Implications generated by increasing functions

Vladislav Biba ${ }^{1}$, Dana Hliněná ${ }^{1}$, Martin Kalina ${ }^{2}$, Pavol Král ${ }^{3}$

${ }^{1}$ BUT Brno
${ }^{2}$ Slovak University of Technology
${ }^{3}$ Matej Bel University

圊 Smutná, D.:
On many valued conjunctions and implications Journal of Electrical Engineering (1999)

围 Jayaram B., Mesiar R.:
I-fuzzy equivalence relations and I-fuzzy partitions Information Sciences (2009)

Implications generated using a function of one variable

- Yager's f-implications and g-implications (2004),
- Jayaram's h-generated implications (2006),
- Massanet's and Torrens' h - and generalized h-implications (2011),
- Massanet's and Torrens' (h, e)-implications and their generalization (2011),
- Massanet's and Torrens' e-generated and e-vertical generated implications,
- I_{f}, I_{f}^{*}-implications $(1999,2011)$.

Preliminaries

Fuzzy negation

A decreasing function $N:[0,1] \rightarrow[0,1]$ is called a negation if $N(0)=1, N(1)=0$. A fuzzy negation N is called
(1) strict if it is strictly decreasing and continuous,
(2) strong if it is an involution, i.e. $N(N(x))=x$ for all $x \in[0,1]$.

A dual negation based on N is given by $N^{d}(x)=1-N(1-x)$.

Example

The standard negation $N_{s}(x)=1-x$ is strong. The negation $N(x)=1-x^{2}$ is strict, but not strong. The Gödel negation $N_{G_{1}}$ is the least fuzzy negation and dual Gödel negation $N_{G_{2}}$ is the greatest fuzzy negation, both are non-continuous negations:

$$
N_{G_{1}}=\left\{\begin{array}{ll}
1 & \text { if } x=0, \\
0 & \text { if } x>0,
\end{array} ; N_{G_{2}}= \begin{cases}1 & \text { if } x<1 \\
0 & \text { if } x=1\end{cases}\right.
$$

Fuzzy implication (Fodor and Roubens, 1994)

A function $I:[0,1]^{2} \rightarrow[0,1]$ is called a fuzzy implication if it satisfies the following conditons:
(I1) I is decreasing in its first variable,
(I2) I is increasing in its second variable,
(I3) $I(1,0)=0, I(0,0)=I(1,1)=1$.

Natural negations

Let $I:[0,1]^{2} \rightarrow[0,1]$ be a fuzzy implications. The function N_{I} defined by $N_{I}(x)=I(x, 0)$ for all $x \in[0,1]$, is called the natural negation of I.

A fuzzy implication $I:[0,1]^{2} \rightarrow[0,1]$ satisfies:
(NP) the left neutrality property, or is called left neutral, if

$$
I(1, y)=y ; \quad y \in[0,1]
$$

(EP) the exchange principle if

$$
I(x, I(y, z))=I(y, I(x, z)) \text { for all } x, y, z \in[0,1]
$$

(IP) the identity principle if

$$
I(x, x)=1 ; \quad x \in[0,1]
$$

(OP) the ordering property if

$$
x \leq y \Longleftrightarrow I(x, y)=1 ; \quad x, y \in[0,1]
$$

(CP) the contrapositive symmetry with respect to a given negation N if

$$
I(x, y)=I(N(y), N(x)) ; \quad x, y \in[0,1] .
$$

(LI) the law of importation with respect to a t-norm T if

$$
I(T(x, y), z)=I(x, I(y, z)) ; \quad x, y, z \in[0,1] .
$$

(S, N)-implication

A function $I:[0,1]^{2} \rightarrow[0,1]$ is called an (S, N)-implication if there exist a t-conorm S and fuzzy negation N such that

$$
I(x, y)=S(N(x), y), \quad x, y \in[0,1]
$$

If N is a strong negation then I is called a strong implication.

Residual implication

with respect to a left-continuous triangular norm T

$$
I_{T}(x, y)=\max \{z \in[0,1] ; T(x, z) \leq y\}
$$

Pseudo-Inverse

Let $g:[0,1] \rightarrow[0, \infty]$ be an increasing function. The function $g^{(-1)}$ which is defined by

$$
g^{(-1)}(x)=\sup \{z \in[0,1] ; g(z)<x\}
$$

is called the pseudo-inverse of g with the convention $\sup \emptyset=0$.

Generated Implications

Theorem (Smutná, 1999)

Let $g:[0,1] \rightarrow[0, \infty]$ be a strictly increasing function such that $g(0)=0$. Then the function $I^{g}(x, y):[0,1]^{2} \rightarrow[0,1]$ which is given by

$$
I^{g}(x, y)=g^{(-1)}(g(1-x)+g(y))
$$

is a fuzzy implication.

Theorem (Smutná, 1999)

Let $g:[0,1] \rightarrow[0, \infty]$ be a strictly increasing function such that $g(0)=0$ and N be a fuzzy negation. Then the function $I_{N}^{g}:[0,1]^{2} \rightarrow[0,1]$ given as

$$
I_{N}^{g}(x, y)=g^{(-1)}(g(N(x))+g(y))
$$

is a fuzzy implication.

Let $g_{1}, g_{2}:[0,1] \rightarrow[0, \infty]$ be given by

- $g_{1}(x)= \begin{cases}x & \text { if } x \leq 0.5, \\ 0.5+0.5 x & \text { otherwise, }\end{cases}$
- $g_{2}(x)=-\ln (1-x)$.

For functions $g_{1}^{(-1)}$ and $g_{2}^{(-1)}$ we get

- $g_{1}^{(-1)}(x)= \begin{cases}x & \text { if } x \leq 0,5, \\ 0,5 & \text { if } 0,5<x \leq 0,75, \\ 2 x-1 & \text { if } 0,75<x \leq 1, \\ 1 & \text { if } 1<x,\end{cases}$
- $g_{2}^{(-1)}(x)=1-e^{-x}$ for $x \in[0, \infty]$.

$$
I^{g_{1}}(x, y)= \begin{cases}1-x+y & \text { if } x \geq 0.5, y \leq 0.5, x-y \geq 0.5, \\ 0.5 & \text { if } x \geq 0.5, y \leq 0.5,0.25 \leq x-y<0.5, \\ 1-2 x+2 y & \text { if } x \geq 0.5, y \leq 0.5, x-y<0.25, \\ \min (1-x+2 y, 1) & \text { if } x<0.5, y \leq 0.5, \\ \min (2-2 x+y, 1) & \text { if } x \geq 0.5, y>0.5, \\ 1 & \text { if } x<0.5, y>0.5,\end{cases}
$$

$$
I^{g_{2}}(x, y)=1-e^{\ln (x(1-y))}=1-x+x y .
$$

$$
I_{N}^{g_{1}}(x, y)= \begin{cases}1-x^{2}+y & \text { if } x \geq \frac{1}{\sqrt{2}}, y \leq 0.5, x^{2}-y \geq 0.5, \\ 0.5 & \text { if } x \geq \frac{1}{\sqrt{2}}, y \leq 0.5,0.25 \leq x^{2}-y<0.5, \\ 1-2 x^{2}+2 y & \text { if } x \geq \frac{1}{\sqrt{2}}, y \leq 0.5, x^{2}-y<0.25, \\ \min \left(1-x^{2}+2 y, 1\right) & \text { if } x<\frac{1}{\sqrt{2}}, y \leq 0.5, \\ \min \left(2-2 x^{2}+y, 1\right) & \text { if } x \geq \frac{1}{\sqrt{2}}, y>0.5, \\ 1 & \text { if } x<\frac{1}{\sqrt{2}}, y>0.5,\end{cases}
$$

$$
I_{N}^{g_{2}}(x, y)=1-x^{2}+x^{2} y
$$

Let c be a positive constant. If $g:[0,1] \rightarrow[0, \infty]$ be a strictly increasing function with $g(0)=0$ and N be an arbitrary negation. Then the implication I^{g} coincides with $I^{c \cdot g}$, and the implication I_{N}^{g} coincides with $I_{N}^{c \cdot g}$.

Lemma

Let $g:[0,1] \rightarrow[0, \infty]$ be a strictly increasing function such that $g(0)=0$. Then the natural negation related to I_{g} is
$N_{I^{g}}(x)=1-x$.

Proposition

Let $g:[0,1] \rightarrow[0, \infty]$ be a strictly increasing function such that $g(0)=0$. Then I^{g} satisfies (NP) and (CP) with respect to N_{s}.
(NP) the left neutrality property: $I(1, y)=y ; \quad y \in[0,1]$,
(CP) the contrapositive symmetry with respect to a given negation N :

$$
I(x, y)=I(N(y), N(x)) ; \quad x, y \in[0,1] .
$$

Proposition

Let $g:[0,1] \rightarrow[0, \infty]$ be a continuous and strictly increasing function such that $g(0)=0$. Then I^{g} satisfies the (EP).
(EP) the exchange principle:

$$
I(x, I(y, z))=I(y, I(x, z)) \text { for all } x, y, z \in[0,1]
$$

There exist also non-continuous functions g such that I^{g} satisfy (EP).

Example

Let $g:[0,1] \rightarrow[0,1]$ be given by

$$
g(x)= \begin{cases}0 & x=0 \\ \frac{1}{2}(x+1) & \text { otherwise }\end{cases}
$$

For its pseudo-inverse we get

$$
\begin{gathered}
g^{(-1)}(x)= \begin{cases}0 & x \leq \frac{1}{2} \\
2 x-1 & x>\frac{1}{2}\end{cases} \\
I^{g}(x, y)= \begin{cases}y & x=1 \\
1-x & y=0 \\
1 & \text { otherwise }\end{cases}
\end{gathered}
$$

Theorem

Let $g:[0,1] \rightarrow[0, \infty]$ be a strictly increasing function continuous on $] 0,1]$ such that $g(0)=0$. Then I^{g} is an (S, N)-implication which is strong.

I-fuzzy equivalence relation (Jayaram, Mesiar 2009)

Let I be an implication. A fuzzy subset E of the Cartesian product X^{2} is called an l-fuzzy equivalence relation on X if the following properties are satisfied for all $x, y, z \in X$:

- E is reflexive; $E(x, x)=1$,
- E is symmetric; $E(x, y)=E(y, x)$,
- E is I-transitive; $I(E(x, y), E(y, z)) \geq E(x, z)$.

For a given fuzzy implication I the concept of I-equivalence admits a value $a \in[0,1]$ if there exist an I-equivalence $E: X^{2} \rightarrow[0,1]$ and elements $x, y \in X$ such that $E(x, y)=a$.

Proposition (Jayaram, Mesiar 2009)

For a given implication I the following are equivalent:

- The concept of I-equivalence relation admits any value $a \in[0,1]$.
- I satisfies the following

$$
I(1, a) \geq a, \quad I(a, a)=1
$$

Proposition

Let $g:[0,1] \rightarrow[0, \infty]$ be a strictly increasing function such that $g(0)=0, g(1)=1$. If function g is symmetric with respect to the point $\left(\frac{1}{2}, g\left(\frac{1}{2}\right)\right)$, the concept of I^{g}-equivalence relation admits any value $a \in[0,1]$.

Proposition

Let $g:[0,1] \rightarrow[0, \infty]$ be a strictly increasing function such that $g(0)=0$ and $N:[0,1] \rightarrow[0,1]$ be a negation. If for each $x \in[0,1]$ the following is true

$$
g(x)+g(N(x)) \geq g(1)
$$

then the concept of I_{N}^{g}-equivalence relation admits any value $a \in[0,1]$.

Corollary

Let $g:[0,1] \rightarrow[0, \infty]$ be a strictly increasing function such that $g(0)=0, g(1)=1$ and $N:[0,1] \rightarrow[0,1]$ be a negation. If function g is symmetric with respect to the point $\left(\frac{1}{2}, g\left(\frac{1}{2}\right)\right)$ and $N(x) \geq 1-x$ for all $x \in[0,1]$, the concept of I_{N}^{g}-equivalence relation admits any value $a \in[0,1]$.

Equivalence relation fitting implication (Jayaram, Mesiar 2009)

An implication I is called an equivalence relation fitting implication if each I-fuzzy equivalence relation E on X is consistent, i.e., if there exist $x, y \in X$ such that $E(x, y)=1$, then for all $z \in X$

$$
E(x, z)=E(y, z)
$$

Proposition (Jayaram, Mesiar 2009)

If an implication is such that $I(1, a)=a$ and $I(a, a)=1$ for any $a \in[0,1]$, then I is an equivalence relation fitting implication.

Remark (Jayaram, Mesiar 2009)

If implication I satisfies (NP) and (IP), then I is an equivalence relation fitting implication.

Meaningful fuzzy partition (Jayaram, Mesiar 2009)

Each (fuzzy) equivalence relation $E: X^{2} \rightarrow[0,1]$ induces a fuzzy partition $P_{E}=\left\{U_{x} ; x \in X\right\}$ given by $U_{x}(y)=E(x, y)$. We say that the fuzzy partition P_{E} is meaningful if for all $x, y, z \in X$ we have that

$$
E(x, y)=1 \quad \Rightarrow \quad U_{x}=U_{y}
$$

Lemma (Jayaram, Mesiar 2009)

Let I be a fuzzy implication. Then I is an equivalence relation fitting fuzzy implication if and only if for all I-equivalence relations $E: X^{2} \rightarrow[0,1]$ the induced fuzzy partition P_{E} is meaningful.

Example

Let us have $g(x)=x$. Then we get

$$
I^{g}(x, y)=\min \{1,1-x+y\} .
$$

We have $I^{g}(1, y)=y$ for all $y \in[0,1]$. For an arbitrary non-void set X and an arbitrary I^{g}-equivalence relation $E_{I^{g}}: X^{2} \rightarrow[0,1]$ we get that if $E_{I^{g}}(a, b)=1$ for $a, b \in X$ then

$$
E_{I^{g}}(a, c) \leq I^{g}\left(1, E_{I^{g}}(b, c)\right)=E_{I^{g}}(b, c),
$$

on the other hand

$$
E_{I^{g}}(b, c) \leq I^{g}\left(1, E_{I^{g}}(a, c)\right)=E_{I^{g}}(a, c) .
$$

In this case the partition induced by $E_{I^{g}}$ is meaningful.

