti is time.

Our question is: How can we model this stochastic process?

There exist various approaches for modeling of such process
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Introduction

We will compare two approaches:
The domain of this process is a Boolean σ-algebra (the standard
probability space) and then we use standard techniques for
forecasting. It means that we use Kolmogorov’s probability
theory.
The domain of this process is a quantum logic and then we use a
calculus based on two dimensional states. It means, that we use
quantum logics (quantum probability model) - compatible and
non-compatible random events.
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Introduction

comparing the quality of predictions: quntum model versus
classical model
basic notions in a quantum logic - state, observable, expectation
conditional states and s-maps (two-variable states), causality
covariance, conditional expectation, sum of non-compatible
observables
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Quantum logic

Definition

Let (L, 0L, 1L,∨,∧,⊥) a σ-lattice with the greatest element 1L and the
smallest element 0L. Let ⊥: L → L be a unary operation on L with the
following properties:
(a) for all a ∈ L there is a unique a⊥ ∈ L such that (a⊥)⊥ = a and

a ∨ a⊥ = 1L;
(b) if a, b ∈ L and a ≤ b then b⊥ ≤ a⊥;
(c) if a, b ∈ L and a ≤ b then b = a ∨ (a⊥ ∧ b) (orthomodular law).

Then (L, 0L, 1L,∨,∧,⊥) is said to be an orthomodular σ-lattice.
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Quantum logic

1 orthogonal (a ⊥ b) if a ≤ b⊥,
2 compatible (a ↔ b) if a = (a ∧ b) ∨ (a ∧ b⊥) and

b = (a ∧ b) ∨ (a⊥ ∧ b).

Definition

A map m : L → [0, 1] is called a σ-additive state on L, if m(1L) = 1
and

m(∨i∈Iai) =
∑
i∈I

m(ai)

for ai ∈ L, ai ⊥ aj i ̸= j , i ∈ I ⊂ N

An orthomodular σ-lattice L is called a quantum σ -logic (briefly QL),
if there exists a σ-additive state.

There exists orthomodular lattices with no state (R.Greechie).
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Observables

Definition

Let L be a QL. A σ−homomorphism x from Borel sets to L (B(R)),
such that x(R) = 1L is called an observable on L.

Let us denote O the set of all observables on L.

Definition

Let L be a QL and x be an observable on L. Then
R(x) = {x(E); E ∈ B(R)}
is called the range of the observable x on L;
σ(x) = ∩{E ∈ B(R); x(E) = 1L}
is called the spectrum of the observable .

Discrete: if σ(x) is an at most countable set (all discrete OD).
Finite: if σ(x) is a finite set (all finite OF ).
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Let L be a QL. Let x ∈ O and m be a σ-additive state on L.
A state respons to a probability measure.
An observable respons to a random variable.
R(x) is a Boolean sub-σ-algebra of L
mx(t) = m(x(−∞, t)), t ∈ R respons to a probability distribution
of x .
Em(x) respons to the expectation of the observable x in the state
m.

Em(x) =

∫
R

t m(x(dt)),

if the integral exists. If x ∈ OD, then

Em(x) =
∑
t∈R

tm(x({t})).
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Definition

Let L be a QL, L0 ⊂ L − {0L}. Let f : L × Lc → [0, 1] be a function
fulfilling the following

1 for each a ∈ L0 f (.|a) is a σ-additive state on L;
2 for each a ∈ L0 f (a|a) = 1;
3 for mutually orthogonal (at most countably many) elements

a1, a2, ...,∨iai ∈ L0 the following is satisfied

f (b| ∨i ai) =
∑

i

f (b|ai)f (ai | ∨i ai).

Then f is called a conditional state on L.
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Independence

Definition

Let L be a QL and let f be a conditional state on L. Let
a, c ∈ L0 ⊂ L − {0L} and let b ∈ L. We say that

b is independent of a with respect to the state f (.|c)

(b ≍f (.|c) a) if f (c|a) = 1 and f (b|c) = f (b|a).

Let a, b, 1L ∈ L0. Unlike the Kolmogorovian theory

f (b|1L) = f (b|a) does not imply f (a|1L) ̸= f (a|b), in general.

Well-known Baye’s Theorem may be violated in a quantum logic.
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Two dimensional state - s-map

Definition

Let L be a QL. A map p : L× L → [0, 1] will be called an s-map on L if
the following conditions are fulfilled:
(s1) p(1L, 1L) = 1;
(s2) for all a, b ∈ L if a ⊥ b then p(a, b) = 0;
(s3) for all a, b, c ∈ L if a ⊥ b then

p(a ∨ b, c) = p(a, c) + p(b, c) p(c, a ∨ b) = p(c, a) + p(c, b).

Let us denote: P the system of all s-maps on L, which are σ-additive
in both variables.
PS = {p ∈ P; p(a, b) = p(b, a) ∀a, b ∈ L}, and PN = P − PS.
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Proposition. Let L be a QL and p ∈ P. The following statements are
true:

1 µp : L → [0, 1], such that µp(a) = p(a, a) is a σ-additive state on
L.

2 For all a, b ∈ L we have that p(a, b) ≤ p(a, a) = p(a, 1L).
3 If a ↔ b, then p(a, b) = p(a ∧ b, 1L).
4 For arbitrary a, b ∈ L the following equivalence holds

fp(b|1L) = fp(b|a) ⇔ p(b, a) = p(a, 1L)p(b, 1L).

5 Let p ∈ P and L0 = {b ∈ L : p(b, b) ̸= 0}. Then

fp(a, b) =
p(a, b)

p(b, b)

is a conditional state fp : L × L0 → [0, 1].
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Probability measure

Let (Ω,F , P) be a probability space.

P(A) = P(B) = 1 iff P(A ∩ B) = 1

State and s-map on a QL

Let L be a QL and m be a state and p be an s-map. Then

m(a) = m(b) = 1 does not imply m(a ∧ b) = 1.

Jauch-Piron state: m(a) = m(b) = 1 iff m(a ∧ b) = 1.

p(a, a) = p(b, b) = 1 iff p(a, b) = p(b, a) = 1.

and moreover p(a, c) = p(c, a) for all c ∈ L.
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Joint distribution

Definition

Let L be a QL and let x , y ∈ O. Then a map px,y : B(R)2 → [0, 1],
such that px,y (t , s) = p(x((−∞, t)), y((−∞, s))) is called a joint
p-distribution for the observables x , y .

Definition

Let x , y ∈ O. Let us denote

Ep(x , y) =

∫ ∫
R2

t · s · p(x(dt), y(ds))

if the right-hand-side integral exists.
If x , y ∈ OD, then Ep(x , y) =

∑
t∈σ(x)

∑
s∈σ(y)

t · s · p(x({t}), y({s})

whenever the right-hand-side sum exists.
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Let us denote cp(x , y) = Ep(x , y) − Ep(x)Ep(y).

Proposition. Let L be a QL, p ∈ P. For each x , y ∈ OF there exist
probability spaces (Ωi ,Si , Pi) (for i = 1, 2) and random variables ξi , ηi
Si -measurable respectively, such that:
(r1) Ei(ξi) = Ep(x) and Ei(ηi) = Ep(y), i = 1, 2;
(r2) cp(x , y) = cov(ξ1, η1), cp(y , x) = cov(η2, ξ2);
(r3) (cp(x , y))2 ≤ cp(x , x)cp(y , y).

Proposition. Let L be a QL, p1, p2 ∈ P and p = αp1 + (1 − α)p2,
α ∈ [0, 1]. If p1(a, a) = p2(a, a) ∀a ∈ L, then ∀x , y ∈ OF

cp(x , y) = αcp1(x , y) + (1 − α)cp2(x , y);
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Stochastic causality

Definition

Let L be a QL and x , y ∈ O. Let p ∈ P. We say that:
1 x is causal to y with respect to p if there exist some

A, B ∈ B(R) such that

p(x(A), y(B)) ̸= p(y(B), x(A));

2 x is strong causal to y with respect to p if for any A, B ∈ B(R)

p(x(A), y(B)) = p(x(A), 1L)p(y(B), 1L)

and moreover there exist A0, B0 ∈ B(R) such that

p(y(B0), x(A0)) ̸= p(y(B0, 1L))p(x(A0, 1L)).
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Proposition. Let L be a QL and let p1, p2 ∈ P, such that for ∀u, v ∈ L
p1(u, v) = p2(v , u) . If x , y ∈ OD are strong causal, then there exists a
probability space (Ωα,Fα, Pα), α ∈ [0, 1] and random variables ξα,t
such that

Ep(z(t)) = E(ξα,t), Ep(z(t), z(t)) − Ep(z(t))2 = D(ξα,t),

where t ∈ {x , y} and z(x) = x , z(y) = y . Moreover

cov(ξα,x , ξα,y ) = αcp(x , y) + (1 − α)cp(y , x) = cp,α(x , y).

The covariance matrix Σx,y (α) is positive semidefinite

Σx,y (α) =

(
cp(x , x) cp,α(x , y)

cp,α(y , x) cp(y , y)

)
.



. . . . . .

Introduction Quantum logic Observables Bivariable states Conditional expectation Summability operator Classical versus quantum model

We may transform the non-compatible observables x , y into one
probability space. Their images are compatible. Thus we get the
symmetric covariance matrix

Σx,y (0.5) =
1
2

.
(
Σxy + ΣT

xy
)

Σx,y (0.5) = A(0.5) ◦ (Σxy + ΣT
xy ) =

1
2

.
(
Σxy + ΣT

xy
)

Let x , y be strongly causal (cp(x , y) ̸= 0 and cp(y , x) = 0). Then

Σx,y (0.5) =

(
cp(x , x) 1

2 cp(x , y)
1
2 cp(x , y) cp(y , y)

)
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Conditional expectation

Definition

Let L be a QL, p ∈ P, x ∈ O and B be a Boolean sub-σ-algebra of L.
A version of conditional expectation of the observable x with
respect to B (Ep(x |B) = z) is such an observable z that R(z) ⊂ B
and Efp(z|a) = Efp(x |a) for arbitrary

a ∈ {u ∈ B; µp(u) ̸= 0}.

Since R(x) is Boolean sub-σ-algebra of L we will write simply
Ep(y |x) = Ep(y |R(x)).
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Proposition. Let L be a QL, p ∈ P and x , y ∈ OD. Then the following
statements are true:

1 Ep(x , Ep(y |x)) = Ep(x , y).

2 Ep(Ep(x |y)) = Ep(x);
3 Ep(x |x) = x ;
4 Ep(Ep(x |y)|y) = Ep(x |y);
5 cp(x , y) = cp(Ep(x |y)), y).
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“Sum” of observables in a quantum logic

Let L be a QL, p ∈ P and x , y ∈ O.

Compatibility

If x ↔ y then x = f ◦ h and y = g ◦ h.
Loomis-Sikorski Theorem: x + y = (f + g) ◦ h.

Non compatibility

If x , y are non-compatible then we cannot apply this procedure and
x + y does not exist in this sense.
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Definition

Let L be a QL and p ∈ P. A map ⊕p : O ×O → O is called a
summability operator if the following conditions are fulfilled
(d1) R(⊕p(x , y)) ⊂ R(y);
(d2) ⊕p(x , y) = Ep(x |y) + y .

Definition

Let L be a QL, B be a Boolean sub-σ-algebra of L, and p ∈ P. A map
⊕B

p : O ×O → O is called a summability operator with respect to a
condition B if the following conditions are fulfilled
(a1) R

(
⊕B

p (x , y)
)
⊂ B;

(a2) ⊕B
p (x , y) = Ep(x |B) + Ep(y |B).
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Proposition. Let L be a QL, B be a Boolean sub-σ-algebra of L, and
p ∈ P. Assume x , y ∈ O. Then the following statements are satisfied
(e1) if x ↔ y then ⊕p(x , y) ↔ ⊕p(y , x);
(e2) ⊕B

p (x , y) = ⊕B
p (y , x);

(e3) Ep
(
⊕B

p (x , y)
)

= Ep(⊕p(x , y)) = Ep(x) + Ep(y);
(e4) if x , y ∈ OD then

Ep(x) + Ep(y) =
∑

t∈σ(x)

∑
r∈σ(y)

(t + r)p(x({t}), y({r}).
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Linear regression
Let (Ω,F , P) a probability space and let ε be a random vector. Let

Y = Aβ + ε,

where β be the vector of unknown parameters and

A =

(
1 1 . . . 1
1 2 . . . n

)T

.

If residuals εi are autocorrelated or heteroscedastic, then we use
generalized least squares (GLS) method. The GLS estimator of the
coefficients in a linear model is

β̂ = (AT Σ−1A)−1AT Σ−1Y .

The precise form of covariance matrix Σ depends on the nature of the
errors process.
(Kubáček, L., Kubáčková, L., Volaufová J: Statistical models with
linear structure. page 11, model (1.4))
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Classical and quantum model

Two types of stochastic processes:
a Markov chain and an AR-process.

Comparison of predictions

1 the classical model - the covariance matrix Σ1,
2 the quantum model - the covariance matrix Σ 1

2
from Σ1:

cov(Zi , Zj) = 0, cov(Zj , Zi) = j , i > j .

Σ1 =


1 1 1 . . . 1
1 2 2 . . . 2
1 2 3 . . . 3
...

...
...

...
...

1 2 3 . . . n

 , Σ 1
2

=


1 1

2
1
2 . . . 1

2
1
2 2 1 . . . 1
1
2 1 3 . . . 3

2
...

...
...

. . .
...

1
2 1 3

2 . . . n

 .
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Classical and quantum model

Our statistical analysis was the following:
(SA1) We generated random variables εi ,∼ N(0, 1) (i.i.d.),

(i = 1, ..., 15) which gave a Markov chain with the covariance

matrix Σ1 such that Zi =
i∑

j=1
εj .

(SA2) From 10 values (Z1, . . . , Z10) we computed prediction intervals
for α%-confidence levels for 0.1 up to 0.99 with step 0.01, for
each of the time instants 11, 12, . . . , 15. The prediction intervals
were computed for for the classical model (Σ1) and for the
quantum model (Σ 1

2
).
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Classical and quantum model

(SA3) For each of the random variables Z11, . . . , Z15 we found the least
α such that the corresponding Zj was element of the
α%-confidence interval.

(SA4) We repeated this procedure 1000 times and got the relative
frequency for each of Z11, . . . , Z15 in prediction intervals for both
models and each 0.01 ≤ α ≤ 0.99.

The results for Z11, Z13, Z15 are in the following figures.
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Figure: Relative frequency (probability) of Z11 in prediction intervals for both
models
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We can see that for Z11, the real confidence levels of prediction
intervals for both models over-estimated, but confidence levels for the
quantum model are less over-estimated (nearer to α’s).
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Figure: Relative frequency (probability) of Z13 in prediction intervals for both
models
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For Z13, the real confidence levels of prediction intervals computed for
the classical model are over-estimated, while the confidence levels
for the quantum model are almost equal to α’s.

Figure: Relative frequency (probability) of Z15 in prediction intervals for both
models
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AR process

an AR process with its correlation matrix ΣAR

ΣAR =



1 ρ ρ2
... ρn−1

ρ 1 ρ
... ρn−2

ρ2 ρ 1
... ρn−3

...
...

...
. . .

...

ρn−1 ρn−2 ρn−3
... 1


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Classical and quantum model

The correlation matrix for the quantum model of this AR process
ΣAR 1

2
:

ΣAR by by assumptions that for i > j we have cor(Yi , Yj) = 0, and
cor(Yj , Yi) = ρi−j .

ΣAR 1
2

=



1 ρ
2

ρ2

2 . . . ρn

2
ρ
2 1 ρ

2 . . . ρn−1

2
ρ2

2
ρ
2 1 . . . ρn−2

2
...

...
...

. . .
...

ρn

2
ρn−1

2
ρn−2

2 . . . 1


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Classical and quantum model

Also in this case we will call the model based on the correlation
matrix ΣAR classical, the model based on the correlation matrix ΣAR 1

2

quantum. We have generated the following process

Yi = ρYi−1 + ϵi , ϵi ∼ N(0, σ2), I.I.D.

We made the statistical analysis for Yt based on steps (SA1)-(SA4)
as by the Markov chain. The results for Y11, Y12, Y13 are in the
following figures. For details on prediction intervals for AR processes
one can consult, e.g.
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Figure: Relative frequency (probability) of Y11 in prediction intervals for both
models
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For Y11, the real confidence levels of prediction intervals computed
for the classical model are over-estimated, while the confidence
levels for the quantum model are almost equal to α’s.
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Figure: Relative frequency (probability) of Y12 in prediction intervals for both
models
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For Y12, the real confidence levels of prediction intervals computed
both, for the classical as well as for the quantum models, are almost
equal to α’s, but the confidence levels for the classical model are ‘a
little’ over-estimated, while the confidence levels for the quantum
model are ‘a little’ under-estimated.
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Figure: Relative frequency (probability) of Y13 in prediction intervals for both
models
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For Y13, the real confidence levels of prediction intervals computed
for the classical model are almost equal to α’s, while the confidence
levels for the quantum model are under-estimated.
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Thank you for your kind attention
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